年产400t中性淀粉酶的生产工艺设计

年产400t中性淀粉酶的生产工艺设计
年产400t中性淀粉酶的生产工艺设计

年产400吨中性淀粉酶生产工艺设计

摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本次设计的淀粉酶发酵厂,分别以玉米粉为碳源,以豆饼为氮源,以BF-7658枯草芽孢杆菌为生产菌种,采用深层发酵法,提取工艺采用盐析法,年产400吨淀粉酶。做出了生产工艺流程图,进行了物料衡算,设计了发酵罐和种子罐的尺寸和车间的布置和结构,同时绘制了该厂区的总平面布置图、带控制点的工艺流程图、工艺管道及仪表流程图图例。

关键词:α-淀粉酶;生产工艺设计;深层发酵法

1 绪论

1.1 淀粉酶简述

淀粉酶广泛存在于动物、植物和微生物中,在食品、发酵、纺织和造纸等工业中均有应用,尤其在淀粉加工业中,微生物淀粉酶更是应用广泛并已成功取代了化学降解法;同时,它们也可以应用于制药和精细化工等行业。

α-淀粉酶是淀粉及以淀粉为材料的工业生产中最重要的一种水解酶。现在,α-淀粉酶已广泛应用于食品、清洁剂、啤酒酿造、酒精工业、纺织退浆和造纸工业,对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中,当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。它可以由微生物发酵制备,也可以从动植物中提取。不同来源的α-淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α-淀粉酶。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。有报道表明,α-淀粉酶可以帮助改善糖尿病患者的耐糖量。这一领域研究自2O世纪8O年代和9O年代十分活跃,但目前α-淀粉酶抑制剂的研究工作仍处于基础阶段,至今仍未得到有效合理的开发应用。但是随着科技的发展、研究的深入,α-淀粉酶将会得到更加广泛的应用。

2 α-淀粉酶的性质

2.1 α-淀粉酶的结构

目前,已对很多不同种类和来源的α-淀粉酶(黑曲霉、米根霉、人和猪胰腺、人唾液腺、大麦种子和地衣芽孢杆菌)的晶体结构进行了X-射线衍射研究,并得到了高分辨率的晶体结构图。研究表明所有α-淀粉酶均为分子量在50ku左右的单体,由经典的三个区域(A、B、C)组成:中心区域A由一个(β/α)8圆筒构成;区域B由一个小的β-折叠突出于β3和α3之间构成;而C-末端球型区域C则由一个Greek-key基序组成,为该酶的活性部位,负责正确识别底物并与之结合。为保持α-淀粉酶的结构完整性和活性,至少需要一个能与之紧密结合的Ca2+,而Cl-往往是α-淀粉酶的变构激活因子,并且在所有Cl-依赖性的α-淀粉酶中,组成催化三联体的残基都是严格保守的[10]。

2.2 α-淀粉酶的性质

早在1967年,Jones 和Varner就对小麦中α-淀粉酶的活性进行了研究[11]。不同来源的α-淀粉酶的酶学和理化性质有一定的区别,它们的性质对在其工业应用中的应用影响也较大,在工业生产中要根据需要使用合适来源的酶,因此对淀粉酶性质的研究也显得比较重

要。

2.2.1 底物特异性

α-淀粉酶和其它酶类一样,具有反应底物特异性,不同来源的淀粉酶反应底物也各不相同,通常α-淀粉酶显示出对淀粉及其衍生物有最高的特异性,这些淀粉及衍生物包括支链淀粉、直链淀粉、环糊精、糖原质和麦芽三糖等。

2.2.2 最适 pH和最适温度

反应温度和pH对酶活力影响较大,不同来源的α-淀粉酶有各自的最适作用pH和最适作用温度,通常在最适作用pH和最适作用温度条件下酶相对比较稳定,在此条件下进行反应能最大程度地发挥酶活力,提高酶反应效率。因此,在工业应用中应了解不同的酶最适pH和最适温度,确定反应的最佳条件,最大限度地提高酶的使用效率是很重要的。

通常情况下α-淀粉酶的最适作用pH一般在2到12之间变化。真菌和细菌类α-淀粉酶的最适pH在酸性和中性范围内,如芽孢杆菌α-淀粉酶的最适pH为3,碱性α-淀粉酶的最适pH在9~12。另外,温度和钙离子对一些α-淀粉酶的最适pH有一定的影响,会改变其最适作用范围。不同微生物来源的α-淀粉酶的最适作用温度存在着较大差异,其中最适作用温度最低的只有25℃~30℃,而最高的能达到100℃~130℃。另外,钙离子和钠离子对一些酶的最适作用温度也有一定的影响[12]。

2.2.3 金属离子

α-淀粉酶是金属酶,很多金属离子,特别是重金属离子对其有抑制作用;另外,巯基,N-溴琥珀酸亚胺,p-羟基汞苯甲酸,碘乙酸,BSA,EDTA和EGTA等对α-淀粉酶也有抑制作用。

α-淀粉酶中至少包含一个Ca2+,Ca2+使酶分子保持适当的构象,从而维持其最大的活性和稳定性。Ca2+对α-淀粉酶的亲和能力比其它离子强,其结合钙的数量在1到10之间。结晶高峰淀粉酶A(TAA)包含10个Ca2+,但只有一个结合很牢固。通常情况下结合一个Ca2+就足以使α-淀粉酶很稳定。用EDTA透析或者用电渗析可以将Ca2+从淀粉酶中除去,加入Ca2+可以激活钙游离酶。用Sr2+和Mg2+代替TAA中的Ca2+,在Sr2+和Mg2+过量的情况下也能使其结晶。加入Sr2+、Mg2+和Ba2+离子可以激活用EDTA失活的TAA。通常情况下,有Ca2+存在淀粉酶的稳定性比没有时要好,但也有报道α-淀粉酶在Ca2+存在时会失活,而经EDTA处理后却保留活性,另外,有报道称Ca2+对α-淀粉酶没有影响。

2.2.4 电场强度

实验结果表明,不同强度电场导致酶活性增加的效应不同,并且呈非单调性变化。我们认为,不同强度电场对酶蛋白分子的构象产生了不同影响,处理酶所用的电场能量虽然不足以改变酶蛋白氨基酸序列,但可以改变酶蛋白的构象.姚占全等[13]用不同强度电场处理α-淀粉酶5min,处理后分别在第1天与第1O天测定电场对α-淀粉酶活性的影响。第1天测定结果表明,电场对酶产生明显影响,而且不同强度电场对α-淀粉酶活性的影响程度不同,在0.5~6.0kV/cm范围内,酶活性随场强增加呈非单调性变化,与对照组相比,变化幅度在5.5%~26.2%之间。第1O天测定,酶活性变化幅度在0.2%~16.3%之间,表明电场对酶产生的影响经过一定时间后趋于消失。

3 工艺流程设计

3.1菌种的选育

3.1.1菌种的选育及制备

菌种选择性分离的步骤一般是:

含微生物材料采集——标本材料的预处理——菌种的分离——富集培养——菌种初选——菌种复选——性能鉴定——菌种保藏。

1)含微生物材料的选择

土壤是微生物聚集最丰富的场所,菜园和农田耕作层土壤含有丰富的有机物常以细菌和放线菌居多,由于枯草芽孢杆菌生活在中性的环境中,可以采集中性的土壤。采土时先用小铲除去表土,取5~15㎝深处的土样,选好3~5点,每点取土10g混在一起装入灭过菌的牛皮纸袋,并记录时间、地点、植被等情况。

2 )预处理

在培养过程中以淀粉作为唯一或主要碳源,控制pH在 6.7~7.2。那些在所采用的条件下最适用于淀粉代谢的微生物最终将占优势,并可在淀粉琼脂糖平板上分离到产生中性淀粉酶的菌株。

3)所需菌种的纯化和分离

可用平板划线法进行菌种分离。方法如下:用接种管蘸取少量经增殖培养后的菌液,在含无菌固体培养基的平板表面上进行规则划线,操作时由右向左轻轻划线,划线时平板面与接种环成30°~40°,以手腕力量在平板表面轻巧滑动划线,线条要平行密集,使两线不能重叠,充分利用表面积,划线时接种环不要嵌入板内划破培养基,密集的含菌样品,经过多划线稀释,使菌体在平板培养基上逐渐分离成单个菌株,经培养繁殖成单个菌落,反复进行几次平板划线分离,可得枯草芽孢杆菌野生菌株。

4 )菌株的培养

常用培养基配方:1L蒸馏水+10g蛋白胨+3g牛肉膏+15~20g琼脂+5gNaCl。本课题以麸皮、豆饼粉作为天然培养基,在37℃保温箱中培养,至培养基中部分出现成熟颜色即可进行保藏。

5 )菌落的选择

初筛采用透明圈法,方法为在培养基里接入淀粉天青,接入含菌样品后,可在菌落周围清晰地观察到淡蓝色晕环,初筛选出的微生物经过菌株性状试验后已确定具有一定生产能力的菌株还要进行复筛。

方法:将初筛后的少数菌株接种于40 ml 锥形瓶内的液体培养基中,110次/min 往复式摇床式震荡培养,得到摇瓶种子。

3.1.2 诱变育种

诱变育种可以利用物理、化学因素诱导遗传特性发生变异,再从变异群体中选择符合人们某种要求如高产的个体,进而培育成新的品种或种质。

诱变育种操作程序如下:

出发菌株→纯化→培养液→细胞或孢子悬液→诱变剂处理→中间培养→平板分离→初筛→复筛→生产性能实验→菌种保藏。

1)出发菌株的选择

由于野生型菌株生产性能较差,通常采用经历过生产条件考验的菌株,即经过液体培养的摇瓶种子,这类菌株一定的生产性状,对生产环境有较好的适应性,正突变的可能性也很大。

2)菌悬液的制备

细菌一般要求处于对数生长中期的菌,用玻璃珠振荡5 min,使细胞均一分散,然后用灭菌脱脂棉过滤,得到分散菌株。菌悬液的细胞浓度不宜过高,本课题中的枯草芽胞杆菌,宜将其浓度控制在108个/ml。菌悬液介质一般用生理盐水。

3)诱变剂的处理

诱变剂包括物理、化学、生物诱变,在微生物诱变育种中,可用物理化学复合诱变因素处理菌种,这样可以扩大培养幅度,提高诱变效果获得中性淀粉酶高产突变株。方法及步骤如下:

