高中数学压轴题一知识讲解

高中数学压轴题一知识讲解
高中数学压轴题一知识讲解

高中数学压轴题一

备战2013高考数学――压轴题跟踪演练系列一

1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.

(Ⅰ)求这三条曲线的方程;

(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.

解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =

24y x ∴= 抛物线方程为: ………………………………………………(1分)

由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,

1222a MF MF =+=

=+

(

2

22222211321

a a

b a

c ∴=+∴==+∴=-=+∴= 椭圆方程为:………………………………(4分)

对于双曲线,1222a MF MF '=-=

2222221321

a a

b

c a '∴='∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)

(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H

令()11113,,,2

2x y A x y +??

??? C ………………………………………………(7分)

()111231

23

22

DC AP x CH a x a ∴=

=+=-=-+

()()(

)22

2

2

2

2111212

1132344-23246222

DH DC CH x y x a a x a a

a DH DE DH l x ????∴=-=

-+--+???

?=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)

2.(14分)已知正项数列{}n a 中,16a =

,点(n n A a 在抛物线21y x =+上;数列

{}n

b 中,点(),n

n

B n b 在过点()0,1,以方向向量为()1,2的直线上.

(Ⅰ)求数列{}{},n n a b 的通项公式;

(Ⅱ)若()()()

n n a f n b ??=???, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n

,不等式

1

120111111n n n a b b b +-

≤??

????

+++ ? ????

?????

L 成立,求正数a 的取值

范围.

解:(Ⅰ)将点(n n A a 代入21y x =+中得

()11111115:21,21

n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-?=+=+∴=+ 直线 …………………………………………(4分)

(Ⅱ)()()()521n f n n ?+?=?+??, n 为奇数, n 为偶数………………………………(5分) ()()()()()()27274275421,42735

227145,2

4k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==Q 当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。

……………………(8分)

(Ⅲ)由

1

120111111n n n a b b b +≤??

????+++ ? ?????????

L

(

)(

)()(

)121212111111111111111111111111124

123n n

n n n a b b b f n b b b f

n b b b b f

n n f

n b n ++??????≤

+++ ?????????

??

???=+++ ?

????????

????

???∴+=

++++

?????????????

+??+∴=+== ?

+??L L L 即记 ()()()()()min 1

1,4130f n f n f n f n f a >∴+>∴==∴<≤

即递增, ………………………………(14分)

3.(本小题满分12分)将圆O: 4y x 22=+上各点的纵坐标变为原来的一半 (横坐标不变),

得到曲线C. (1) 求C 的方程;

(2) 设O 为坐标原点, 过点)0,3(F 的直线l 与C 交于A 、B 两点, N 为线段AB 的中点,

延长线段ON 交C 于点E.

求证: ON 2OE =的充要条件是3|AB |= .

解: (1)设点)y ,x (P '' , 点M 的坐标为)y ,x ( ,由题意可知???='=',

y 2y ,

x x ………………(2分)

又,4y x 2

2

='+'∴1y 4

x 4y 4x 22

2

2=+?=+. 所以, 点M 的轨迹C 的方程为1y 4

x 22

=+.………………(4分) (2)设点)y ,x (A 11 , )y ,x (B 22 , 点N 的坐标为)y ,x (00 ,

㈠当直线l 与x 轴重合时, 线段AB 的中点N 就是原点O,

不合题意,舍去; ………………(5分) ㈡设直线l: ,3my x +=

由?????=++=4

y 4x 3my x 2

2消去x, 得01my 32y )4m (22=-++………………① ∴,4

m m

3y 2

0+-

=………………(6分) ∴4

m 3

44m 34m 34m m 33my x 2222200+=++++-=+=,

∴点N 的坐标为)4

m m

3,4m 34(

2

2+-+ .………………(8分) ①若OE ON 2=, 坐标为, 则点E 的为)4

m m

32,4m 38(

22+-+ , 由点E 在曲线C 上, 得1)

4m (m 12)4m (482

22

22=+++, 即,032m 4m 24=-- ∴4m (8m 22-== 舍去). 由方程①得,14

m 1

m 44m 16m 4m 12|y y |2222221=++=+++=

- 又|,)y y (m ||m y m y ||x x |212121-=-=- ∴3|y y |1m |AB |212=-+= .………………(10分)

②若3|AB |= , 由①得,34

m )

1m (42

2=++∴ .8m 2= ∴点N 的坐标为)66,33(

± , 射线ON 方程为: )0x (x 2

2y >±= , 由?????=+>±=4y 4x )0x (x 22y 22 解得??????

?±==36

y 332x ∴点E 的坐标为),36,332(± ∴OE ON 2=.

