序列图和协作图的建模

序列图和协作图的建模
序列图和协作图的建模

实验五序列图和协作图的建模

构件图和部署图的建模

班级:11软件1班学号:20110311133 姓名:王金亮一、实验目的

学会序列图和协作图的绘制

理解序列图中消息、生命线、对象、激活要素

理解协作图中对象之间的组织关系

学会部署图和构件图的绘制

掌握使用Rational Rose绘制序列图、协作图、部署图和构件图的方法

二、实验基础操作

1、要求学生能仿照教科书上的操作步骤,完成下面序列图的绘制:

●序列图的绘制

●对象的创建

●消息的绘制

●消息的设置

2、要求学生能仿照教科书上的操作步骤,完成下面协作图的绘制:

●对象的创建

●链和消息的绘制

●序列图和协作图的转换

3、要求学生能仿照教科书上的操作步骤,完成下面构件图的绘制:

●构件的绘制

●构件间关系的绘制

4、要求学生能仿照教科书上的操作步骤,完成下面部署图的绘制:

●节点的绘制

●节点的设置

●连接的绘制

三、实验设计

1、要求学生能仿照教科书上的操作步骤,完成下面序列图绘制:

● 需求分析 ● 确定序列对象

2、要求学生能仿照教科书上的操作步骤,完成下面协作图绘制: ● 协作图元素的确认 ● 确定元素之间的关系

3、根据教科书上的237-238页的上机题,完成序列图和协作图建模

4、要求学生能仿照教科书上的操作步骤,完成下面构件图绘制:

赵翔 : 会员

: Book

: ShoppingCart

: ShoppingCartPage

图1 创建序列图对象

赵翔 : 会员

: Book

: ShoppingCart

: ShoppingCartPage

修改购物车

修改书籍数量

获得购物车书籍信息

更新数据

返回执行结果

删除购物车中的书籍

执行删除

更新数据

返回执行结果

去结账

图2 会员编辑购物车序列图

赵翔 : 会员 : Book

: ShoppingCart

: ShoppingCartPage

1: 修改购物车

2: 获得购物车书籍信息

3: 修改书籍数量4: 更新数据5: 返回执行结果6: 删除购物车中的书籍

7:

执行删除

8: 更新数据

9: 返回执行结果

10: 去结账

图3 会员编辑购物车协作图

● 确定系统构件

● 将系统中的类和接口等映射到构件中 ● 确定构件的依赖关系

5、要求学生能仿照教科书上的操作步骤,完成下面部署图绘制: ● 确定系统节点 ● 添加节点连接 ● 细化部署图

6、根据教科书上的249-250页的上机题,完成构件图和部署图建模

User

MainSystem

MainPag e

Order

Shoppin gCart

Book

OrderDet ail

MainMan ager

图4 映射构建

User

MainSystem

MainPag e

Order

Shoppin gCart

Book

OrderDet ail

MainMan ager

图5 完整的构件图

Web 浏览器1

IE8.0

Web 服务器

MainSystem

HTTP Web 浏览器2

IE7.0

HTTP

数据库服务器

Orcal9i

应用程

MainSystem

TCP/IP

TCP/IP

图6 系统部署图

实验五--1 顺序图和协作图

实验五—1 顺序图、协作图 一、实验目的 1.理解顺序图的基本概念。 2.理解协作图的基本概念。 3.掌握在Rational Rose 中绘制顺序图、协作图的操作方法。 二、实验器材 1.计算机一台。 2.Rational Rose 工具软件。 三、实验内容 通过对课堂学习和前面的实验,使我们完成了图书馆的管理系统的需求分析,并从业务对象中抽象出了类。现在需要对前面所给出的用例进行实现,而用例的实现主要由顺序图来描述系统的动态特性,协作图与顺序图是同构的,Rose 可自动转换。现指派你运用课堂所学的相关知识,完成如下任务: 1.对图书管理功能中的借书用例、还书用例进行动态建模。 四、实验步骤 4.1 分析阶段的动态建模 1.分析:在分析阶段,绘制的顺序图中,所有消息可以使用便于理解的自然语言来描述,并且可以仅在实体类中识别对象职责,而不涉及边界类和控制类。根据课堂讲授,参见教材P213 可完成借书用例和还书用例分析阶段的动态建模。 2.绘图步骤: (1)鼠标右击导航窗口“Logicl View”节点,选择“New——Package”,建立1 个子包:“Sequence Di ag ra m”(用于存放顺序图、协作图),完成后如图 3.1 所示。 (2)如图 3.2 所示,鼠标右击“Sequence Diagram”子包,选择快捷菜单项“New——Sequence Di ag ram”,创建一张新的顺序图,取名为“借出图书”(注意:为了好对应,顺序图名称最好与相应的用例名称相同)。鼠标双击新建的顺序图,在右边绘图窗口中将其打开,如图 3.3 所示。 (3)设置支持嵌套消息的环境:选择主菜单项“Tools——O ptions”,打开Rose 环境设置的对话框,点击“D i a g r a m”选项卡,在如图3.4所示界面中,将“D i s p l a y”下的“Hierarchical Message”选中,点击“确定”即可。

