(完整版)基本初等函数的图形及性质

(完整版)基本初等函数的图形及性质
(完整版)基本初等函数的图形及性质

初等函数

1、基本初等函数及图形

基本初等函数为以下五类函数:

(1) 幂函数μx

y=,μ是常数;

1.当u为正整数时,函数的定义域为区间

)

,

(+∞

-∞

x

,他们的图形都经过原点,并当

u>1时在原点处与X轴相切。且u为奇数时,图形关于原点对称;u为偶数时图形关于Y 轴对称;

2.当u为负整数时。函数的定义域为除去x=0的所有实数。

3.当u为正有理数m/n时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1).

如果m>n图形于x轴相切,如果m

.4.当u为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数.

(2) 指数函数 x

a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ;

(3) 对数函数

x y a log =(a

是常数且01a a >≠,),(0,)x ∈+∞;

1. 当a>1时函数为单调增,当a<1时函数为单调减.

2. 不论x 为何值,y 总是正的,图形在x 轴上方.

3. 当x=0时,y=1,所以他的图形通过(0,1)点.

(4) 三角函数

正弦函数x

y sin

=,)

,

(+∞

-∞

x,]1,1

[-

y,余弦函数x

y cos

=,)

,

(+∞

-∞

x,]1,1

[-

y,正切函数x

y tan

=,2

π

π+

≠k

x

,k Z

∈,)

,

(+∞

-∞

y,

1.他的图形为于y轴的右方.并通过点(1,0)

2.当a>1时在区间(0,1),y的值为负.图形位于x的下方,在区

间(1, +∞),y值为正,图形位于x轴上方.在定义域是单调

增函数.a<1在实用中很少用到/

余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

(5) 反三角函数

反正弦函数 x y arcsin =, ]1,1[-∈x ,

]2,2[π

π-

∈y ,

反余弦函数 x y arccos =,]1,1[-∈x ,],0[π∈y ,

反正切函数 x y arctan =,),(+∞-∞∈x ,

)2,2(π

π-

∈y ,

反余切函数 x y cot arc =,),(+∞-∞∈x ,),0(π∈y .

函数名称函数的记号函数的图形函数的性质

指数函数

a):不论x为何值,y总为正数;

b):当x=0时,y=1.

对数函数

a):其图形总位于y轴右侧,并过(1,0)点

b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.

幂函数a为任意实数

这里只画出部分函数图形的一

部分。

令a=m/n

a):当m为偶数n为奇数时,y是偶函数;

b):当m,n都是奇数时,y是奇函数;

c):当m奇n偶时,y在(-∞,0)无意义.

三角函数

(正弦函数)

这里只写出了正弦函数a):正弦函数是以2π为周期的周期函数

b):正弦函数是奇函数且

正切函数的性质与图像教学设计

《正切函数的性质与图像》的教学设计 一.教材分析 1.地位与作用 《正切函数的性质与图像》是高中《数学》必修4第一章第四节内容。在学习了正弦函数、余弦函数的图像与性质,研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升。 2.教材处理 教材采用探究的方法引导学生注意正切函数与正弦函数在研究方法上类似,我采用以提问的方式,让学生回忆如何由正弦线得到正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。设计问题一步步引导学生注意画正切曲线的细节。我把空间留给学生,采用让学生自己设计一个得到正切曲线的方法。这样,不仅发挥了学生的能动性,增强动脑、动手绘图的能力。二.学情分析 通过对正弦函数图像与性质的研究,学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。但在画正切函数图象时,还有许多需要注意的地方,比如定义域,函数区间等问题。这又提升了学生分析问题的能力及严密认真的态度。 三.教学目标确定 正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标: 1.知识目标: 1)、能用单位圆中的正切线画出正切函数的图像。 2)、熟练根据正切函数的图像推导出正切函数的性质。 3)、掌握利用数形结合思想分析问题、解决问题的技能。 2.能力目标: 1)、通过类比,联系正弦函数图像的作法 2)、能学以致用,结合图像分析得到正切函数的诱导公式和正切函数的性质。3、德育目标: 使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。 4.重点与难点 重点:正切函数的图象及其主要性质。 难点:熟练运用诱导公式和性质分析问题、解决问题 教学模式:启发、探究式发现教学. 四.流程设计 (一).复习引入: (1)问题:如何用正弦线作正弦函数图像呢? (2)类比:利用正切线得到正切函数x 的图像 y tan

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

高考数学专题17 三次函数的图像与性质(原卷版)

专题17 三次函数的图像与性质 一、例题选讲 题型一 运用三次函数的图像研究零点问题 遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的. 例1、(2017南通、扬州、泰州、淮安三调)已知函数3()3 .x x a f x x x x a ?=?-,求()y g x =的单调增区间. 例4、(2018无锡期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.