综上, OE ON 2=的充要条件是3|AB |= .………………(12分) 4.(本小题满分14分)已知函数241

)x (f x

+=

)R x (∈. (1) 试证函数)x (f 的图象关于点)4

1

,21( 对称;

(2) 若数列}a {n 的通项公式为)m ,,2,1n ,N m ()m

n

(f a n Λ =∈=+, 求数列}a {n 的前m 项

和;S m

(3) 设数列}b {n 满足: 3

1

b 1=

, n 2n 1n b b b +=+. 设1b 11b 11b 1T n 21n ++++++=

Λ. 若(2)中的n S 满足对任意不小于2的正整数n, n n T S <恒成立, 试求m 的最大值.

解: (1)设点)y ,x (P 000 是函数)x (f 的图象上任意一点, 其关于点)41

,21( 的对称点为)y ,x (P .

由???????=+=+412

y y 2

1

2x x 00 得?????-=-=.y 21

y ,x 1x 00 所以, 点P 的坐标为P )y 2

1

,x 1(00-- .………………(2分)

由点)y ,x (P 000 在函数)x (f 的图象上, 得2

41

y 0x 0+=.

∵,)

24(244244241)x 1(f 0

000

x x x x x 10+=?+=+=

-- =+-=-24121y 210x 0,)24(2400

x x + ∴点P )y 21,x 1(00

-- 在函数)x (f 的图象上. ∴函数)x (f 的图象关于点)41

,21( 对称. ………………(4分)

(2)由(1)可知, 21)x 1(f )x (f =-+, 所以)1m k 1(2

1

)m k 1(f )m k (f -≤≤=-+ ,

即,2

1a a , 21)m k m (f )m k (f k m k =+∴=-+- ………………(6分)

由m 1m 321m a a a a a S +++++=-Λ, ……………… ① 得,a a a a a S m 13m 2m 1m m +++++=---Λ ………………② 由①+②, 得,6

1

2m 61221m a 221)1m (S 2m m -=?+-=+?-= ∴).1m 3(121

S m -=

………………(8分) (3) ∵,3

1

b 1=)1b (b b b b n n n 2n 1n +=+=+, ………………③

∴对任意的0b ,N n n >∈+ . ………………④ 由③、④, 得

,1b 1b 1)1b (b 1b 1n n n n 1

n +-=+=

+即1

n n n b 1

b 11b 1+-=+.

∴1

n 1n 11n n 3221n b 1

3b 1b 1)b 1b 1()b 1b 1()b 1b 1(

T +++-=-=-++-+-=Λ.……………(10分) ∵,b b ,0b b b n 1n 2n n 1n >∴>=-++

∴数列}b {n 是单调递增数列. ∴n T 关于n 递增. 当2n ≥, 且+∈N n 时, 2n T T ≥.

∵,81

52

)194(94b ,94)131(31b ,31b 321=+==+==

∴.52

75

b 13T T 12n =-=≥………………(12分) ∴,5275S m <

即,5275)1m 3(121<-∴,39

4639238m =< ∴m 的最大值为6. ……………(14分) 5.(12分)E 、F 是椭圆2224x y +=的左、右焦点,l 是椭圆的右准线,点P l ∈,过点E 的直线交椭圆于A 、B 两点.

(1) 当AE AF ⊥时,求AEF ?的面积;

(2) 当3AB =时,求AF BF +的大小; (3) 求EPF ∠的最大值.

解:(1)22

41

282AEF m n S mn m n ?+=??==?+=?

(2)因4

84

AE AF AB AF BF BE BF ?+=??++=?

+=??, 则 5.AF BF +=

(1)

设)(0)P t t > ()tan EPF tan EPM FPM ∠=∠-∠

(1=÷+==≤,

当t =

303

tan EPF EPF ∠=

?∠=o 6.(14分)已知数列{}n a 中,11

3a =,当2n ≥时,其前n 项和n S 满足2221

n n n S a S =-,

(2) 求n S 的表达式及2

lim

n

n n

a S →∞的值; (3) 求数列{}n a 的通项公式; (4)

设n b =

n N ∈且2n ≥时,n n a b <.

解:(1)21111

211

22(2)21n n n n n n n n n n n S a S S S S S S n S S S ----=-=?-=?-=≥-

所以1n S ??????是等差数列.则1

21n S n =+.

222

lim

lim 2212lim 1n n n n n

n n a S S S →∞→∞→∞

===---. (2)当2n ≥时,12

112

212141

n n n a S S n n n --=-=

-=+--, 综上,()()2

1

13

2214n n a n n ?=??=??≥?-?.