吸取制备好的枯草芽孢杆菌悬液5 ml于直径为6㎝的无菌培养皿中,然后用0.5%~1%的二乙酯处理30 min,处理时采用pH 7.0的磷酸缓冲液,再将磁力搅拌器于紫外灯下(距离30 cm)1 min,接着在红灯下吸取经处理的菌液0.5 ml,稀释至10-6,取10-6~10-1稀释液滴一滴于6个平板中,10-6~10-1 依次涂布均匀,再置暗箱内与37℃培养48 h。

注意:一般化学诱变剂均有毒性,多数还具有致癌作用,故操作时切忌用口吸取并勿与皮肤直接接触,做好安全工作。

4)突变菌株的筛选

包括:琼脂块透明圈法初筛。

方法:倒入选择培养基6皿,取其中较厚的2皿,用打孔器或玻璃打制圆形培养基→平移琼脂块至一个选择平板上,再用接种针挑取单菌落的少量菌体分别接种于琼脂块中心并与一琼脂块接入出发菌株作为对照→正置于37℃培养45小时→于培养好的选择平板中滴加几滴淀粉天青,观察到透明圈的直径→选择透明圈大的菌落接入斜面备复筛用。

摇瓶发酵复筛:将经初筛处的菌株分别接入增殖培养基中,培养13小时→分别接种于

锥形瓶发酵培养基中→置37℃摇床上发酵40小时→选出酶活力较高者进一步复筛直至选出中性淀粉酶高产突变株。

3.1.3 菌种的保藏

菌种是从事微生物学以及生命科学研究的基本材料,特别是利用微生物进行有关生产,如氨基酸、抗生素、酿造等工业,更离不开菌种。所以菌种保藏是进行微生物学研究和微生物育种工作的重要组成部分。其任务是使菌种不死亡,同时还要尽可能设法把菌种的优良特性保持下来而不致向坏的方面转化。

菌种保藏主要是根据菌种的生理生化特点,人工创造条件,使孢子或菌体的生长代谢活动尽量降低,以减少其变异。一般可通过保持培养基营养成分在最低水平、缺氧状态、干燥和低温,使菌种处于“休眠”状态,抑制其繁殖能力。常用的菌种宝藏方法有:斜面冰箱宝藏法、沙土管宝藏法、菌丝速冻法、石蜡油封存法、真空冷冻干燥保藏法、液氮超低温保藏法。

在这里我们采用沙土保藏法。方法:将需保藏的菌种经斜面培养后用无菌水制成孢子悬液,加入经灭菌处理的沙和土的混合物(或纯沙亦可)作为载体,减压抽去水分,这些吸附有孢子的干燥沙土载体,在低温下保存。

操作步骤:斜面孢子先加灭菌蒸馏水2~2.5ml,沿斜面轻刮孢子后,再吸0.2~0.3 ml 到灭菌备用的沙土管中,在真空度100 Pa以下进行干燥,直至沙土管外貌呈松散状态,然后低温(4℃)保存。经真空干燥后的沙土管,最好放在密闭容器内,容器内可放入吸潮剂CaCl2 或硅胶等,保藏期间整个容器置于冰箱内。一般保存期为一年左右。

3.2培养基的配制

3.2.1培养基的类型

培养基的种类很多,可以根据组成、状态和用途等进行分类,按照用途可以分成孢子培养基,种子培养基和发酵培养基。微生物大规模发酵设计主要用到孢子,种子和发酵培养基这三种类型。

1)孢子培养基

孢子培养基配制的目的是供菌体繁殖孢子的,常采用的是固体培养基,对这类培养基的要求是能使菌体生长快速,产生数量多而优质的孢子,并且不会引起菌体变异。对孢子培养基的要求:①营养不要太丰富;②所用无机盐的浓度要适量;③注意培养基的pH和湿度。

淀粉酶的孢子培养基配置如下:将麸皮5%、豆饼粉3%、蛋白胨0.25%、琼脂2%(pH 7.1)制成斜面培养基,在0.1MPa蒸汽灭菌20 min 。

2)种子培养基

种子培养基是供孢子发芽、生长和大量繁殖菌丝体,并使菌丝体长得粗壮成为活力强的

种子。对于种子培养基的营养要求比较丰富和完全,氮源和维生素的含量也比较高些,浓度以稀薄为好,可以达到较高的溶解氧,供大量菌体生长和繁殖。

α-淀粉酶的种子培养基的配置:将豆饼1%、蛋白胨和酵母膏各0.4%、氯化钠0.05%配置成种子培养基(pH 7.1~7.2),在0.1MPa蒸汽灭菌20 min。

3)发酵培养基

发酵培养基的要求是营养要适当丰富和完全适合于菌种的生理特性和要求,使菌种迅速生长、健壮,能在比较短的周期内充分发挥产生菌合成发酵产物的能力,但要注意成本和能耗。

α-淀粉酶的发酵培养基配方是:麸皮70%、小米糠20%、木薯粉10%、烧碱0.5%,加水使水量达60%,常压蒸汽灭菌1h。

3.2.2 培养基的营养要求

培养基的成分大致分为碳源、氮源、无机盐、微量元素、特殊生长因子、促进剂、前体和水等几大类。对不同的微生物,微生物不同的生长阶段,不同的发酵产物以及不同发酵工艺条件等,所使用的培养基都是不同的,这些也都是培养基配制需要考虑的因素。

1)水

水是所有培养基的主要成分,也是微生物机体的重要组成成分。水是良好的溶剂,又是活细胞中一切代谢反应的媒介物,还可以维持细胞中的渗透压,同时水又是热的良好导体,有利于散热,可调节细胞温度。在中性淀粉酶的发酵生产中,为了避免水质变化给生产带来不良影响,发酵用水采用深井水,并定期检查水质,要求:pH 6.8~7.2,电导率500~1500μΩ/cm,总硬度100~230 mmol/L。

2) 碳源

碳源的主要为微生物细胞的生长繁殖提供能源。目前生产中性淀粉酶的菌种为异养型微生物,所以只能利用有机碳;大量的农副产品是主要的有机碳源,如山芋、麸皮、玉米、米糠、马铃薯、木薯、土茯苓等淀粉质原料,这里用到的碳源是麸皮、马铃薯、木薯。

3) 氮源

氮源是组成蛋白质和核酸的主要元素,酶自身即为蛋白质。因此,氮源是必不可少的重要原料。常用的有机氮源油花生饼粉、豆饼粉、棉籽饼粉、玉米浆、玉米蛋白粉、蛋白胨、酵母粉等。我们用到的氮源是豆饼粉剂和蛋白胨。

常用的无机氮源有铵盐、硝酸盐和氨水等。

4) 无机盐类及微量元素

酶在生长和繁殖生长过程中,需要某些无机盐及微量元素如磷、镁、硫、钾、钠、钙、铁、锰、锌等。钠离子具有控制细胞和培养基之间的渗透压的作用,从而促进产酶,添加适量亚硝酸钠可提高酶活力;钙对淀粉酶有稳定和活化作用。中性淀粉酶生产中通常以氯化钙

提供钙离子。

5) 生长因子和产酶促进剂

酶的生产中所需的生长因子大多由天然原料提供。玉米浆、麦芽汁、豆芽汁等,都含有丰富的生长因子。产酶促进剂一般是该酶的底物和底物类似物,对于中性淀粉酶,可添加适量浓度的淀粉琼脂糖作为诱导剂。

3.3工艺灭菌

3.3.1培养基的灭菌

生物化学反应过程中,特别是细胞培养过程,往往要求在没有杂菌污染的情况下进行,这是由于生物反应系统中通常含有比较丰富的营养物质,因而很容易受到杂菌污染,进而产生各种不良后果:(1)由于杂菌的污染,使生物化学反应的基质或产物消耗,造成产率下降;(2)由于杂菌所产生的某些代谢产物,或染菌后发酵液的某些理化性质的改变,使产物的提取变得困难,造成收得率降低或使产品质量下降;(3)污染的杂菌可能会分解产物而使生产失败;(4)污染的杂菌大量繁殖,会改变反应介质的pH,从而使生物化学反应发生异常变化;(5)发生噬菌体污染,微生物细胞被破裂而使生产失败等。

1) 灭菌方法

所谓灭菌,就是指用物理或化学方法杀灭或去除物料或设备中一切有生命物质的过程。常用的灭菌方法有:化学灭菌、射线灭菌、干热灭菌、湿热灭菌和过滤灭菌等。本实验采用湿热灭菌。

2) 培养基的湿热灭菌

条件为在121℃(表压约0.1MPa)维持30分钟。

湿热灭菌即利用饱和水蒸气进行灭菌,是工业中最重要的灭菌方法。在同样的温度下,温热的杀菌效果比干热好,其原因有:①蛋白质凝固所需的温度与其含水量有关,含水量愈大,发生凝固所需的温度愈低。湿热灭菌中菌体蛋白质吸收水分,较同一温度的干热空气中易于凝固而杀灭各种微生物。②温热灭菌过程中蒸气放出大量潜热,加速提高温度。因而湿热灭菌比干热所要温度低。如在同一温度下,则湿热灭菌所需时间比干热短。③湿热的穿透力比干热大,使深部也能达到灭菌温度,故湿热比干热收效好。

一.影响灭菌效果的因素

⑴微生物的种类和数量;

⑵培养基性质、浓度、成分;

⑶灭菌的温度、时间。

二.热阻:微生物对热的阻抗能力。

三.灭菌原理

对数残留定律:经加工灭菌,死亡微生物速度和存在的微生物数量成正比。

3.3.2空气灭菌

此课题为好氧发酵,以空气作为氧源。根据国家药品质量管理规范的要求,生物制品、药品的生产场地业需要符合空气洁净度的要求。获得无菌空气的方法有:辐射灭菌、化学灭菌、加热灭菌、静电除菌、过滤介质除菌等。

过滤介质除菌是目前发酵工业中空气除菌的主要手段,其介质有棉花过滤器、超细玻璃纤维纸、石棉滤板、金属烧结管等。

1)过滤除菌流程及设备

流程如下:采风塔→空气粗过滤器→空气压缩机→储气罐→冷却器→旋风分离器→冷却器→丝网除沫器→空气加热器→总空气过滤器。

设备如下:

1.采风塔:采风塔建在工厂的上风头,高至少10 m,气流速度8 m/s。

2.粗过滤器:主要作用是拦截空气中较大的灰尘以保护空气压缩机,同时起一定的除菌作用,减轻总过滤器的负担。

3.空气压缩机:作用是提供动力,以克服随后各设备的阻力。

4.空气储罐:作用是消除压缩空气的脉动。

要求:H/B=2~2.5 V=(0.1~0.2)V1

其中,H为罐高;

B为罐直径;