《正切函数的图像与性质》 教案及说明

课题:正切函数的图像与性质 教材:上海教育出版社高中一年级第二学期(试用本)第六章第二节 授课教师: 教学目标 (1)理解正切函数的定义及正切函数的图像特征,研究并掌握正切函数的基本性质. (2)在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯. (3)在解决问题的过程中,体验克服困难取得成功的喜悦. 教学重点 掌握正切函数的基本性质. 教学难点 正切函数的单调性及证明. 教学方法 教师启发讲授,学生积极探究. 教学手段 计算机辅助. 教学过程 一、 设置疑问,引入新课 1、正切函数的定义 有同学,类比正弦函数、余弦函数的定义,定义了一个正切函数: 对于任意一个实数x ,都有唯一确定的值tan x 与它对应,按照这个对应法则所建立的函数,表示为tan y x =,叫做正切函数. 大家认为这个定义是否完善? 强调:,2 x k k Z π π≠+ ∈.

(设计意图:,2 x k k Z π π≠+∈,是学生容易出错的地方,通过学生之间的自我纠错,理 解不能取,2 k k Z π π+ ∈的理由) 今天我们就要研究正切函数tan y x =(,2 x k k Z π π≠+∈)的图像与性质. 2、作函数图像的常用的方法是什么? (1)描点法是作函数图像最基本的方法; (2)利用基本初等函数图像的变换作图. 大家认为应该选择哪种方法呢? 学生的回答会选择(1). 教师引导:描点应该结合函数的性质,描关键点、特殊点. 所以,首先研究函数的基本性质. 二、 主动探究,解决问题 (一)利用定义,研究函数的性质 学生自主研究探索正切函数的性质 1、 定义域:|,,2x x R x k k Z π π? ?∈≠+∈??? ? . 学生可以迅速解决. 2、 值域:R 请学生回答,并讲清楚理由,从而引出对正切线的复习. 复习正切线: 正切线是角x 与tanx 关系的直观体现,正切函数的性质融于其中. 3、 奇偶性:奇函数. 学生会利用tan()tan x x -=-迅速做出判断. 问:该函数是偶函数吗?

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

(完整版)基本初等函数图像及其性质表

函数名 一次函数 二次函数 反比例函数 指数函数 解析式 )0()(≠+=a b ax x f )0()(≠= k x k x f 图像 定义域 R R {}0|≠x x R 值域 R ) ,(∞+0 必过点 )(b ,0 ) ,(c 0 ) 1,(1,--k k ) ( ) (1,0 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 在R 上单增 )2-a b -∞,(为减 ),2+∞-a b (为增 )为减,(0-∞)为减,(∞+0 为减 为增,101<<>a a 最大最小值 在R 不存在最大最小值 开口向上有最小值 a b a c y 442min -= 不存在最大最小值 在R 上不存在最大最小值 奇偶性 非奇非偶函数 为奇函数00≠=b b 偶函数 为非奇非为偶函数,00≠=b b 奇函数 非奇非偶函数 对称性 为常数。 对称, 函数图像关于直线任何一点对称;关于图像上t t x a y +=1 - 对称 直线函数图像关于 a b x 2-= 函数图像关于原点对称; 对称。 直线和关于 对称,直线图像关于x y x y -== 既不成中心对称也不成轴对称。 渐近线 无 无 . 00==y x 直线或者直线 .0=y 直线 ) 0()(2≠++=a c bx ax x f ) 10()(≠=a a a x f x 且>0>a >a 0 >k ) ,44[ 2 +∞-a b a c ),(),(∞+?∞00-x a y =) 10(<a x y O 1