(3

)令a b =

=2n ≥

时,有0b a <<≤(1) 法1:等价于求证

1

1

21

21

n n ->

-+.

当2n

时,0<

令()23,0f x x x x =-<≤ (

)233232(1)2(12(10222f x x x x x x x '=-=-≥-=->,

则()

f x 在

递增.

又0<

<≤

所以g g <即n n a b <. 法(2

)223311()2121n n a b b a b a n n -=

--=---+-

22()()a b a b ab a b =-++-- (2)

22()[()()]22ab ab a b a a b b =-+

-++- ()[(1)(1)]22

b a a b a a b b =-+-++- (3) 因3311111022223

a b a b a +

-<+-<-<-=-<,所以(1)(1)022b a a a b b +-++-<

由(1)(3)(4)知n n a b <.

法3:令()22g b a b ab a b =++--,则()12102

a

g b b a b -'=+-=?= 所以()()(){}{}220,,32g b max g g a max a a a a ≤=-- 因0,3

a <≤

则()210a a a a -=-<,2214323()3(

)0339a a a a a -=-≤-< 所以()220g b a b ab a b =++--< (5) 由(1)(2)(5)知n n a b < 7. (本小题满分14分)

设双曲线22

22b

y a x -=1( a > 0, b > 0 )的右顶

点为A ,P 是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP 分别交于Q 和R 两点.

(1) 证明:无论P 点在什么位置,总有|→

--OP

|2 = |→-OQ ·→

--OR | ( O 为坐标原点);

(2) 若以OP 为边长的正方形面积等于双曲线实、虚轴围成的矩形面积,求双曲线离心率的取值范围;

解:(1) 设OP :y = k x, 又条件可设AR: y = a

b

(x – a ),

解得:→

--OR = (b ak ab --,b ak kab --), 同理可得→-OQ = (b ak ab +,b

ak kab

+),

∴|→

-OQ ·→

--OR | =|b ak ab --b ak ab ++b ak kab --b ak kab

+| =|

b k a |)k 1(b a 222222-+. 4分

设→

--OP = ( m, n ) , 则由双曲线方程与OP 方程联立解得:

m 2 =

22222k a b b a -, n 2 = 2

22222k a b b a k -, ∴ |→

--OP

|2 = :m 2 + n 2 =

22222k a b b a -+ 2222

22k a b b a k -=2

22222k

a b )k 1(b a -+ , ∵点P 在双曲线上,∴b 2 – a 2k 2 > 0 . ∴无论P 点在什么位置,总有|→

--OP

|2 = |→-OQ ·→

--OR | . 4分

(2)由条件得:2

22222k

a b )

k 1(b a -+= 4ab, 2分 即

k 2 =

2

2a 4ab ab b 4+-> 0 , ∴ 4b > a, 得e > 417

2分

高中数学压轴题试卷整合

20XX 届北京市海淀区高三下学期期中考试数学理卷 18.已知函数2 ()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]0,1上恒成立,求a 的取值范围. 19.已知椭圆G :2 212 x y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点. (Ⅰ)若直线l 的斜率为1,求直线OM 的斜率; (Ⅱ)是否存在直线l ,使得2 ||||||AM CM DM =?成立?若存在,求出直线l 的方程;若不存在,请说明理由. 西城区高三统一测试 18.(本小题满分13分) 已知函数21 ()e 2 x f x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-. (Ⅰ)求直线l 的方程(用0x 表示); (Ⅱ)设O 为原点,直线1x =分别与直线l 和x 轴交于,A B 两点,求△AOB 的面积的最小值. 19.(本小题满分14分) 如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12 ,F 为椭圆C 的右焦点.(,0)A a -, ||3AF =.

(Ⅰ)求椭圆C的方程; x=交于点(Ⅱ)设O为原点,P为椭圆上一点,AP的中点为M.直线OM与直线4 x=交于点E.求证: D,过O且平行于AP的直线与直线4 ∠=∠. ODF OEF 20XX年南通市高考数学全真模拟试卷一 13.已知角满足,若,则的值为. 14.将圆的六个等分点分成相同的两组,它们每组三个点构成的两个正三角形除去内部的六条线段后可以形成一个正六角星.如图所示的正六角星的中心为点,其中分别为点 到两个顶点的向量.若将点到正六角星12个顶点的向量都写成的形式,则的最大值为. 18. 已知椭圆的长轴长为,为坐标原点. (1)求椭圆的方程和离心率. (2)设点,动点在轴上,动点在椭圆上,且点在轴的右侧.若