V1为空压机每分钟排气量(20℃,1×105Pa状况下)。

5.旋风分离器:是利用离心力进行气-固或气-液沉降分离的设备。作用是分离空气中被冷却成雾状的较大的水雾和油雾粒子。

6.冷却器:空压机出口温度气温在120℃左右,必须冷却。另外在潮湿的地域和季节还可以达到降湿的目的。

7.丝网除沫器:可以除去空气中绝大多数的20μm 以上的液滴和1μm以上的雾滴,一般采用规格为直径0.25㎜×40孔且高度为150㎜的不锈钢丝网。

8.空气加热器:列管内走空气,管外走蒸汽。可将空气湿度由100%降低到70%以下。

9.总过滤器:填充物按下面顺序安装:孔板→铁丝网→麻布→活性炭→麻布→棉花→麻布→铁丝网→孔板。介质要紧密均匀,压紧一致,上下棉花层厚度为总过滤层厚度的1/4,中间活性炭层为1/3。

2)无菌空气的检查

现在采用的无菌检查实验方法有肉汤培养法、斜面培养法和双碟培养法。这里采用斜面培养法来检查。具体方法如下:

500ml三角瓶内装斜面培养基50m1,其组成为麦芽糖6%、豆粕水解液6%、Na2HPO4·12H2O 0.8%、(NH4)2SO40. 4%、CaCl2 0.2%、NH4C1 0.15%,

pH 6.5~7.0,接种后置旋转式摇床亡,(37±1)℃下培养28h左右备用。

3.3.3 发酵罐的灭菌

发酵罐的灭菌可采用空罐灭菌和实罐灭菌,此处采用空罐灭菌。空罐灭菌是将所有的通气口都稍微打开,然后通入热水蒸汽,让水蒸汽尽量通过每一个菌落达到灭菌效果。具体方法是:在121℃灭菌30分钟。

3.4 种子扩大培养

本发酵属于一级种子罐扩大培养,二级发酵。设计流程如下:

孢子→锥形瓶→种子罐→发酵罐

3.4.1孢子制备

将保存在淀粉琼脂斜面上的枯草芽孢杆菌孢子用无菌水洗下,接种到锥形瓶中,在35℃静置培养2~4天,待长出大量孢子后作为接种用的种子。

3.4.2种子制备

将保藏的菌种接种到马铃薯茄子瓶斜面(20%马铃薯煎出汁加MgSO4·7H2O 5 mg/L,琼脂2%,pH 6.7~7.0),37℃培养3天。然后接入到20L种子罐,37℃搅拌,通风培养12~14小时。此时菌种进入对数生长期(镜检细胞密集,粗壮整齐,大多数细胞单独存在,少数呈链状,发酵液pH 6.3~6.8,酶活5~10U/mL),再接种到发酵罐。

3.4.3发酵罐培养

培养基的配制:用麦芽糖液配置成含麦芽糖6%、豆粕水解液6%~7%、Na2HPO4·12H2O 0.8%、(NH4)2SO4 0.4%、CaCl2 0.2%、NH4Cl0.15%、豆油1kg、深井水20L,调pH至 6.5~7.0。

发酵罐培养基经消毒灭菌冷却后接入3%~5%种子培养成熟液。培养条件为:温度37±1℃,罐压0.5kg/cm2,风量1~20h 为1:0.48vvm,20 h后1:0.67vvm,培养时间为28~36 h。

3.5 发酵过程的工艺控制

1)发酵过程的补料策略

中间补料是在发酵过程中补充某些营养物料、水或产酶促进剂,以满足微生物的代谢活动和产酶的需要。α-淀粉酶生产中要经常补料,用3倍年度浓度碳源的培养基补料,体积相当基础料的1/2,从培养12h开始,每小时1次,分30余次补加完毕。延长了发酵时间,提高了酶活力和单罐产量。

2)发酵过程pH值的控制

各种微生物需要在一定的pH环境中方能正常生长繁殖。

培养基中C/N比值高,发酵液倾向于酸性,pH偏低;C/N比值低,发酵液倾向于中性或碱性,pH偏高。α-淀粉酶最适 pH为6.8~7.2。因此,在发酵过程中,可通过添加适量的尿素或碳酸钙等来调节pH上升或下降。

3)发酵过程温度的控制

温度对微生物的生长、产物的合成和代谢调节有重要作用。温度变化一方面影响各种酶反应的速率和蛋白的性质,另一方面影响发酵液的物理性质。不同的菌种有着不同的最适温度。枯草杆菌发酵温度控制在35℃~37℃最适宜。

4)溶氧的控制

α-淀粉酶发酵是需氧发酵,无论是基质的氧化,菌体的生长还是产物的合成均需大量的氧气。若发酵液中氧气不足,可通过加大通气量,适当降低温度,提高罐压,补水,提高搅拌速度来控制。α-淀粉酶发酵过程中,0~12 h通气量为1:0.67 vvm,12 h至发酵结束通气量为1:(1.0~1.33) vvm 搅拌转速200r/min。罐压0.5kg/cm2。

5)染菌的控制

在工业发酵中,染菌轻则影响产品的质和量、重则倒罐或停产、影响工厂效益。因此要严格无菌操作,种子灭菌要彻底,净化空气设备,操作要慎重,设备灭菌要彻底。若在前期染菌,应重新灭菌;中期染菌,应偏离杂菌生长条件;后期染菌,可提前或及时放罐。

可能出现的异常发酵现象:

1.培养基变稀:可能是噬菌体污染或营养成分缺乏;

2.培养基过浓:会抑制微生物的生长,考虑可能是污水污染;

3.耗糖较慢:可能原因是种子生长能力降低,检测种子是否衰退,发酵条件是否合适,以及营养成分是否全面,尤其注意缺磷;

4.pH值不正常:用缓冲对来调节,检查是否染杂菌,碳氮比是否合适;

5.生长缓慢:最可能的原因就是营养成分不足。

3.6 下游加工

下游加工过程是生物工程的一个组成部分,是生物化工产品通过微生物发酵过程、酶反应过程或动植物细胞大量培养获得,以上述发酵、反应液或培养液分离、精制有关产品的过程。

下游加工过程的一般工艺流程为:

发酵液→预处理→固液分离

度纯化→成品加工

1)发酵液的过滤和预处理

预处理就是除去高价离子和蛋白质,对高价离子的去除可以采用草酸或磷酸,草酸它与钙离子生成的草酸钙,还能促使蛋白质沉淀,加磷酸既能降低钙离子也能降低镁离子。对于蛋白质的沉淀可以加入絮凝剂,调节pH值或加热。过滤:采用鼓式真空过滤器,过滤前加去乳化剂并降温。

2)提取

α-淀粉酶常用的提取方法有:盐析法、乙醇淀粉吸附法和喷雾干燥法,这里用盐析法。具体方法:发酵液经热处理,冷却到40℃,加入硅藻土为助滤剂过滤。滤饼加2.5倍水洗涤,洗液同发酵液合并后,在45℃真空浓缩数倍后,加(NH4)2SO4 至40%饱和度。盐析沉淀物加硅藻土后过滤,滤饼于40℃烘干磨粉即成粗酶制品。由酶液到粉状制酶剂的收率为70%。

成品固体酶制剂的干燥方法有烘房、气流干燥、喷雾干燥、沸腾干燥、振动干燥和真空冷冻干燥。由于喷雾干燥生产能力大,维修保养简单,因此生产中常采用这种方法。

3)纯化

α-淀粉酶的纯化方法可采用凝胶过滤法,就是以特定的凝胶物质为分子筛装入层析柱,再通过分离溶液时大于凝胶孔径的分子会被排阻在胶粒外,因此它们将“绕道通过”;小于

该孔径的分子,由于可以自由出入胶粒内外,因此将沿着胶粒缝隙而直接流出。通过一段程度的凝胶层析柱后,大小分子将依次先后流出。

4、枯草芽孢杆菌生产发酵α-淀粉酶工艺总流程图

5.设备的工艺计算及选型

5.1发酵罐的设计

5.1.1发酵罐的结构

通用发酵罐的主要组成部件有:

1.罐体:是发酵罐的主要结构,其内壁有挡板,作用是防止液内中心产生漩涡,一般用3~5块挡板。

2.搅拌装置:主要功能是使罐内物料混合均匀,搅拌器叶轮多采用搅拌涡轮式,搅拌轴要与罐体密封严实,防止漏液和染菌。搅拌转速为200r/min.

3.传热装置:有夹套,列管等,这里采用外夹套。

4.通气部分:通过空气分布器将通入的无菌空气均匀分布到发酵液中,发酵罐通风量0~12 h为1:0.67vvm ,12 h至发酵结束通风量为1:(1.0~1.33)vvm 。分布器有单管式和环形管式。

5.消泡装置:用于消除产生的泡沫,最简单实用的消泡装置是耙式消泡器,直接装在搅拌轴上。

6.进出料口:罐顶设有进料口,罐底有出料口。其他附属设备还包括试镜、人孔(手孔)、取样管等,用以观测和检修。

5.1.2发酵罐的工艺尺寸

常用的机械通风发酵罐的结构和主要几何尺寸标准化设计(见附图)

其几何尺寸比例如下:

H0/D=1.7~3.5 H/D=2~5 d/D=1/3~1/2 W/D=1/12~1/8 B/D=0.8~1.0 (S/d)2=1~2 (2表示搅拌器挡数) h/D=1/4 单位全部为m

发酵罐大小用公称体积表示,V0=∏D2×H/4+0.15D3

其中:H0-发酵罐圆柱形筒身高度D-发酵罐内径H-罐顶到罐底的高度d-搅拌器直径W-挡板宽度B-下搅拌器距罐底的距离S-搅拌器间距h-底封头或顶封头高度

计算:

已知年产量为400吨,中性淀粉酶产量为35g/L,一年有300个工作日,发酵周期为48小时,即2天,清理发酵罐1天,对淀粉的转化率为42%,预处理收率85%,提取率为70%,发酵罐个数为3个,装料系数为0.75,V0是公称容积,指筒身容积与底封头容积之和,则:发酵罐体积为:

V0=400×1000/35/(300/3)/42%×85%×70%/2/0.75=203.3m3

可以取V0=200m3

由: V0=∏D2×H/4+0.15D3=∏3D3/4+0.15 D3=200m3

H=3D

得:D=4.31 m

那么:H0=2.5D=2.5×4.31=10.78m H=3D=3×4.31=12.93m

d=D/2=0.5×4.31 =2.16m W=D/12=4.31/12=0.36m

B=0.9D=0.9×4.31 =3.88 m S=2D=2×4.31 =8.62 m

h=D/4=4.31 /4=1.08m

液面高度H L=0.75(H+h)=0.75×(12.93+1.08)=10.51 m

5.1.3物料衡算

本系统采用3个发酵罐,每个为200m 3,中性淀粉酶产量为35g/L, 对糖的转化率为42%,提取率为70%,装料系数为0.75,则:

每个发酵罐在一个发酵周期中性淀粉酶产量为:

200×35×42%×70%×0.75 =1543.5(kg )

那么3个发酵罐1年的总产量为:

(1543.5×300/3)×3 = 463050(kg )= 463.05吨

故符合年产量为400吨的生产要求。

5.1.4 发酵罐搅拌器的设计

机械搅拌通风发酵罐的搅拌涡轮有三种型式,可根据发酵特点、基质及菌体特征选用。由于淀粉酶发酵过程中有中间补料操作,对混合要求比较高,因此选用六弯叶涡轮搅拌器。

该搅拌器的各部尺寸与罐径D 有一定比例关系: 搅拌器叶径3

31.43==D d =1.45m 取d=1.5m 叶宽B=0.2d=0.2×1.5=0.3m

弧长l=0.375d=0.56m 底距3

31.43==D C =1.5m 盘径d i =0.75d=0.75×1.5=1.13m

叶弦长L=0.25d=0.25×1.5=0.38m

叶距Y=D=4.31m

弯叶板厚δ=12mm

取两板搅拌,搅拌转速N 2可根据50m 3罐,搅拌器直径1.05m ,转速N 1=110r/min ,以等

P 0/V 为基准放大求得:

3/23/22112)5

.105.1(110)(?==D D N N =87r/min

5.2 种子罐的设计

5.2.1 二级种子罐数量和尺寸的确定

1)种子罐与发酵罐对应上料,发酵罐平均每天上2罐,所以需要二级种子罐2个。种子培养14h 左右,辅助操作时间6h ,生产周期大约为20h ,所以2个二级种子罐能满足实际生产需求。

2)种子罐尺寸的确定

按接种量5%计,每日所需的种子液量为:200×3%=6.0m

3 所需种子罐的容积为6.0÷0.75÷2=4.0m

3 所以选择公称容积为5m 3的通风搅拌椭圆盖发酵罐。取径高比为H:D=2:1,则种子罐的

总容积为

V全=V筒+2V封

V全=

2

24

4

3

2?

+D

H

D

π

π

=5.0

D=1.4m

取D=1.5m,则H=2D=3m

查表可得,封头高

H封=h a+h b=375+25=400mm

封头容积V封=0.487m3

全容积V全=6.27m3

设计符合要求

5.2.2一级种子罐数量和尺寸的确定

1)

2)

5.3 设备一览表

通过设备工艺流程和设计计算,可列出淀粉酶生产所需所有设备如表5-1

6 车间布置设计

6.1 车间设计规范和规定

●《建筑设计防火规范》(GBJ 16-87)、

●《石油化工企业设计防火规定》(GB50160-99)、

●《化工企业安全卫生设计标准》(HG20571-95)、

●《工业企业厂房噪声标准》(GB2348-90)、

●《爆炸和火灾危险环境电力装置设计规定》(GB50058-92)、

●《中华人民共和国爆炸危险场所电气安全规程》(试行)(1987)等。

6.2 生产车间布置设计

6.2.1 发酵车间组成

发酵工厂生产车间内部组成,一般包括生产、辅助、生活等三部分。

1)生产部分,其中包括原料工段、生产工段、成品工段、回收工段等。

2)辅助部分,其中包括通风空调室、变电配电室、车间化验室、控制室等。

3)生活行政部分,其中包括车间办公室、会议室、更衣室、休息室、浴室以及厕所等。

6.2.2 车间布置原则

1)满足生产工艺要求

2)符合安全技术要求

3)便于安装检修

4)保证良好的操作条件

5)符合建筑要求

6.3 车间布置及结构

车间面积与生产相适应,布局合理,排水畅通;车间地面用防滑、坚固、不透水、耐腐蚀的材料修建,且平坦、无积水、并保持清洁;车间出口及与外界相连的排水、通风处装有防鼠、防蝇、防虫设施。

车间内墙壁、天花板和门窗使用无毒、浅色、防水、防霉、不脱落、易于清洗的材料修建。墙角、地角、顶角应当具有弧度(曲率半径应不小于3cm)。

车间内的操作台、传送带、运输车、工器具应当用无毒、耐腐蚀、不生锈、易清洗消毒、坚固的材料制作。

应当在适当的地点设足够数量的洗手、消毒、干手设备或用品,水龙头应当为非手动开关。根据产品加工需要,车间入口处应当设有鞋、靴和车轮消毒设施。应当设有与车间相连接的更衣室。根据产品加工需要,还应当设立与车间相连接的卫生间和淋浴室。

7 结论

淀粉酶已经成为工业应用中最为重要的酶之一,并且大量的微生物可以用以高效生产淀粉酶,但是酶的大规模商业化生产仍然局限于几种特定的真菌和细菌中。对于高效的淀粉酶的需求越来越多,这可以通过对现有酶的化学改良或者通白质工艺改良得到。得益于现代生物技术的发展,淀粉酶在制药方面的重要性日益凸显。当然,食品和淀粉工业仍然是主要市场,淀粉酶在这些领域的需求仍然是最大的。

20世纪60年代以来由于淀粉酶在淀粉糖工业生产和食品工业中的大规模应用,它的需要量与日俱增,到目前为止,其产量几乎占到整个酶制剂的50%以上,销售金额占到55%~60%。按照水解淀粉的方式不向,主要的淀粉酶有α—淀粉酶、β—淀粉酶、葡萄糖淀粉酶、脱支酶、环糊精葡萄糖基转移酶等。

本次设计的淀粉酶发酵厂,分别以玉米粉为碳源,以豆饼为氮源,以BF-7658枯草芽孢杆菌为生产菌种,采用深层发酵法,提取工艺采用盐析法,年产1000吨淀粉酶,日产4吨。同时做出了生产工艺流程图,进行了物料衡算和热量衡算,设计了发酵罐和种子罐的尺寸和车间的布置和结构。

通过本次课程设计,我增强了对所学的专业知识的理解,锻炼了将所学知识运用到实际的能力。

(整理)α-淀粉酶综述

α-淀粉酶综述 佚名2013-10-06 摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。 关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势 α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。 1 α-淀粉酶的发现和应用史 1.1 α-淀粉酶的发现 啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。 在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。Kirchhoff(1815年)做了一个巧妙的实验。他将4份的冷水加入到2份的淀粉中,并边加边搅拌。之后加入20份的沸水使其形成一层厚厚的淀粉糊。在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。1-2小时后发现,淀粉糊开始缓慢液化。8-10小时后,淀粉糊被转化为一种甜的溶液。之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。

汽车齿轮的生产工艺设计书

汽车齿轮的生产工艺设计书 第一章绪论 当下人们对汽车高速、安全、舒适、节能、环保等性能要求日趋严格,传动系统向小型化、轻量化、高功率化的趋势发展,要求提高齿轮寿命、传动精度和降低成本。因此,使得汽车齿轮承受的负荷越来越大,对汽车齿轮钢质量的要求也越来越高。 随着社会汽车保有量及生产量的不断扩大,汽车齿轮钢用量也在增加。中国汽车保有量在2011年8月增加983万辆,首次突破1亿辆,占机动车总量的45.88%。年新产汽车用齿轮钢量约54.2万t。汽车齿轮钢属结构钢,其中以合金结构钢为主,尽管开发和引进了各种类型的齿轮钢,但20SiMnVB 具有较高的淬透性,十分适合应用于汽车齿轮的生产。 汽车齿轮工作时受到周期性变载荷(扭转或弯曲力)及冲击载荷的作用,且零件与零件表面之间有相对摩擦,并有高的接触应力。这些零件对材料的机械性能要求:1)材料具有高的屈服强度和高的弯曲疲劳性能;2)材料表面具有高的接触疲劳强度和高的耐磨性。 含碳量为0.4%及以上的结构钢不能满足要求,因其经热处理后尽管硬度很高,但韧性太低,达不到内韧外硬的要求,故用低碳结构钢进行渗碳,使零件从表面到中心具有从高碳(0.8%---1.1%)到低碳(0.10%---0.25%)连续过度的化学成分。使零件表层具有高强度、高耐磨性,零件心部具有适当的强度和较好的韧性,使零件满足在其在机械性能上的要求。对于一般零件,渗碳层的含碳量限制为0.8%---1.1%;渗碳层的深度控制在0.6---2.0mm之内。 齿轮传动装置按密封形式可分为开式、半开式及闭式3种;按使用工况可分为低速、高速及轻载、中载、重载;按齿轮齿面硬度不同,又分为硬齿面齿轮(齿面硬度HRC>55,如经整体或渗碳淬火、表面淬火或氮化处理)、中硬齿面齿轮(齿面硬度55>HRC>38,HB>350,如齿轮经过整体淬火或表面淬

年产1000吨酸性蛋白酶的生产工艺设计

1. 前言 酸性蛋白酶是一类最适pH值为2.5?5.0的天冬氨酸蛋白酶,相对分子质量为30000 ?40000。酸性蛋白酶主要来源于动物的脏器和微生物分泌物,包括胃蛋白酶、凝乳酶和一些微生物蛋白酶。根据其产生菌的不同,微生物酸性蛋白酶可分为霉菌酸性蛋白酶、酵母菌酸性蛋白酶和担子菌酸性蛋白酶.根据作用方式可分为两类:一类是与胃蛋白酶相似,主要产酶微生物是曲霉、青霉和根霉等;另一类是与凝乳酶相似,主要产酶微生物是毛霉和栗疫霉等。细菌未发现产酸性蛋白酶的菌株.由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。 国外关于酸性蛋白酶的生产研究从20世纪初就开始了。1908年,德国科学家从动物的胰脏中提取出胰蛋白酶,并将其用于皮革的鞣质。1911年美国科学家从木瓜中提取木瓜蛋白酶(在酸性,碱性和中性的条件下都能分解蛋白质的酶)并将木瓜蛋白酶用于除去啤酒中的蛋白质浑浊物。自1954年吉田首次发现黑曲霉可产生酸性蛋白酶以来,国外对微生物发酵生产酸性蛋白酶进行了广泛的研究。1964年外国科学家首次发现大孢子黑曲霉突变体能产生两种不同的酸性蛋白酶,即酸性蛋白酶和酸性蛋白酶。1965年又从血红色陀螺孔菌,中分离出了一种酸性蛋白酶,并对该酶进行了纯化和结晶。1968年从微小毛霉中筛选出了一种酸性蛋白酶,并对其进行了纯化和酶学性质分析。1995年外国科学家对烟曲霉酸性蛋白酶的基因进行了克隆和测序。2001年又从假丝酵母中筛选出了一种酸性蛋白酶菌株,并对该酶进行了核苷酸序列分析和功能分析。国外学者对曲霉酸性蛋白酶的结构和功能等己经研究的较为透彻。 与国外相比,我国对酸性蛋白酶的研究相对较晚些。1970年上海工业微生