函数名 对数函数 幂函数的一个例子 双钩函数 含绝对值函数 解析式 ) 10(log ≠>=a a y x a 且 ) 0(≥=x x y b a b x a x y <-+-=设为了研究方便 图像 O 1 y x ) 10(log <<=a y x a ) 1(log >=a y x a O y x x y =1 1 定义域 ()∞+,0 [)∞+,0 0}x |{x ≠ R 值域 R [) ∞+,0 (][) ∞+∞,,ab ab 22--Y [)+∞-,a b 必过点 )(0,1 () 1,1 )2,(2,ab a b ab a b -- )( ) ,(,a b b a b a --)( 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 单调递减。 单调递增。,, 101<<>a a 为增函数 定义域内 递增。递减,,递减,递增,,???? ??+∞???? ????? ? ? ????? ??∞,00,---a b a b a b a b (][)函数。 上为常值为增函数。 为减函数。 ,],[,-b a b a +∞∞ 最大最小值 无最大最小值 最小值为 0min =y ,无最 大值 无最大最小值 a b y -=min 奇偶性 非奇非偶 非奇非偶 奇函数 对称性 既不是轴对称也不是中心对称 既不是轴对称也不是中心对称 关于原点成中心对称 关 于 直 线 2 b a x += 对称。 渐近线 直线x=0 ax y =和0=x O y x a b a b -ab 2ab 2-O y x a b a b -的情况 只了解中学研究方便通常 ) (00>>+=b a x b ax y 为偶函数0=+b a

三次函数性质总结

三次函数性质的探索 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在 最大值与最小值,在某一闭区间取得最大值与最小值.那么,是什么决定函数的单调性呢? 利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 其中运用的较多的一次函数不等式性质是: 在上恒成立的充要条件 接着,我们同样学习了二次函数, 利用已学知识归纳得出:当时(如图1) ,在对称轴的左侧单调递减、右侧单调递增, 对称轴 上取得最小值; 当时(图2) ,在对称轴的左侧单调递增、右侧单调递减, 对称轴 上取得最大值. 在某一区间取得最大值与最小值. 其中决定函数的开口方向,同时决定对称轴,决定函数与轴相交的位置. 总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢? 三次函数专题 一、定义 定义1 形如的函数,称为“三次函数”(从函数解析式的结构上命名)。 定义 2 三次函数的导数 ,把叫做三次函数导函数的判 别式。 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。 系列探究1: 从最简单的三次函数开始 反思1 :三次函数的相关性质呢? 反思2 :三次函数的相关性质呢? x y O

反思3 :三次函数的相关性质呢? 例题 1.(2012天津理4) 函数在区间内的零点个数是( ) (A)0 (B)1 (C)2 (D)3 探究一般三次函数的性质: 先求导 1、单调性: (1 )若,此时函数() f x在R上是增函数; (2 )若 ,令两根为 12 ,x x 且, 则 在 上单调递增,在上单调递减。 导函数 图 象 极值点 个数 2 0 2 0 2、零点 (1) 若0 3 2≤ -ac b,则恰有一个实根; (2) 若,且,则恰有一个实根; (3) 若,且,则有两个不相等的实根; (4) 若,且,则有三个不相等的实根. 说明: (1)(2) 有一个实根的充要条件是曲线与轴只相交一次,即在上为单调函数或两极值 同号. x x1x 2 x0x x1x2 x x0 x

正切函数的图象与性质(习题)

1 正切函数的图象与性质(习题) ? 例题示范 例1:已知sin33cos55tan35a b c =?=?=?, ,,则( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 思路分析: 观察33°,55°,35°之间的关系,利用三角函数在区间[090]??, 上的单调性,选择合适的公式化简,转化为可比较的函数值. 由诱导公式可得, cos55cos(9035)sin35b =?=?-?=?, ∵sin y x =在区间[090]??,上单调递增,且sin 33a =?, ∴b a >, ∵sin 35tan 35cos35c ?=?= ? ,且0cos351?=, ∴c b a >>,故选C . 例2:函数23()sin cos 4f x x x =++,2π[0]3 x ∈,的值域是( ) A .[12], B .[]44-, C .[1]4 -, D .[2]4-, 思路分析: 2223()sin cos 4 31cos cos 4 7cos cos 4 f x x x x x x x =++=-++=-++由题意, 设cos t x =,2π[0]3x ∈,,由余弦函数的单调性得,12 1t -≤≤, 则原函数可化为27()4f x t t =-++,12 1t -≤≤, 由二次函数性质得,()[12]f x ∈,,故选A . ? 巩固练习