高中数学数列压轴题练习(江苏)详解

高中数学数列压轴题练习(江苏)及详解 1.已知数列是公差为正数的等差数列,其前n项和为,且? , (Ⅰ)求数列的通项公式; (Ⅱ)数列满足, ①求数列的通项公式; ②是否存在正整数m,,使得,,成等差数列?若存在,求出m,n的值;若不存在,请说明理由. 解:(I)设数列的公差为d,则 由?,,得, 计算得出或(舍去). ; (Ⅱ)①,, , , 即,,, ,

累加得:, 也符合上式. 故,. ②假设存在正整数m、,使得,,成等差数列, 则 又,,, ,即, 化简得: 当,即时,,(舍去); 当,即时,,符合题意. 存在正整数,,使得,,成等差数列. 解析 (Ⅰ)直接由已知列关于首项和公差的方程组,求解方程组得首项和公差,代入等差数列的通项公式得答案; (Ⅱ)①把数列的通项公式代入,然后裂项,累加后即可求得数列的通项公式;

②假设存在正整数m、,使得,,成等差数列,则 .由此列关于m的方程,求计算得出答案. 2.在数列中,已知, (1)求证:数列为等比数列; (2)记,且数列的前n项和为,若为数列中的最小项,求的取值范围. 解:(1)证明:, 又, ,, 故, 是以3为首项,公比为3的等比数列 (2)由(1)知道,, 若为数列中的最小项,则对有 恒成立, 即对恒成立 当时,有; 当时,有?; 当时,恒成立,

对恒成立. 令,则 对恒成立, 在时为单调递增数列. ,即 综上, 解析 (1)由,整理得:.由, ,可以知道是以3为首项,公比为3的等比数列; (2)由(1)求得数列通项公式及前n项和为,由为数列中的最小项,则对有恒成立,分类分别求得 当时和当的取值范围, 当时,,利用做差法,根据函数的单调性,即可求得的取值范围. 3.在数列中,已知,,,设 为的前n项和. (1)求证:数列是等差数列; (2)求;

数学专题 高考数学压轴题15

新青蓝教育高考数学压轴100题1二次函数 2复合函数 3创新性函数 4抽象函数 5导函数(极值,单调区间)--不等式 6函数在实际中的应用 7函数与数列综合 8数列的概念和性质 9 Sn与an的关系 10创新型数列 11数列与不等式 12数列与解析几何 13椭圆 14双曲线 15抛物线 16解析几何中的参数范围问题 17解析几何中的最值问题 18解析几何中的定值问题 19解析几何与向量 20探究性问题

15.抛物线 例1.已知抛物线C :2 2y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N . (Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行; (Ⅱ)是否存在实数k 使0=?NB NA ,若存在,求k 的值;若不存在,说明理由. 解:(Ⅰ)如图,设 211(2) A x x ,, 222(2) B x x ,,把2y kx =+代入22y x =得2220x kx --=, 由韦达定理得 122k x x += ,121x x =-, ∴ 1224N M x x k x x +=== ,∴N 点的坐标为248k k ?? ???,. 设抛物线在点N 处的切线l 的方程为 284k k y m x ? ?-=- ? ??, 将2 2y x =代入上式得2 2 2048mk k x mx -+-=, 直线l 与抛物线C 相切, 22 22282()0 48mk k m m mk k m k ??∴?=--=-+=-= ???,m k ∴=. 即l AB ∥. (Ⅱ)假设存在实数k ,使0NA NB = ,则NA NB ⊥,又M 是AB 的中点, 1 ||||2MN AB ∴= . 由(Ⅰ)知121212111 ()(22)[()4] 222M y y y kx kx k x x =+=+++=++ 2 2142224k k ??=+=+ ???. MN ⊥ x 轴,22216 ||||2488M N k k k MN y y +∴=-=+-= . 又 222121212 ||1||1()4AB k x x k x x x x =+-=++- x A y 1 1 2 M N B O

高中数学压轴题试卷整合

2017届北京市海淀区高三下学期期中考试数学理卷 18.已知函数2()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]0,1上恒成立,求a 的取值范围. 19.已知椭圆G :2 212 x y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点. (Ⅰ)若直线l 的斜率为1,求直线OM 的斜率; (Ⅱ)是否存在直线l ,使得2||||||AM CM DM =?成立?若存在,求出直线l 的方程;若不存在,请说明理由. 西城区高三统一测试 18.(本小题满分13分) 已知函数21()e 2 x f x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-. (Ⅰ)求直线l 的方程(用0x 表示); (Ⅱ)设O 为原点,直线1x =分别与直线l 和x 轴交于,A B 两点,求△AOB 的面积的最小值. 19.(本小题满分14分) 如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,F 为椭圆C 的右焦点.(,0)A a -,||3AF =. (Ⅰ)求椭圆C 的方程; (Ⅱ)设O 为原点,P 为椭圆上一点,AP 的中点为M .直线OM 与直线4x =交于点D ,过O 且平行于AP 的直线与直线4x =交于点E .求证:ODF OEF ∠=∠.