制造流程及工艺方案设计

目录 摘要 (3) 引言 (4) 1.任务与分析 (5) 1.1确定生产纲领 (5) 1.2确定生产类型 (5) 2.设计的目的、要求和内容 (6) 2.1设计目的 (6) 2.2设计要求 (7) 2.3设计内容 (7) 3.工艺分析 (8) 3.1技术要求 (8) 3.2零件特点 (8) 4.毛坯的选择 (9) 4.1毛坯的选择 (9) 4.2轴类零件的毛坯和材料 (9) 4.3轴类零件加工工艺规程注意点 (10) 4.4轴类零件加工的技术要求 (10) 5.基准的选择 (11)

5.1粗基准的选择原则 (11) 5.2选择精基准 (11) 6.加工余量、工序尺寸和公差的确定 (12) 6.1加工余量概述 (12) 6.2影响加工余量的因素 (12) 6.3加工余量的确定 (12) 6.4零件图的加工余量、工序尺寸和公差的确定 (12) 7.切削用量的确定 (16) 7.1粗车 (16) 7.2半精车 (16) 7.3精车 (16) 8.机床及工艺装备的确定 (17) 8.1机床的选择 (17) 8.2工艺装备的确定 (17) 9.拟定机械加工工艺路线 (17) 9.1选择定位基准 (17) 9.2表面加工方法的选择 (17) 9.3拟定工艺路线 (18) 结论 (20) 致谢 (20) 参考文献 (20)

摘要 车削加工是在车床上利用工件相对于刀具旋转对工件进行切削加工的方法。车削是最基本、最常见的切削加工方法,在生产中占有十分重要的地位车削适于加工回转表面,大部分具有回转表面的工件都可以用车削方法加工,如加工轴类零件的内外圆柱面、内外圆锥面、端面、沟槽、螺纹和回转成形面等,所用刀具主要是车刀。 在各类金属切削机床中,车床是应用最广泛的一类,约占机床总数的50%。车床既可用车刀对工件进行车削加工,又可用钻头、铰刀、丝锥和滚花刀进行钻孔、铰孔、攻螺纹和滚花等操作。按工艺特点、布局形式和结构特性等的不同,车床可以分为卧式车床、落地车床、立式车床、转塔车床以及仿形车床等,其中大部分为卧式车床。 在各种机械产品中,带有螺纹的轴类零件应用很广泛。螺纹切削是加工螺纹件效率最高、经济性最好的加工方法,用车削方法加工螺纹是机械制造业目前常用的加工方法。 在车床上车削螺纹轴可采用成形车刀或螺纹梳刀(见螺纹加工工具)。用成形车刀车削螺纹,由于刀具结构简单,是单件和小批生产螺纹工件的常用方法;用螺纹梳刀车削螺纹,生产效率高,但刀具结构复杂,只适于中、大批量生产中车削细牙的短螺纹工件。普通车床车削梯形螺纹的螺距精度一般只能达到8~9级。在专门化的螺纹车床上加工螺纹,生产率或精度可显著提高。 关键词:车削加工卧式车床螺纹轴工艺

探索淀粉酶对淀粉和蔗糖的作用(知识资料)

Sy-5 探索淀粉酶对淀粉和蔗糖的作用 酶:是活细胞产生的一类具有生物催化作用的有机物。酶的作用具有专一性。 一、实验原理 淀粉和蔗糖都是非还原糖。它们在酶的催化作用下都能水解成还原糖。还原糖能够与斐林试剂发生氧化还原反应,生成砖红色的氧化亚铜沉淀。 用淀粉酶分别催化淀粉和蔗糖的水解反应,再用斐林试剂鉴定溶液中有无还原糖,就可以看出淀粉酶是否只能催化特定的化学反应。 证明酶的专一性。 二、目的要求 1.初步学会探索酶催化特定化学反应的方法。 2.探索淀粉酶是否只能催化特定的化学反应。 三、重点与难点 1.重点 ①初步学会探索酶催化特定化学反应的方法--探索酶的特性之一(酶的专一性)的方法。 ②探索淀粉酶是否只能催化淀粉的反应。 2.难点 ①学会探索实验的设计方法和探索方法。 ②让学生学会探索实验的方法,培养学生独立实验能力和创新思维能力。 四、材料用具 质量分数为2%的新鲜的淀粉酶溶液。 试管,大烧杯,量筒,滴管,温度计,试管夹,三脚架,石棉网,酒精灯,火柴。 质量分数为3%的可溶性淀粉溶液,质量分数为3%的蔗糖溶液,斐林试剂,热水。 五、方法步骤(录象观察) 1.取材 2.实验过程 3.结论 序号项目试管 1 2 1 注入可溶性淀粉溶液2mL \ 2 注入蔗糖溶液\ 2mL 3 注入新鲜的淀粉酶溶液2mL 2mL

结论: 1号试管中出现砖红色沉淀,2号管无颜色变化。淀粉酶只能把淀粉水解成麦芽糖,不能水解蔗糖。验证了酶的专一性。 (1)做好本实验的关键是蔗糖的纯度和新鲜程度。这是因为蔗糖是非还原性糖,如果其中混有少量的葡萄糖或果糖,或蔗糖放置久了受细菌作用部分分解成单糖,则与斐林试剂共热时能生成砖红色沉淀,使人产生错觉。为了确保实验的成功,实验之前应先检验一下蔗糖的纯度。普通的细粒蔗糖往往由于部分水解而具有一些还原糖。可用市售大块冰糖,水洗去其表面葡萄糖得到纯净的蔗糖。 (2)实验中要将试管的下半部浸到37℃的温水中,因为淀粉酶在适宜的温度条件下催化能力最强。 (3)在实验中,质量分数为3%的蔗糖溶液要现配现用(以免被细菌污染变质),取唾液时一定要用清水漱口,以免食物残渣进入唾液中。 (4)制备的可溶性淀粉溶液,一定要完全冷却后才能使用,因为温度过高会使酶活性降低,甚至失去催化能力。 (5)实验中如果2号试管也产生了砖红色沉淀,可能的原因是: 蔗糖溶液放置的时间过长,蔗糖溶液中的微生物分解成还原性糖,从而影响实验效果。这时应临时配制蔗糖溶液。 另一个可能的原因是试管不干净,所以实验之前应将试管用清水再清洗一次,试管编号要醒目。 (6)实验步骤一定要按要求的程序进行,不可随意改变。 (7)如果实验中,自己的实验结果与理论上的预期结果不一致,应再设计实验,进行进一步的验证或找出问题所在。 Ⅲ实验理论 本实验是探索类实验。主要目的是通过研究淀粉酶对淀粉和蔗糖的水解作用是否都具有催化作用,探索酶催化化学反应的特点。本实验给我们的重要启示是:设计实验时,首先要从已知人手,确定何为实验变量(自变量),何为因变量,何为控制变量。 本实验的已知条件为题目,即“探索淀粉酶对淀粉和蔗糖的作用”。 从题目可知: ①淀粉、蔗糖水解的产物,水解的速率等变化的结果,即因变量。从因变量入手我们将推知自变量(实验变量)对其的影响程度或它们之间的关系。 ②淀粉、蔗糖在实验过程中的浓度、用量、淀粉酶的浓度、用量、水解过程的温度等都为控制变量,需遵循同时等量原则,以排除控制变量对2个水解反应的影响。 ③淀粉酶本身是实验变量。通过研究确定其分别对淀粉水解作用和蔗糖水解作用的影响。 在以上分析的基础上,再安排淀粉、蔗糖、水、淀粉酶、温度、酸碱度等各变量的“出场”顺序,想必会容易许多。 Ⅳ随堂演练 1.下列关于酶的叙述,不正确的是() A.酶的催化效率很高 B.酶是具有催化功能的蛋白质

生产工艺设计作业指导书模板

志涛生产作业指导书 1.材料搭配加工要求 1、实木面框拼接料宽度≤80MM,长度超过1米的拉档和玻璃门框不允许使用独根材料; 2、拼板应无明显色差,无明显胶线; 3、砂光后无跳痕、无焦黑痕、无蓝斑、无横茬;平整光滑; 4、板材厚度公差+0.2MM,不得有大头小身; 5、有虫孔的木料不可使用; 6、面框配料加工厚度尺寸+0.5~+0.2MM;组框后需铣型边的面框料宽度尺寸放3MM 加工余量,面框深度尺寸+0.5~0.2MM; 7、人造板封边的配料厚度尺寸为人造板厚度尺寸+0.6~0.2MM; 8、直边牙板厚度、宽度尺寸为+0.4MM,曲边牙板宽度放2MM加工余量,与脚耳相配的牙板宽度为+0.2MM; 9、需铣型、仿型、车型无方身的脚配料放3MM加工余量; 10、零件必须方、正、平、直; 11、显木纹油漆产品胶拼部件颜色必须相近,木纹必须对称; 12、显木纹油漆产品所有零件不许有明显木材缺陷,外表部件无腐朽、变色、死节、开裂、过大黑线等缺陷,内部零件可允许存在不影响外观的轻微缺陷,但必须修补合格后下发; 13、不显木纹油漆产品用材要求; (1)不影响产品结构强度和外观的木材缺陷可以使用,但死节直径不大于20MM,不存在贯通裂缝;

(2)雕刻、型边、企口等外表部位不应有死节、髓芯、开裂等缺陷; 14、平面中含有圆弧面线条的部件,圆弧面应凹进1MM,以免砂平圆弧面。 2.木皮拼接及胶贴加工要求 1、木皮含水率控制在8-10%; 2、所有薄片厚度公差控制在+0.05MM~-0.05MM; 3、拼花、拼缝不大于0.2MM; 4、面板薄片材质要求: (1)无腐朽、死节、变色、蓝斑、开裂、鱼鳞斑等缺陷; (2)无横向连贯木纹、节子; (3)同一板面纹理相近、弦向、径向纹按要求拼接; (4)树瘤切片必须遵循对称、花纹一致原则,除非不易辨别之花纹可混用在同一面板上; (5)镶嵌,插入拼接时斜拼,同一面板镶嵌,插入尺寸、颜色需一致; 5、芯板除端部外,允许有变色、不脱落死节。芯板拼缝不大于0.5MM,无叠芯现象; 6、不可见之部位或面板背板材质允许一定缺陷,但不允许大的空洞,也可纵向接,但不可同缝; 7、门板、抽头等有对称要求的要对称拼接; 8、表面平整、光滑,无透光现象; 9、不允许叠芯; 10、45度拼角偏离不大于1MM; 11、胶贴木片不得有脱胶、鼓泡、离芯、迭芯、透胶现象; 12、胶贴表面不得有胶块、凹痕、异物、排骨印;