A .2 π B .π C .2π D .4π C .(1)(0)(1)f f f >>- D .(0)(1)(1)f f f >-> 4. 下列函数属于奇函数的是( ) A .()tan(π)f x x =+ B .π()sin()2f x x =- C .()cos(3π)f x x =- D .π()sin()2f x x =+ 5. 已知函数()tan f x x x =+,2()=cos g x x x +,则( ) A .()f x 与()g x 都是奇函数 B .()f x 与()g x 都是偶函数 C .()f x 是奇函数,()g x 是偶函数 D .()f x 是偶函数,()g x 是奇函数 6. 函数sin()2 y x π=+在( ) A .[]22 ππ-,上是增函数 B .[0]π,上是减函数 C .[0]-π,上是减函数 D .[]-ππ,上是减函数 7. 函数()cos f x x =的一个单调递减区间是( ) A .[]44 ππ-, B .[]44π3π,

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

高三数学三次函数图象和性质与四次函数问题

三次函数与四次函数 大连市红旗高中王金泽 wjz9589@https://www.360docs.net/doc/ba15303269.html, 在初中,已经初步学习了二次函数,到了高中又系统的学习和深化了二次函数,三次函数是继二次函数后接触的新的多项式函数类型,它是二次函数的发展,和二次函数类似也有“与x轴交点个数”等类似问题。三次函数是目前高考尤其是文科高考的热点,不仅仅如此,通过深化对三次函数的学习,可以解决四次函数问题。2008年高考有多个省份出现了四次函数高考题,本文的目的就是,对三次函数做个重点的归纳,并且阐述在四次函数中的应用 第一部分:三次函数的图象特征、以及与x轴的交点个数(根的个数)、极值情况 三次函数图象说明 a对图象 的影响 可以根据极限的思想去分析 当a>0时,在x→+∞右向上 伸展,x→-∞左向下伸展。 当a<0时,在x→+∞右向下 伸展,x→-∞左向上伸展。 (可以联系二次函数a对开口的影 响去联想三次函数右侧伸展情况) 与x轴有三 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 < ?x f x f,既两个极 值异号;图象与x轴有三个交点 与x轴有二 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 = ?x f x f,既有一 个极值为0,图象与x轴有两个 交点 与x轴有一 个交点 1。存在极值时即0 3 2> -ac b, 且0 ) ( ) ( 2 1 > ?x f x f,既两个 极值同号,图象与x轴有一个交点。 2。不存在极值,函数是单调函数 时图象也与x轴有一个交点。

1.()0f x =根的个数 三次函数d cx bx ax x f +++=23)( 导函数为二次函数:)0(23)(2/≠++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则0)(=x f 恰有一个实根; (2) 若032>-ac b ,且0)()(21>?x f x f ,则0)(=x f 恰有一个实根; (3) 若032>-ac b ,且0)()(21=?x f x f ,则0)(=x f 有两个不相等的实根; (4) 若032>-ac b ,且0)()(21-ac b ,且0)()(21>?x f x f ). (3)0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与X 轴有两个公共点且其中之一为切点,所以 032>-ac b ,且0)()(21=?x f x f . (4)0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与X 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.所以032 >-ac b 且0)()(21++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则)(x f 在),(+∞-∞上为增函数; (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中 a ac b b x a a c b b x 33,332221-+-= ---=. 证明:c bx ax x f ++=23)('2, △=)3(41242 2ac b ac b -=-, (1) 当0≤? 即032 ≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数.

正弦、余弦、正切函数的图像与性质

正弦、余弦、正切函数的图像与性质 一、选择题: 1.函数y =sin x 2+cos x 是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .既不是奇函数也不是偶函数 2.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11° 3.已知函数f (x )=sin ????x -π 2(x ∈R ),下面结论错误的是( ) A .函数f (x )的最小正周期为2π B .函数f (x )在区间????0,π 2上是增函数 C .函数f (x )的图像关于直线x =0对称 D .函数f (x )的奇函数 4.设a =12log sin81o ,b =12log sin 25o ,c =12 log cos25°,则它们的大小关系为( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 5.函数y = lncos x ????-π2<x <π 2的图像是( ) A . B C . D. 6.当-π2<x <π 2时,函数y =tan|x |的图像( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .不是对称图形 7.函数y =tan(sin x )的值域为( ) D .以上均不对