2017年南通市高考数学全真模拟试卷一 13.已知角,αβ满足tan 7tan 13 αβ=,若2sin()3αβ+=,则sin()αβ-的值为. 14.将圆的六个等分点分成相同的两组,它们每组三个点构成的两个正三角形除去内部的六条线段后可以形成一个正六角星.如图所示的正六角星的中心为点O ,其中,x y 分别为点O 到两个顶点的向量.若将点O 到正六角星12个顶点的向量都写成ax by +的形式,则a b +的最大值为. 18.已知椭圆:C 22 31mx my +=(0)m > 的长轴长为,O 为坐标原点. (1)求椭圆C 的方程和离心率. (2)设点(3,0)A ,动点B 在y 轴上,动点P 在椭圆C 上,且点P 在y 轴的右侧.若BA BP =,求四边形OPAB 面积的最小值. 19.已知函数32()f x ax bx cx b a =-++=(0)a >. (1)设0c =. ①若a b =,曲线()y f x =在0x x =处的切线过点(1,0),求0x 的值; ②若a b >,求()f x 在区间[0,1]上的最大值. (2)设()f x 在1x x =,2x x =两处取得极值,求证:11()f x x =,22()f x x =不同时成立. 13.1 5 -14.5 18.(1)由题意知椭圆:C 22 111 3x y m m +=, 所以21a m =,213b m =,

高考数学压轴题秒杀

秒杀压轴题第五章关于秒杀法的最难掌握的一层,便是对于高考数很多朋友留言说想掌握秒杀的最后一层。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多学压轴题的把握。很多很多人。出题人很怕很怕全省没多少做出来的,相反,压轴题并不是那般神秘难解,不过,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。想领悟、把握压轴题的思路,给大家推荐几道题目。08的除的外我都没做过,所以不在推荐围)。09全是数学压轴题,且是理科(全国一07,08,07全国二,08全国一,可脉络依然清晰。虽然一年过去了,做过之后,但这几道题,很多题目都忘了,一年过去了,都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。记住,压轴题是出题人在微笑着和你对话。会在以后的视频里面讲以及怎么发挥和压榨一道经典题目的最大价值,,”精“具体的题目的解的很清楚。 \ 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)尤其推荐通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。:1 )我押题的第一道数列解答题。裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简:2. 单的数列考察方式,一般会在第二问考)数学归纳法、不等式缩放:3 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。开始

解答题了哦,先来一道最简单的。貌似的大多挺简单的。意义在只能说不大。这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!!年高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目07下面年高考题中见了很多。10、09、08在) 分14本小题满分(22)(2≠0.b其中+1),x ln(b+x)=x(f设函数在定义域上的单调性;)x(f时,判断函数> b当)Ⅰ( 的极值点;)x(f(Ⅱ)求函数n(Ⅲ)证明对任意的正整数. 都成立ln( )不等式, ~ 有点鸡肋了..这道题我觉得重点在于前两问,最后一问这道题,太明显了对吧? 1 第三问其实就是直接看出来么?想想我之前关于压轴题思路的讲解,,看压轴问的形式这道题就出来了。x 为1/n 很明显的令利用第一问和第二问的结论,绝大多数压轴题都是这样的。当然这只是例子之一了,这也证明了我之前对压轴题的评述吧。重点来了。下面,下面,下面,你可以利用导数去证明这个不等式的正确性, ln X<= X--1 大家是否眼熟这个不等式呢?但我想说的是,这个小小的不等式,太有用了。多么漂亮的一这样简单的线性函数,X--1 将一个对数形式的函数转化为一个什么用?个式子!可以说,导数不等式证明中,见到自然对数,我第一个想的就会是这个不等式,看能否利用这个不等式将题目转化为特别容易做的一道

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

高三数学-30道压轴题及答案 精品

1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M , 证明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时, |1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。当 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 求点P 的坐标及S 4.以椭圆 222 y a x +=1

试判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2+bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x ) 有最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的 方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(32211 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引 21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f (Ⅰ)求)21 (f 和)( )1 ( )1(N n n n f n f ?-+的值. (Ⅱ)数列{}n a 满足:n a =)0(f +)1()1 ( )2()1(f n n f n f n f +-+++ ,数列}{n a 是等差数列吗?请给予证明;