酸性蛋白酶生产工艺

第六节酸性蛋白酶生产工艺 07040642 47 李继江 1 蛋白酶、蛋白类酶、酸性蛋白酶 1.1 蛋白酶的定义 蛋白酶是催化肽键水解的一类酶,它可迅速水解蛋白质为胨、肽类,广泛存在于动物内脏、植物茎叶、果实和微生物中。同时大多数微生物蛋白酶都是胞外酶。 1.2 微生物蛋白酶分类 微生物蛋白酶按其作用的最适pH可分为酸性蛋白酶、中性蛋白酶、碱性蛋白酶三类。 碱性蛋白酶为透明褐色液体,能与水混溶,最适温度50~60℃,最适pH8.5。 中性蛋白酶为金属酶,褐色颗粒或液体,易溶于水,最适温度45~55℃,最适pH5.5~7.5。 酸性蛋白酶为近乎白色至浅黄色无定型粉末或液体,易溶于水,最适温度45℃,最适pH2.5。 1.3 蛋白类酶 蛋白类酶主要是指由蛋白质组成的酶(P酶);而主要由核糖核酸组成的酶称为核酸类酶(R酶)。 蛋白类酶分为氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶(或称连接酶)。 1.4 酶的生产方法 酶的生产方法主要有:提取分离法、生物合成法、化学合成法。 酶的微生物合成法主要有:液体深层发酵、固体培养发酵、固定化细胞培养、固定化原生质发酵。 酸性蛋白酶用微生物发酵法生产,采用液体深层发酵。 液体深层发酵是指液体培养基在发酵罐中灭菌冷却后,接入产酶细胞,一定条件下发酵,适用于微生物细胞、动植物细胞的培养。具有机械化程度高、技术管理严格、酶产率高、质量稳定,产品回收率高的特点,是目前酶发酵的主要方式。 1.5 酸性蛋白酶制剂的性能 1.5.1 酸性蛋白酶的作用机理 酶是一种蛋白质,它是活细胞产生的生物催化剂,生物体的新陈代谢活动都离不开酶的作用。酶的种类很多,酸性蛋白酶是水解酶类的一种,能够在微酸环境下(pH2.5~4.0)

加工工艺方案

拨叉零件的机械加工工艺方案设计 设计要求: 综合运用已有知识,收集查阅相关资料,设计符合机械加工工艺规程设计基本原则的零件机械加工工艺方案。所附为一些中批量生产的零件图样,供选择。 设计要求: 在所提供的各类零件中自选一个作为分析对象,综合运用已有知识,收集查阅相关资料,设计符合机械加工工艺规程设计基本原则的零件机械加工工艺方案。 所附为一些中批量生产的零件图样,供选择。 工作量: 1、分析零件的加工工艺性,选择毛坯种类,指出机械加工的难点与处理方案。 2、分析比较不同的工艺方案,从中选出较优的机械加工工艺路线,且为各道工序选择定位基准(分析到工步,标明工序内容、定位基准与机床设备),并说明理由。 3、完成所选零件的机械加工工艺路线设计说明书。 附件:零件图样 3、CA6140拨叉(2) 零件的机械加工工艺方案 1 零件结构特点与技术要求的分析

该工件为拨叉,拨叉零件主要用在操纵机构中,比如改变车床滑移齿轮的位置,实现变速;或者应用于控制离合器的啮合、断开的机构中,从而控制横向或纵向进给。该工件的主要技术要求如下: ①宽度为mm的槽尺寸精 度。此处用于与滑移齿轮配合,保 证滑移齿轮的位置精度,精度等级 为IT6,要求高。 ②花键毂的加工精度。其为 标准件,松联接。 ③花键孔的加工精度。其精 度等级为IT12,要求低,其中心轴线作为一个精基准。 ④宽度为mm的槽尺寸精度、此处精度等级为IT9,要求低。 ⑤表面粗糙度Ra值要求为、 ⑥其余尺寸,形位,表面粗糙度等级要求一般。 综上分析可知,径向尺寸的精基准为花键孔中心轴线,轴向尺寸的精基准为拨叉右端面,分别为两组加工表面。 2毛坯的选择 根据技术要求,零件材料选择HT200,生产纲领要求为中批生产,且零件尺寸较小,形状比较简单,采用砂型铸造,生产成本低,制造的工件可满足使用需求,适应性强,

血尿淀粉酶临床意义

血、尿淀粉酶检测的临床意义 贾思公 淀粉酶(AMY或AMS)全称是1,4-α-D-葡聚糖水解酶,催化淀粉及糖原水解,生成葡萄糖、麦芽糖及含有α1,6-糖苷键支链的糊精。淀粉酶主要由胰腺和唾液腺分泌,肺、肝、甲状腺、脂肪等组织亦含有此酶。 生理变异:成年人血中淀粉酶与性别、年龄、进食关系不大,新生儿淀粉酶缺乏,满月后才出现此酶,逐步升高,约在5岁时达到成年人水平,老年人淀粉酶开始下降,约低25%。 注意事项:血淀粉酶的检验结果与进食的关系并不大,因此检验前无需刻意空腹,但若有使用避孕药或者麻醉药等则可能使得测定的数值出现偏低的情况。 参考值:血清淀粉酶28—100u/L;尿液淀粉酶0—500u/L 临床意义:淀粉酶主要由唾液腺和胰腺分泌,可通过肾小球滤过。 (1)血清与尿中淀粉酶升高:流行性腮腺炎,特别是急性胰腺炎时,血和尿中淀粉酶显著增高。急性胰腺炎病人胰淀粉酶溢出胰腺外,迅速吸收入血,由尿排出,故血尿淀粉酶大为增加,是诊断本病的重要的化验检查。血清淀粉酶在发病后1~2小时即开始增高,8~12小时标本最有价值,至24小时达最高峰,并持续24~72小时,2~5日逐渐降至正常,而尿淀粉酶在发病后12~24小时开始增高,48小时达高峰,维持5~7天,下降缓慢。故胰腺炎后期测尿淀粉酶更有价值。一般情况下,血清淀粉酶在增高频率以及程度上都不及尿淀粉酶检测,当血清活性淀粉酶回归常态后,尿淀粉酶活性仍然可以持续6天左右,这也是尿淀粉酶检测的敏感度和特异度都高于血淀粉酶检测的原因所在。尿淀粉酶活性测定对于胰腺炎的诊

断非常有效,在患者未能及时就诊时更是如此,在条件允许的情况下,进行血尿淀粉酶联合测定效果更佳。对急性胰腺炎的诊断,血尿淀粉酶都有很高的敏感性。在遇到急腹症患者,特别是那些腹部持续剧痛,用解痉剂也无法缓解症状的病例,就应该及时给患者采取血尿点淀粉酶检测,如果病情不能确定,还可以采取CT 、B 超等手段辅助进行,早点确诊,以便下一步治疗。 急性阑尾炎、肠梗阻、胰腺癌、胆石症、溃疡病穿孔、慢性胰腺炎、胰腺癌、急性阑尾炎、肠梗阻、流行性腮腺炎、唾液腺化脓等血清淀粉酶均可升高,但升高幅度有限。肾功能障碍时,血淀粉酶升高,尿淀粉酶降低。 (2)血清与尿中淀粉酶降低:正常人血清中淀粉酶主要由肝脏产生,血清与尿淀粉酶同时减低主要见于肝炎、肝硬化、肝癌及急性和慢性胆囊炎等。肾功能障碍时血清淀粉酶也可降低。 血尿淀粉酶对于胰腺炎的诊断虽然很有效果,但也会存在一定的诊断不出甚至误诊的几率。胰腺炎是最为常见的急腹症,患者大多有持续性阵痛,与暴饮暴食和烟酒过度有一定关系。有一种以腹泻为主要症状的胆源性胰腺炎与急性肠胃炎临床症状极为相似,血尿淀粉酶也表现较高,容易误诊。胆结石的临床症状主要为腹疼、恶心以及呕吐、发热。常态下,存留于胰液中的胰蛋白是在十二指肠里,它变成活性胰蛋白酶需要胆汁中的肠激酶激活,这样才能够去消化蛋白质。急性胰腺炎很多都是由胆石症引起的,所以急性肠胃炎和胆结石在临床上极易被误诊为胰腺炎,需要重点关注。 总而言之,血尿淀粉酶的坚持是当前诊断胰腺炎的主要手段,其有效

万吨α淀粉酶生产车间的设计

万吨α淀粉酶生产车间 的设计 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

8万t/a α-淀粉酶生产车间的设计 摘要:本设计为年产80,000t α-淀粉酶的工厂设计,其通过枯草杆菌液体深层发酵、沉淀法提取达到分离纯化出菌体中α-淀粉酶的目的。本设计分别对α-淀粉酶的性质、用途、工艺流程及生产原理都做了相关的阐述,并对有关的物料和热量也作了相应的衡算,以及对标准设备的选型和计算,还对工艺指标、安全问题和环境保护都做了详细的阐述。通过设计得出结论:年产8万吨α-淀粉酶发酵工厂,共有18个500m3发酵罐,每月均放罐180罐,发酵周期为72小时,总提取率为82%,理论α-淀粉酶产量为吨/罐,实际α-淀粉酶产量为吨/罐。每月应投入生产总成本为3993万元,根据目前市场价格,年利润为万元。 关键词:α-淀粉酶;工厂设计;效益分析;发酵;发酵罐 Plant Design of Sixty thousand t/a α-Amylase Abstract:This project is designed by a factory which produces 60,000t α-Amylase a achieves the aim of filtration and purification of the α-Amylase by using the deep ferment of hay bacillus and settling design not only respectively illustrate the quality,use,technological process and production principle but also make a materials and heat balance,the type selection and calculation of the standard equipment,further more,illustrate the technic