8.若直线y =3与函数y =tan ωx (ω>0)的图像相交,则相邻两交点的距离是( ) A .π 二、填空题 9.函数y =cos x 在区间[-π,a ]上为增函数,则a 的范围是__________. 10.函数y =1+2sin x 的最大值是__________,此时自变量x 的取值集合是__________. 11.函数y =sin 2x -cos x 的值域是__________. 12.函数y =3sin ????2x +π6的单调递减区间是__________. 13.已知f (n )=sin n π4(n ∈Z ),则f (1)+f (2)+…+f (100)=__________. 14.若关于x 的方程cos 2x -sin x +a =0有解,则a 的取值范围是__________. 15.如果函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且仅有三个不同的交点,那么k 的取值范围是__________. 16.关于三角函数的图像,有下列命题: ①y =sin|x |与y =sin x 的图像关于y 轴对称; ②y =cos(-x )与y =cos|x |的图像相同; ③y =|sin x |与y =sin(-x )的图像关于x 轴对称; ④y =cos x 与y =cos(-x )的图像关于y 轴对称. 其中正确命题的序号是__________. 三、解答题: 17.判断下列函数的奇偶性: (1)f (x )=sin ????2x +3π2; (2)f (x )=sin x 1-sin x 1-sin x 18.作出下列函数的图像: (1)y =tan|x |; (2)y =|tan x |. 19、求函数f (x )=13log tan ??? ?2x +π3的单调递减区间.

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ? ?? 24,4ac b a ??--∞ ? ?? 单调区间 ,2b a ? ?-∞- ? ? ?递减 ,2b a ??- +∞ ??? 递增 ,2b a ? ?-∞- ? ? ?递增 ,2b a ?? - +∞ ??? 递减 ①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 叫做幂函数,其中x 为自变量,α是常数. (2

二次函数的图像和性质第二课时教案

22.1 二次函数(第二课时) 教学目标: 1.会用描点法画出形如y = ax 2 的二次函数图象,了解抛物线的有关概念; 2.通过观察图象,能说出二次函数y = ax 2 的图象特征和性质; 3.在类比探究二次函数y = ax 2 的图象和性质的过程中,进一步体会研究函数图象和性质的基本方法和数形结合的思想 教学重点:会用描点法画出二次函数y=ax2的图象,观察图象,得出二次函数y = ax 2 的图 象特征和性质。 教学难点:抛物线的图像特征。 教学过程: 一、问题引新 1,同学们可以回想一下,一次函数的性质是什么? 2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢? 3.一次函数的图象是什么?二次函数的图象是什么? 二、学习新知 1、例1、画二次函数y=2x2与y=2x2的图象。(有学生自己完成) 解:(1)列表:在x的取值范围内列出函数对应值表: (2)描点(3)连线 x …-3 -2 -1 0 1 2 3 … y …9 4 1 0 1 4 9 … 找一名学生板演画图 提问:观察这个函数的图象,它有什么特点? (让学生观察,思考、讨论、交流,) 2、归纳: 抛物线概念:像这样的曲线通常叫做抛物线。抛物线与它的对称轴的交点叫做抛物线的 顶点.顶点坐标(0,0) 3、运用新知 (1).观察并比较两个图象,你发现有什么共同点?又有什么区别? (2).课件出示:在同一直角坐标系中,y=2x2与y=-2x2的图象,观察并比较 (3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示) 让学生观察y=x2、y=2x2的图象,填空; 当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称 轴的右边,曲线自左向右______,______是抛物线上位置最低的点。 当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______; 当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质 一、常值函数(也称常数函数) y =C (其中C 为常数); α 1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果m

除x=0以外的一切实数。 三、指数函数x a y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

二次函数的图像和性质知识点与练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2 ,y=a(x-h)2,y =a(x-h)2 +k 和c bx ax y ++=2 图象, 能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2 中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质: x y O