高考数学压轴题秒杀

第五章压轴题秒杀 很多朋友留言说想掌握秒杀的最后一层。关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。 不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。 想领悟、把握压轴题的思路,给大家推荐几道题目。 全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。 08全国一,08全国二,07江西,08山东,07全国一 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\ 1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。尤其推荐我押题的第一道数列解答题。) 2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3:数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。 (22)(本小题满分14分) 设函数f(x)=x2+b ln(x+1),其中b≠0. (Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性; (Ⅱ)求函数f(x)的极值点; (Ⅲ)证明对任意的正整数n,不等式ln( )都成立. 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

(完整word版)高中数学压轴题系列——导数专题——双变量问题(2).docx

高中数学压轴题系列——导数专题——双变量问题( 2) 1.(2010?辽宁)已知函数 f (x ) =( a+1)lnx+ax 2 +1 (1)讨论函数 f (x )的单调性; (2)设 a <﹣ 1.如果对任意 x 1,x 2∈( 0,+∞),| f ( x 1)﹣ f ( x 2)| ≥ 4| x 1﹣ x 2 | ,求 a 的取值范围. 解:(Ⅰ )f (x )的定义域为( 0,+∞) . . 当 a ≥0 时, f ′(x )> 0,故 f ( x )在( 0,+∞)单调递增; 当 a ≤﹣ 1 时, f ′( x )< 0,故 f ( x )在( 0, +∞)单调递减; 当﹣ 1< a <0 时,令 f ′( x ) =0,解得 . 则当 时, f'( x )> 0; 时, f' ( x )< 0. 故 f (x )在 单调递增,在 单调递减. (Ⅱ)不妨假设 x 1≥ 2,而 <﹣ ,由( Ⅰ)知在( 0, ∞)单调递减, x a 1 + 从而 ? x 1, 2∈( , ∞), | f ( 1)﹣ ( 2) ≥ 4| x 1﹣ 2 | x 0 + x f x | x 等价于 ? x 1, 2∈( , ∞), f ( 2 ) 2 ≥ ( 1 ) 1 ① x 0 + x +4x f x +4x 令 g ( x )=f ( x ) +4x ,则 ①等价于 g (x )在( 0,+∞)单调递减,即 . 从而 故 a 的取值范围为(﹣∞,﹣ 2] .( 12 分) 2.( 2018?呼和浩特一模)已知函数 f (x ) =lnx , g ( x ) = ﹣ bx (b 为常数). (Ⅰ)当 b=4 时,讨论函数 h (x )=f (x )+g (x )的单调性; (Ⅱ) b ≥2 时,如果对于 ? x 1,x 2∈( 1, 2] ,且 x 1≠ x 2,都有 | f (x 1)﹣ f ( x 2)| <| g (x 1)﹣ g (x 2) | 成立,求实数 b 的取值范围. 解:( 1)h ( x )=lnx+ x 2﹣bx 的定义域为( 0,+∞),当 b=4 时, h ( x )=lnx+ x 2 ﹣4x , h'(x )= +x ﹣4= , 令 h'(x ) =0,解得 x 1 ﹣ , 2 ,当 ∈( ﹣ , 2+ )时, ′( )< , =2 x =2+ x2 h x 0 当 x ∈( 0, 2﹣ ),或( 2+ ,+∞)时, h ′(x )> 0, 所以, h (x )在∈( 0, 2﹣ ),或( 2+ ,+∞)单调递增;在( 2﹣ , 2+ )单调递减; (Ⅱ)因为 f ( x )=lnx 在区间( 1,2] 上单调递增,