年生产12000吨二硝基苯工艺设计书

年产12000吨二硝基苯工艺设计书 1.1设计的目的,意义及要求 设计的目的及意义 化工课程设计是高等工业学校各专业教学计划的重要组成部分,是学生在毕业前进行的、全面运用所学的专业知识的综合训练,是培养学生综合素质和解决工程实际问题能力的一个重要的实践性教学环节。该过程是学生在校期间所学知识、理论及各种能力的综合应用与升华,是创新潜能得到激发的过程,是对各专业教学目标、教学过程、教学管理和教学效果的全面检验。 化工课程设计教学环节的教学目的是对学生从事科学研究的基本训练,是在教师指导下,通过毕业论文的教学过程,培养学生探求未知、探求真理的科学精神,以及优良的科学品质与科学素养,培养学生开展科学研究的方法。使学生了解本学科的发展动态和最新科学技术,检验学生综合运用基础理论、基本知识和基本技能,解决科学与技术领域有关问题的能力,检验科研基本训练的实际效果。 工程设计是工程师工作实践中最富创造性的容。设计能力不同于理论分析能力、表达能力和动手能力,它是一种如何将思维形式的知识转化为客观上尚未存在而可以实现的物质实体的创造能力,即不仅是认识客观、表现客观而且是创造客观的能力。因此设计能力的培养对工科学生尤为重要。 具体来讲化工课程设计有如下目的、意义: (1)通过课程设计的训练,使学生进一步巩固加深所学的基础理论、基本技能和专业知识,使之系统化、综合化。 (2)在课程设计中着重培养学生独立工作、独立思考并运用已学的知识解决实际工程技术问题的能力,结合课题的需要更应注意培养学生独立的获取新知识的能力。 (3)通过化工课程设计加强对学生计算、绘图、实验方法、数据处理、编辑设计文件、使用规化手册等最基本的工作实践能力的培养。 (4)通过化工课程设计的训练,使学生树立起具有符合国情和生产实际的正确的设计思 想和观点;树立起严谨、负责、实事、刻苦钻研、勇于探索并具有创新意识及与

年产1000吨酸性蛋白酶的生产工艺设计

1. 前言 酸性蛋白酶是一类最适pH值为的天冬氨酸蛋白酶,相对分子质量为30000 40000。酸性蛋白酶主要来源于动物的脏器和微生物分泌物,包括胃蛋白酶、凝乳酶和一些微生物蛋白酶。根据其产生菌的不同,微生物酸性蛋白酶可分为霉菌酸性蛋白酶、酵母菌酸性蛋白酶和担子菌酸性蛋白酶.根据作用方式可分为两类:一类是与胃蛋白酶相似,主要产酶微生物是曲霉、青霉和根霉等;另一类是与凝乳酶相似,主要产酶微生物是毛霉和栗疫霉等。细菌中尚未发现产酸性蛋白酶的菌株.由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。 国外关于酸性蛋白酶的生产研究从20世纪初就开始了。1908年,德国科学家从动物的胰脏中提取出胰蛋白酶,并将其用于皮革的鞣质。1911年美国科学家从木瓜中提取木瓜蛋白酶(在酸性,碱性和中性的条件下都能分解蛋白质的酶)并将木瓜蛋白酶用于除去啤酒中的蛋白质浑浊物。自1954年吉田首次发现黑曲霉可产生酸性蛋白酶以来,国内外对微生物发酵生产酸性蛋白酶进行了广泛的研究。1964年外国科学家首次发现大孢子黑曲霉突变体能产生两种不同的酸性蛋白酶,即酸性蛋白酶和酸性蛋白酶。1965年又从血红色陀螺孔菌,中分离出了一种酸性蛋白酶,并对该酶进行了纯化和结晶。1968年从微小毛霉中筛选出了一种酸性蛋白酶,并对其进行了纯化和酶学性质分析。1995年外国科学家对烟曲霉酸性蛋白酶的基因进行了克隆和测序。2001年又从假丝酵母中筛选出了一种酸性蛋白酶菌株,并对该酶进行了核苷酸序列分析和功能分析。国外学者对曲霉酸性蛋白酶的结构和功能等己经研究的较为透彻。 与国外相比,我国对酸性蛋白酶的研究相对较晚些。1970年上海工业微生物研究所首先从黑曲霉中筛选出一株产酸性蛋白酶菌株,并和上海酒精厂协作进行中试生产,填补了我国酸性蛋白酶制剂的空白.近年来国内在酸性蛋白酶上的研究大都致力于选育产酶活力高、抗逆性好的菌种,并获得了一些很有应用前途的产酶菌株。目前用于酸性蛋白酶生产的高产菌株主要有黑曲霉、宇佐美曲霉和青霉及它们的突变株。李永泉等,对宇佐美曲霉所产的酸性蛋白酶进行了发酵过程动力学研究.戚淑威等对青霉产酸性蛋白酶的适宜条件和酶学性质进行了分析。谢必峰等,采用硫酸铵盐析法和离子交换层析法分离纯化了黑曲霉产酸性蛋

a-淀粉酶发酵的生产工艺

武汉轻工大学 设计α-淀粉酶的发酵生产工艺 系部食品科学与工程学院 专业粮食工程 班级粮工1002 姓名郑开旭 学号100107502 指导教师易阳 2013年6月9日

设计α-淀粉酶发酵的生产工艺 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α- 淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本次设计的淀粉酶发酵,分别以玉米粉为碳源,以豆饼为氮源,以BF-7658枯草芽孢杆菌为生产菌种,同时做出了生产工艺流程图,详细的介绍了α-淀粉酶的生产工艺。 关键词:α-淀粉酶;工艺设计;发酵 正文: α-淀粉酶的生产工艺 1 α-淀粉酶的生产方法 1.1生产方法的选择 枯草杆菌BF7658是我国应用广泛的液化型α-淀粉酶菌种,国内普遍采用深层发酵法生产工业粗酶。我们从BF7658出发,用紫外光及化学药品反复交替诱变,选育适用于固体发酵的新菌体BF7658—1。该菌为短杆状,革兰氏阳性,两端钝园,在肉汁表面可生成菌膜,在培养基上菌落呈乳白色,表面光滑、湿润、略有光泽,用碘液试之,菌落周围呈透明圈。 ?固体培养枯草杆菌BF7658—1生产α-淀粉酶 将菌种接种于马铃薯琼脂斜面,37℃培养三天,然后转接到种子液体培养基上(豆饼粉、玉米粉、酵母膏、蛋白胨火碱、水等),摇瓶培养一定时间,当菌体进入对数生长期时,以0. 5%接种量接入固体培养基(麸皮、米糠、豆饼粉、火碱、水;ph=7左右,常压汽蒸一小时,冷却到38~40℃)在厚层通风制曲箱内,通风保持37~42℃,培养48小时出曲风干。 麸曲用1%食盐水3~4倍浸泡,3小时后过滤,调节滤液pH=8,加硫酸铵溶液沉淀酶,经离心,用浓酒精洗涤脱水,40℃烘干、磨粉即为成品。 ?深层发酵法生产α-淀粉酶

工艺设计说明书-格式

设计说明书一般格式 一、设计题目(要求:简明扼要,紧扣主题) ××××××××××项目(主题目) 例如:高压法聚乙烯生产工艺设计 ————设计生产能力100万T/a 二、工艺设计的一般项目及内容 1. ×××××××工艺设计说明书(工艺设计的总情况说明,必做部分,也是学生重点掌握的内容和工作程序。在工业设计过程中往往与可行性研究报告一起作为申报项目的资料。也为工业生产装置的初步设计提供基础资料。一般包括以下10个方面的问题) 1.1概述 1.1.1 项目的来源(原因说明,如国家级项目?省级项目?市级项目?国 外引进项目?技改项目?新上项目?新产品项目?节能项目?环保项目? 对于学生来讲,可有自选项目?老师科研项目?校企联合项目?学校或老师指定项目?); 1.1.2 ×××××项目的国内外生产(技术)工艺现状(就本项目或产品 或技术的国内外工艺现状,以正式发表的技术或公开的资料为依据,至少要有3个不同的国家或研究院所或企业的现状说明,并比较其优劣性); 1.1.3 本工艺技术的特点(较详细的说明本工艺、技术的优缺点,重点在 优点。包括理论原理、技术成熟程度、设备情况、工艺过程、安全问题、环保问题、经济效益、与其他技术工艺相比所具有的优点以及发展前景等); 1.1.4 项目承担单位概述(对于实际工程项目应包括三个方面:一是该技 术工艺研究单位或技术转让单位的情况;二是承担设计单位的情况;三是项目建设单位的情况。对于学生来讲可简述学校的情况或选择一个实际单位或虚拟单位); 1.1.5 其它需要说明的问题(是指在整个设计过程中可能遇到或用到的有

关情况。如项目承担单位的地理环境、气候环境、资源优势、技术优势、产业优势、公用工程优势以及供应和销售优势等。) 1.2 生产规模及产品质量要求 1.2.1 生产规模(即设计规模。一般可以是产品的产出规模;也可以是原料的需用规模。如:20万吨/年离子膜烧碱生产工艺设计《20万吨烧碱产品》;500万吨/年原油常减压生产工艺设计《原料石油为500万吨》;); 1.2.2 产品质量要求(即生产的产品质量标准,一般也包括副产品的质量标准。原则上,有高标准不得采用低标准。如首选国家标准,再有部颁标准、行业标准、地方标准、企业标准。也可选择国际通用标准或国外先进标准。没有标准不得生产,如需先制订企业标准等。学生设计可假象一个标准,但依据必须充分); 1.2.3 副产品的种类、质量指标(说明副产品的种类及其数量或吨位。质量要求与产品相同); 1.2.4 其它需要说明的问题(是指在整个设计过程中可能遇到或用到的有关情况。如产品或副产品的国内外质量现状、技术要求、环保要求、ISO质量体系要求、欧洲Rosh体系要求等。); 1.3 工艺设计依据 1.3.1 本工艺设计的文件依据(各种上报文件、上级批文、资金担保文件、 土地使用或征用文件、专利依据、技术转让或成果证明等资料。); 1.3.2 ×××××的技术依据(技术理论原理、工艺原理、技术可行性、 主要技术指标或技术条件等。如对于有机合成方面可从反应机理、催化剂技术、反应设备、自动控制等方面说明); 1.3.3 原材料来源(质量指标)及经济技术指标(主要包括原材料的质量 要求,可按照产品质量标准说明;经济技术指标是指原材料消耗、收率、转化率、产率、经济效益分析等); 1.3.4 承担单位的基础条件说明(即项目承担单位在生产装置、加工工程、技术条件、人员条件、公用工程等与生产技术有关的基础条件说明); 1.3.5 其他未尽事宜的说明(是指在整个工艺设计过程中可能遇到或用到 的有关情况。如产品或副产品的国内外生产工艺现状、工艺技术要求、环保工艺要求等。); 1.4××××××生产制度及开工时数的说明