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

7.3.4 正切函数的性质与图像2019(秋)数学 必修 第三册 人教B版(新教材)改题型

7.3.4正切函数的性质与图像 课标要求素养要求 1.了解正切函数图像的画法,理解正切函数的性质. 2.能利用正切函数的图像及性质解决问题. 通过对正切函数的图像与性质的学习,体会数学抽象和直观想象素养. 教材知识探究 孔子东游,见两小儿辩斗,一儿曰:“日初出沧沧凉凉,及其日中如探汤,此不为近者热而远者凉乎?”,事实上,中午的气温较早晨高,主要原因是早晨太阳斜射大地,中午太阳直射大地.在相同的时间、相等的面积里,物体在直射状态下比在斜射状态下吸收的热量多,这就涉及太阳光和地面的角度问题. 那么这与正切函数的性质与图像有什么联系呢? 问题类比y=sin x ,y=cos x的图像与性质. (1)y=tan x是周期函数吗?有最大(小)值吗? (2)正切函数的图像是连续的吗? 提示(1)y=tan x是周期函数,且T=π,无最大,最小值.(2)正切函数的图像在定义域上不是连续的. 函数y=tan x的图像和性质性质是根据图像得到的结论

解析式 y =tan x 图像 定义域 {x |x ∈R ,且x ≠π 2+k π,k ∈Z } 值域 R 周期 π 奇偶性 奇函数 单调性 在区间(k π-π2,k π+π 2)(k ∈Z )都是增函数 对称中心 ? ???? k π2,0(k ∈Z ) 零点 x =k π(k ∈Z ) 教材拓展补遗 [微判断] 1.函数y =tan x 在其定义域上是增函数.(×) 提示 y =tan x 在区间(k π-π2,k π+π 2)(k ∈Z )上是增函数,但在其定义域上不是增函数. 2.函数y =tan 2x 的周期为π.(×) 提示 y =tan 2x 的周期为π2. 3.正切函数y =tan x 无单调递减区间.(√) 4.函数y =2tan x ,x ∈??? ???0,π2的值域是[0,+∞).(√) [微训练] 与函数y =tan ? ? ???2x +π4的图像不相交的一条直线是 ( ) A .x =π2 B .x =-π 2 C .x =π4 D .x =π 8 解析 ∵2x +π4≠π 2+k π(k ∈Z ), ∴x ≠π8+k π 2(k ∈Z ),故选D.

正切函数的图像和性质 公开课教案

1.4.2 正切函数的性质与图象 考纲要求:能画出y=tanx 的图象,了解三角函数的周期性.,理解正切函数在区间 ()的单调性. 教学目的 知识目标: 了解利用正切线画出正切函数图象的方法; 了解正切曲线的特征,能利用正切曲线解决简单的问题; 掌握正切函数的性质。 能力目标: 掌握正弦函数的周期性,奇偶性,单调性,能利用正切曲线解决简单的 问题。 情感目标: 在借鉴正弦函数的学习方法研究正切函数图象、性质的过程中体 会类比的思想。 教学重点:正切函数的图象形状及其主要性质 教学难点:1、利用正切线得到正切函数的图象 2、对正切函数单调性的理解 教学方法:探究,启发式教学 教学过程 复习导入: 1. 正切函数的定义及几何表示,正切函数tan y x =的定义域是什么? 2. 正弦曲线是怎样画的? 讲授新课: 思考1:能否类比正弦函数图象的作法,画出正切函数的图象呢? 画正切函数选取哪一段好呢?画多长一段呢? 思考2:正切函数是不是周期函数?若是,最小正周期是什么? 思考3. 诱导公式 体现了正切函数的哪种性质? (一)作tan y x =,x ∈??? ? ?- 2,2ππ的图象 tan()tan x x -=-

说明: (1)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数 R x x y ∈=tan ,且()z k k x ∈+≠ ππ 2 的图象,称“正切曲线” 。 (2)由图象可以看出,正切曲线是由被相互平行的直线()2 x k k Z π π=+∈所隔开的 无穷多支曲线组成的。 (二)正切函数的性质 引导学生观察,共同获得: (1)定义域:? ?? ? ??∈+≠ z k k x x ,2|ππ ; (2)周期性:π=T ; (3)奇偶性:由()x x tan tan -=-知,正切函数是奇函数; (4)单调性: 思考:正切函数在整个定义域内是增函数吗? 引导学生观察正切曲线,小组讨论的形式。 师举例说明:

正切函数的图像与性质说课稿

《正切函数图象与性质》说课稿 各位评委老师好! 今天我说课的课题是《正切函数的图象和性质》,下面我将从教材分析、教学策略、学情分析、教学程序四个方面进行说课,不足的地方希望老师能给予指出。 一.教材分析 1、教材的地位和作用 本节课是在学生学习了正弦余弦函数图像及基本性质的基础上对又一个具体三角函数的学习,其研究方法与前面正余弦函数图像与性质的研究方法类似,是对学生所学知识的融通和运用,也是学生对学习函数规律的总结和探索。正确理解和熟练掌握正切函数的图像和性质也是之后学好《已知三角函数求值》的关键。 2、教学目标 (一)知识和技能目标: 1、理解并掌握正切函数图像的推导思路及画法,即“正弦函数图像类比推导法” 2、准确写出正切函数的性质,并通过练习体验正切函数基本性质的应用. (二)过程与方法目标: 1、通过学生自己动手作图,调动学生的积极性和情感投入,培养学生数形结合的思想方法; 2、培养学生类比、归纳的数学思想; 3、培养学生发现数学规律,实践第一的观点,增强学习数学的兴趣。 3.重点、难点与疑点 (一)、教学重点:正切函数的图象和性质。 1、我打算用类比正弦函数图像类比推导法,单位圆中的正切线作正切函数图象法,引导学生作出正切函数图,并探索函数性质; 2、学会画正切函数的简图,体会与x轴的交点以及渐近线x=π/2 +kπ,k∈Z在确定图象形状时所起的关键作用。 (二)、教学难点:体验正切函数基本性质的应用, (三)、教学疑点:正切函数在每个单调区间是增函数,但由于定义域的不连续性并非整个定义域内的增函数; 二.教学策略 在本节课中,我以“矛盾冲突”为主线撞击学生的思维,比如: 1、在得到正切函数的概念之后,提出如何研究这一具体函数的性质,启发学生可以“类比”研究正余弦函数图像和性质的方法; 2、在得到正切函数的部分性质之后,提出如何能“丰满”正切函数的性质,启发学生可以借助图像进行研究,让学生感受“数缺形少直观,形缺少数难入微”的精妙. 三.学情分析 本节课是研究了正弦、余弦函数的图像与性质后,对又一具体三角函数的学习。学生已经掌握了角的正切,正切线和与正切有关的诱导公式,对三角函数性质的讨论方法已经有了一个比较清晰的认识,这为本节课的学习提供了知识的保障. 四.教学程序 1、复习引入 (一)、复习 问题:1、什么是正切?正切有关的诱导公式?

正切函数图像及性质

第14讲 正切函数的性质与图像 第一部分 知识梳理 1. 正切函数的图像 2. 正切函数 的性质 3. 函数tan()y A x ω?=+的周期为T πω = 第二部分 精讲点拨 考点1 正切函数的图像的应用 (1) 直线y a =(a 为常数)与正切曲线tan y x =相交的相邻两点间的距离是( ) .A π .B 2 π .C 2π D 与a 值有关 y

[].1EX 解不等式tan 1x ≥- 考点2 正切函数性质应用 (2)不通过求值,比较下列各组中两个正切函数值的大小 ①0 tan167与0 tan173; ② 11tan 4π??- ???与13tan 5 π ?? - ??? (3)求函数tan 2y x =的定义域、值域和周期,并且求出它在区间[],ππ-内的图像 考点3 利用整理的思想求函数的单调区间和定义域 【例2】 求函数tan()3 y x π =+的定义域,并讨论它的单调性 [].1EX 求函数3tan(2)4 y x π =-的单调区间

考点4 正切函数综合应用 【例3】试判断函数tan 1 ()lg tan 1 x f x x +=-的奇偶性 【例4】已知3 4 x π π -≤≤ ,2 ()tan 2tan 2f x x x =++,求()f x 的最大值与最小值,并且 求相应x 的值 第三部分 检测达标 一、选择题 1.函数)4 tan(π - =x y 的定义域是 ( ) A.{x R x x 且,|∈}Z k k ∈+ ≠,4 2π π B. {x R x x 且,|∈}Z k k ∈+≠,43ππ C. {x R x x 且,|∈}Z k k ∈≠,π D. {x R x x 且,|∈}Z k k ∈±≠,4 2ππ 2.若 ,2 4 π απ < <则( ) A .αααtan cos sin >> B .αααsin tan cos >> C .αααcos tan sin >> D .αααcos sin tan >>

相关文档
最新文档