必修一高一数学压轴题全国汇编1附答案

1.(本小题满分12分)已知x 满足不等式21122 2(log )7log 30x x ++≤, 求22()log log 42 x x f x =?的最大值与最小值及相应x 值. 2.(14分)已知定义域为R 的函数2()12x x a f x -+=+是奇函数 (1)求a 值; (2)判断并证明该函数在定义域R 上的单调性; (3)若对任意的t R ∈,不等式22 (2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围; 3、(本小题满分10分) 已知定义在区间(1,1)-上的函数2()1ax b f x x += +为奇函数,且12()25f =. (1) 求实数a ,b 的值; (2) 用定义证明:函数()f x 在区间(1,1)-上是增函数; (3) 解关于t 的不等式(1)()0f t f t -+<. 4.(14分)定义在R +上的函数f(x)对任意实数a,b +∈R ,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)<0, (1)求f(1) (2)求证:f(x)为减函数。 (3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f 5、(本小题满分12分)已知定义在[1,4]上的函数f(x)=x 2-2bx+ 4 b (b ≥1), (I)求f(x)的最小值g(b); (II)求g(b)的最大值M 。 6、(12分)设函数()log (3)(0,1)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图象上的 点时,点(2,)Q x a y --是函数()y g x =图象上的点. (1)写出函数()y g x =的解析式; (2)若当[2,3]x a a ∈++时,恒有|()()|1f x g x -…,试确定a 的取值范围; (3)把()y g x =的图象向左平移a 个单位得到()y h x =的图象,函数1()22()()()2h x h x h x F x a a a ---=-+,(0,1a a >≠且)在1[,4]4的最大值为54,求a 的值. 7、(12分)设函数124()lg ()3 x x a f x a R ++=∈. (1)当2a =-时,求()f x 的定义域; (2)如果(,1)x ∈-∞-时,()f x 有意义,试确定a 的取值范围; (3)如果01a <<,求证:当0x ≠时,有2()(2)f x f x <. 8.(本题满分14分)已知幂函数(2)(1)()()k k f x x k z -+=∈满足(2)(3)f f <。 (1)求整数k 的值,并写出相应的函数()f x 的解析式;

高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训练一(含答案及解析详解) 1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点. (Ⅰ)求这三条曲线的方程; (Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由. 解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: ………………………………………………(1分) 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆, 1222a MF MF =+ + ( 2 2 2222211321 a a b a c ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分) 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分) (Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H 令()11113,,,22x y A x y +?? ∴ ?? ? C ………………………………………………(7分) ()111231 23 22 DC AP x CH a x a ∴= =+=-=-+

()()( )22 2 2 2 2111212 1132344-23246222 DH DC CH x y x a a x a a a DH DE DH l x ????∴=-= -+--+??? ?=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分) 2.(14分)已知正项数列{}n a 中,16a = ,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上. (Ⅰ)求数列{}{},n n a b 的通项公式; (Ⅱ)若()()() n n a f n b ??=???, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n , 不等式 1 120111111n n n a b b b +≤?????? +++ ? ??????? ?? 成立,求正数a 的 取值范围. 解:(Ⅰ)将点(n n A a 代入21y x =+中得 ()11111115:21,21 n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-?=+=+∴=+ 直线 …………………………………………(4分) (Ⅱ)()()()521n f n n ?+?=?+??, n 为奇数, n 为偶数………………………………(5分) ()() ()()()()27274275421,4 2735 227145,2 4k k f k f k k k k k k k k k k ++=∴++=+∴=+∴+ +=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。 ……………………(8分) (Ⅲ)由 1 120111111n n n a b b b +- ≤?????? +++ ? ??????? ??

高中数学压轴题

第十讲 高考第21题(压轴综合题) 姓名_______________ 时间__________________________ 分数__________ 1、(44—20)(12分)已知函数()ln(1)().x f x e ax a R =+-∈ (1)若曲线()y f x =在0x =处的与直线x y b +=相切,求a b 、的值; (2)设[ln 2,0]x ∈-时,()0f x x =在处取得最大值,求a 的取值范围。 2、(43—22)(14分)已经函数1ln (),.a x f x a R x -+= ∈ (1)求()f x 的极值; (2)若ln 0(0,)x kx -<+∞在恒成立,求k 的取值范围; (3)已知12120,,x x x x e >>+<0且求证:1212x x x x +>。 3、(41—21)(12分)已知函数2()()x f x x a e =-

(1)若3a =,求()f x 的单调区间和极值; (2)若12()x x f x 、为的两个不同的极值点,且211 222121212|()()|4||x x x x e f x e f x e x x x x +-≥-,若3233()32f a a a a b <+ -+恒成立,求实数b 的取值范围。 4、(41—21文)(12分)已经函数322()1()f x x ax b x a b R =--++∈、 (1)若1,1,()a b f x ==求的极值和单调区间; (2)已知12()x x f x 、为的极值点,且12122|()()|||9 f x f x x x -=-,若当[1,1]x ∈-时,函数()y f x =的图像上任意一点的切线斜率恒小于m ,求m 的取值范围。 5、(40—20)(12分)已知函数23121()f x x x x =++