蛋白酶的工厂设计

年产1500m3蛋白酶的工厂设计 摘要 蛋白酶是催化肽键水解的一类酶,它可迅速水解蛋白质为胨、肽类,广泛存在于动物内脏、植物茎叶、果实和微生物中。同时大多数微生物蛋白酶都是胞外酶。微生物蛋白酶按其作用的最适pH可分为酸性蛋白酶、中性蛋白酶、碱性蛋白酶三类。酸性蛋白酶是一种羧基蛋白酶,它的分子质量为30-40kD,等电点(pH3.0-5.0) 酸性蛋白酶现已广泛应用于食品、饲料、酿造、毛皮与皮革、医药、胶原纤维等各个行业之中。本设计采用豆饼粉、玉米粉、淀粉为主要的培养基原料,并选用黑曲霉(Aspergillus niger )3.350菌种发酵。其中豆饼粉3.75%,玉米粉0.625%,鱼粉0.625%,氯化铵1%,氯化钙0.5%,磷酸氢二钠0.2%。 本设计利用通风搅拌式发酵罐进行发酵,同时利用离子交换树脂对母液进行提取,提高了酸性蛋白酶的生产效率,减少了生产成本。设计还包括发酵罐,全厂平面图,车间平面布置图,工艺流程图。 关键词:酸性蛋白酶发酵工厂设计

The Process Design of the Protease used for Section with the Capacity of 1500m3 Annually Abstract protease is a kind of Peptone and peptide. It has been discover across in animal giblets ,the stem of plant,fruit , microbial and so on.Most of the Microbial protease are ectoenzyme .According to its best Optimum pH function ,Microbial protease Can be divided into Acid protease ,Neutral protease and alkaline protease .Acid protease is a kind of Carboxyl protease , Its molecular weight is 30-40 kd, lower isoelectric point (pH3.0-5.0) Acid protease in food, medicine, textile, leather, feed, cosmetics, washing industries have applications, natural health, avirulent and harmless, quite safe. So in this paper the basic content of more acid protease, production process and application development were introduced. This design USES the bean cake powder, corn flour, starch as the main medium of raw materials, and selects the Aspergillus Niger, Aspergillus Niger) 3.350 bacterial fermentation. With bean cake powder 3.75%, corn flour 3.75%, 0.625% fish meal, 1% ammonium chloride, calcium chloride 0.5%, disodium hydrogen phosphate 0.2%. This design using the ventilation agitator in fermentor, using ion exchange resin in mother liquid was extracted at the same time, improve the efficiency of the acid protease production, reduce the production cost. The design also includes Fermentor, The factory plan, Shop floor plan, Flow Chart. Key Words: Acid protease ; fermentation; plant-design;

电视机生产工艺流程设计

第1章工艺文件 一、工艺工作: 1、工艺工作的重要性 一个工业企业如果没有工艺工作,没有一个合理的工艺工作程序,就很难想像会搞出高质量、高水平的产品来,企业的管理必然混乱。工艺工作在电子工业中占有重要位置。 工艺文件在电子企业部门必备的一种技术资料。他是加工、装配检验的技术依据,是生产路线、计划、调度、原材料准备、劳动力组织、定额管理、工模具管理、、质量管理等的主要依据和前提。只有建立一套完整的、合理而行之有效的工艺工作程序和工艺文件体系,才能保证实现企业的优质、高效、低消耗的安全生产,才能使企业获得最佳的经济效益。 2、工艺工作的程序 在工业企业中,最基础的工作是产品的生产和生产技术管理工作。在一个企业中,把原材料制成零件,把零件组装成部件、整件,是一项很复杂的工作,必须通过一种计划的形式来组织和指导。为了使生产活动有秩序按计划进行,各企业应有一个符合本企业客观规律的工作程序。 典型的工艺工作程序框图如附录: 3、工艺工作程序的说明: a.工艺性调研和访问用户由主管工艺人员参加新产品的设计调研和老用户访问工作,了解国内外同类产品的性能指标一用户对该产品的意见和要求. b.参加新产品设计方案的讨论和老产品改进设计方案的讨论针对产品的结构、性能、精度的特点和企业的计算水平、设备条件等进行工艺分析,提出改进产品的意见. c.审查产品设计的工艺性由有关工艺人员对产品设计图样进行工艺性审查,提出工艺性审查意见书. d.编织工艺方案工艺方案是工艺计算准备工作的重要指导性文件,由主管工艺人员负责编写. 编制工艺方案的一句是:1产品图纸(技术条件)和产品标准及其他有关技术文件. 2 有关领导和科室的意见 3产品的生产批量和周期 4有关工艺资料,如企业的设备条件、工人计算等级和技术水平等. 5企业现有工艺技术水平和国内外同类产品的新工艺新技术成就. 工艺方案的一般内容是:1.根据产品的生产特性、生产类型,规定工艺文件的种类,并规定工装系数 2专用设备、工装的量刃刀的购置、改进和意见. 3提出关键工艺实验项目的新工艺、新材料在本产品上的实施意见,进行必要的技术经济分析. 4提出外购件和外协件项目 5根据产品的企业具体情况,提出生产组织和设备的调

新生产工艺管理流程图与文字说明

生产工艺管理流程 生产技术部接到产品开发需求后,进行产品开发策划并起草设计开发任务书,经公司领导审批后,业务部门根据产品设计开发任务书准备纸、油墨、印版、烫金等生产材料及生产工艺设备的准备工作,材料、设备准备完成后,安排在印刷车间进行上机打样;打样过程中,由生产技术部组织业务、品质、车间等部门对打样结果进行评审,打样评审通过后,由生产技术部进行送样、签样工作(送中烟技术中心材料部),若签样不合格,需重新进行打样准备;签样完成后,生产技术部根据打样情况形成临时技术标准,品质部形成检验标准,印刷车间根据临时技术标准进生试机生产,生产产品由生产技术部送烟厂进行上机包装测试(若包装测试不通过,生产技术部需重新调整临时技术标准重新试机生产),包装测试通过后,生产技术部根据试机生产时情况形成技术标准。当月生产需求时,生产技术部按生产组织程序进行组织生产,并同时下达技术标准,印刷车间根据生产技术标准,进行工艺首检,确认各项工艺指标正确无误,进行材料及设备的准备工作,各项工作准备完成后按技术标准要求进行工艺控制,生产技术部对整个生产运行过程进行监督,当工艺运行不符合要求时,通知生产技术部进行工艺调整。生产结束后,进入剥盒、选盒工序,经过挑选的烟标合格的按成品入库程序进行入库,不合格的产品按不合格程序进行处理。

产品工艺管理流程图 业务部生产技术部印刷车间品质部输出记录 接到设计 更改需求 段 阶 } 改 更 计 设 { 发 开 吕 产 不通过 不通过 通过 接到设计 开发需求 产品开发策划 打样准备 送样、签样 通过 不通过 形成技术标 准(临时) 审批不通过 上机打样 形成检验标准 设计开发项目组成立 通知 产品开发任务书 段 阶 制 控 艺 工 产 生 送客户包装测试■试生产 ■ 形成技术标准 <接到生 产需求 组织生产 下达工艺标准工艺首检 材料准备设备准备 工艺监督过程质量监督 工艺改进不通过运行判定 成品质量监督 是合格 成品入库 结束 不合格 控制程序 过程检验记录 工艺检查记录表, 匚工艺记录表 工艺运行控制 剥盒、选盒 烟用材料试验评价 报告 印刷作业指导书 生产工作单 换版通知单 生产操作记录表 工艺更改通知单 成品检验记录

酸性蛋白酶的作用机理(仅供参照)

酸性蛋白酶与碱性蛋白酶生产工艺的不同之处? 酸性蛋白酶是一种在酸性环境下(pH 2.5-4.0)催化蛋白酶水解的酶制剂,适用于酸性介质中水解动植物蛋白质。可用于毛皮软化,酒精发酵,啤酒、果酒澄清,动植物蛋白质水解营养液,羊毛染色,废胶片回收,饲料添加剂等等。本品在酸性条件下有利于皮纤维松散,且软化液可连续使用,是当前理想的毛皮软化酶制剂;在酒精发酵中,添加酸性蛋白酶,能有效水解原料中的蛋白质,破坏原料颗粒粒间细胞壁的结构,有利于糖化酶的作用,使原料中可利用碳源增加,从而可提高原料出酒率;另一方面,蛋白质的水解提高了醪液中α-氨基态氮的含量,促进酵母菌的生长与繁殖,提高发酵速度,从而缩短发酵周期和提高发酵设备的生产能力。 碱性蛋白酶碱性蛋白酶是在碱性条件下水解蛋白质肽键的酶类,是一类非常重要的工业用酶,最早发现于猪胰脏。碱性蛋白酶广泛存在于动、植物及微生物中。微生物蛋白酶均为胞外酶,不仅具有动植物蛋白酶所具有的全部特性,还有下游技术处理相对简单、价格低廉、来源广、菌体易于培养、产量高、高产菌株选育简单、快速、易于实现工业化生产等诸多优点。1945年瑞士M等在地衣芽孢杆菌中发现了微生物碱性蛋白酶。 碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要酶成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分

子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能力,广泛应用于食品、医疗、酿造、洗涤、丝绸、制革等行业。 1、碱性蛋白酶是一种无毒、无副作用的蛋白质,属于丝氨酸型内切蛋白酶,应用在食品行业可水解蛋白质分子肽链生成多肽或氨基酸,形成具有独特风味的蛋白质水解液。 2、碱性蛋白酶成功应用于洗涤剂用酶工业,可添加在普通洗衣粉、浓缩洗衣粉和液体洗涤剂当中,既可用于家庭洗衣,也可用于工业洗衣,可以有效的去除血渍、蛋类、乳制品、或肉汁、菜汁等蛋白类的污渍,另外也可作为医用试剂酶清洗生化仪器等。 3、在生物技术领域,碱性蛋白酶可作为工具酶用于核酸纯化过程中的蛋白质(包括核酸酶类)去除,而对DNA无降解作用,避免对DNA 完整性的破坏。 酸性蛋白酶如何灭活第一种方法几乎所有酶都适用,就是加热。第二种,既然是酸性酶,加入强碱应该也是可以的。 酸性蛋白酶产生菌的筛选方法?酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5-5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。因此,本研

相关文档
最新文档