年高考数学压轴题系列训练含答案及解析详解六

年高考数学压轴题系列训练含答案及解析详解 六 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

2009年高考数学压轴题系列训练含答案及解析详解六 1.(本小题满分14分) 如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点. (1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB. 解:(1)设切点A 、B 坐标分别为))((,(),(012112 x x x x x x ≠和, ∴切线AP 的方程为:;022 0=--x y x x 切线BP 的方程为:;02211=--x y x x 解得P 点的坐标为:101 0,2 x x y x x x P P =+= 所以△APB 的重心G 的坐标为 P P G x x x x x =++= 3 10, ,3 43)(332 1021010212 010p P P G y x x x x x x x x x y y y y -=-+=++=++= 所以2 43G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方 程为: ).24(3 1 ,02)43(22+-==-+--x x y x y x 即 (2)方法1:因为).4 1,(),41,2(),41,(2 111010 200-=-+=-=x x x x x x x x 由于P 点在抛物线外,则.0||≠FP ∴||41)1)(1(||||cos 102 010010FP x x x x x x x x FA FP AFP + =--+?+== ∠

(完整)上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1)()cos(2)2sin()sin()344 f x x x x πππ =- +-+Q 1cos 22(sin cos )(sin cos )22x x x x x x = ++-+ 221cos 22sin cos 22x x x x = ++- 1cos 22cos 222 x x x = +- sin(2)6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2)5[,],2[,]122636 x x ππ πππ ∈- ∴-∈-Q 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 22f f π π- =<=Q ,当12 x π =-时,()f x 取最小值- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()sin 222x f x x ωω-= +11sin 2cos 2222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得cos 1,m n A A =-=g 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

高中数学压轴题试卷整合

2017届市海淀区高三下学期期中考试数学理卷 18.已知函数2 ()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]0,1上恒成立,求a 的取值围. 19.已知椭圆G :2 212 x y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点. (Ⅰ)若直线l 的斜率为1,求直线OM 的斜率; (Ⅱ)是否存在直线l ,使得2 ||||||AM CM DM =?成立?若存在,求出直线l 的方程;若不存在,请说明理由. 西城区高三统一测试 18.(本小题满分13分) 已知函数21 ()e 2 x f x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-. (Ⅰ)求直线l 的方程(用0x 表示); (Ⅱ)设O 为原点,直线1x =分别与直线l 和x 轴交于,A B 两点,求△AOB 的面积的最小值. 19.(本小题满分14分) 如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12 ,F 为椭圆C 的右焦点.(,0)A a -, ||3AF =.

(Ⅰ)求椭圆C 的方程; (Ⅱ)设O 为原点,P 为椭圆上一点,AP 的中点为M .直线OM 与直线4x =交于点D ,过O 且平行于AP 的直线与直线4x =交于点E .求证: ODF OEF ∠=∠. 2017年市高考数学全真模拟试卷一 13.已知角,αβ满足tan 7tan 13αβ=,若2sin()3 αβ+=,则sin()αβ-的值为 . 14.将圆的六个等分点分成相同的两组,它们每组三个点构成的两个正三角形除去部的六条线段后可以形成一个正六角星.如图所示的正六角星的中心为点O ,其中,x y 分别为点O 到两个顶点的向量.若将点O 到正六角星12个顶点的向量都写成ax by +的形式,则a b +的最大值为 . 18. 已知椭圆:C 22 31mx my +=(0)m >的长轴长为26,O 为坐标原点. (1)求椭圆C 的方程和离心率. (2)设点(3,0)A ,动点B 在y 轴上,动点P 在椭圆C 上,且点P 在y 轴的右侧.若

高一期末数学压轴题

20、已知函数1()22x x f x =-(1)设集合15()4A x f x ??=≤????,{} 260B x x x p =-+<,若A B ?≠?,求实数p 的取值范围; (2)若2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围 21、已知()f x 是定义在[1,1]-上的奇函数,且(1)1f =-,若x 、[1,1]y ∈-,0x y +≠,则()()0f x f x x y +<+ (1)用定义证明,()f x 在[1,1]-上是减函数; (2)解不等式:11()()12 f f x x <+-; (3)若2()21f x t at ≥--对所有[1,1]x ∈-,[1,1]a ∈-均成立,求实数t 的取值范围 22、设函数()a f x x x =+,2()22g x x x a =-+-,其中0a > (1)若1x =是关于x 的不等式()()f x g x >的解,求a 的取值范围; (2)求函数()a f x x x =+在(0,2]x ∈上的最小值; (3)若对任意的1x ,2(0,2]x ∈,不等式12()()f x g x >恒成立,求a 的取值范围; (4)当32a =时,令()()()h x f x g x =+,试研究函数()h x 在(0,)x ∈+∞上的单调性,并求()h x 在该区间上的最小值 18.(本题满分10分)本大题共2个小题,每小题5分. (A 组题)已知函数()2log 1.f x x =- (1)作出函数()f x 的大致图像; (2)指出函数()f x 的奇偶性、单调区间及零点. (B 组题)已知()()2.f x x x =- (1)作出函数()f x 的大致图像,并指出其单调区间;

相关文档
最新文档