MATLAB及在数学建模中的应用

第1讲MATLAB及 在数学建模中的应用 ? MatLab简介及基本运算?常用计算方法 ?应用实例

一、 MatLab简介及基本运算 1.1 MatLab简介 1.2 MatLab界面 1.3 MatLab基本数学运算 1.4 MatLab绘图

1.1 MatLab简介?MATLAB名字由MATrix和 LABoratory 两词组成。20世纪七十年代后期, 美国新墨西哥大学计算机科学系主任Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。

?经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。

?1997年春,MATLAB5.0版问世,紧接着是5.1、5.2、5.3、6.0、6.1、6.5、7.0版。现今的MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。 ?20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。

?MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。以下为其几个特色: ①可靠的数值运算和符号计算。在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函 数可使用。 ②强大的绘图功能。 MATLAB可以绘制各种图形,包括二维和三维图形。 ③简单易学的语言体系。 ④为数众多的应用工具箱。

数学建模matlab例题参考及练习

数学实验与数学建模 实验报告 学院: 专业班级: 姓名: 学号: 完成时间:年月日

承 诺 书 本人承诺所呈交的数学实验与数学建模作业都是本人通过学习自行进行编程独立完成,所有结果都通过上机验证,无转载或抄袭他人,也未经他人转载或抄袭。若承诺不实,本人愿意承担一切责任。 承诺人: 年 月 日 数学实验学习体会 (每个人必须要写字数1200字以上,占总成绩的20%) 练习1 一元函数的图形 1. 画出x y arcsin =的图象. 2. 画出x y sec =在],0[π之间的图象. 3. 在同一坐标系中画出x y =,2x y =,3 x y = ,3x y =,x y =的图象. 4. 画出3 2 3 2)1()1()(x x x f + +-=的图象,并根据图象特点指出函数)(x f 的奇偶性. 5. 画出)2ln(1++=x y 及其反函数的图象. 6. 画出3 21+=x y 及其反函数的图象.

练习2 函数极限 1.计算下列函数的极限. (1) x x x 4 cos 1 2 sin 1 lim 4 - + π → . 程序: sym x; f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4) 运行结果: lx21 ans = 1 (2). 程序: sym x; f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2) 运行结果: lx22 ans = exp(3) (3) 2 2 ) 2 ( sin ln lim x x x - π π → . 程序: sym x; f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2) 运行结果: lx23 ans = -1/8 (4) 2 1 2 lim x x e x →. 程序: x x x sec 3 2 ) cos 1( lim+ π →

第4章 顺序图和协作图

第4章顺序图和协作图 4.1 交互图概述 交互图(interaction diagram)是用来描述对象之间以及对象与参与者(actor)之间的动态协作关系以及协作过程中行为次序的图形文档。它通常用来描述一个用例的行为,显示该用例图中所涉及的对象和这些对象之间的消息传递情况。 交互图包括顺序图(sequence diagram)和协作图(collaboration diagram)两种形式。顺序图着重描述对象按照时间顺序的消息交互,协作图着重描述系统成分如何协同工作。顺序图和协作图从不同的角度表达了系统中的交互和系统的行为,它们之间可以相互转化。一个用例需要多个顺序图或协作图,除非特别简单的用例。 交互图可以帮助分析人员对照检查每个用例中所描述的用户需求,如这些需求是否已经落实到能够完成这些功能的类中去实现,提醒分析人员去补充遗漏的类或方法。交互图和类图可以相互补充,类图对类的描述比较充分,但对象之间的交互情况的表达不够详细;而交互图不考虑系统中的所有类及对象,但可以表示系统中某几个对象之间的交互。 需要说明的是,交互图描述的是对象之间的消息发送关系,而不是类之间的关系。在交互图中一般不会包括系统中所有类的对象,但同一个类可以有多个对象出现在交互图中。 4.2 顺序图 顺序图也称时序图。Rumbaugh对顺序图的定义是:顺序图是现实对象之间交互的图,这些对象是按时间顺序排列的[RJB99]。特别地,顺序图中显示的是参与交互的对象,及对象之间消息交互的顺序。 如图4.1所示是一个简单的顺序图例子。 图4.1 顺序图 顺序图是一个二维图形。在顺序图中水平方向为对象维,沿水平方向排列的是参与交互的对象。其中对象间的排列顺序并不重要,但一般把表是参与者的对象放在图的两侧,主要

matlab在数学建模中的应用

Matlab在数学建模中的应用 数学建模是通过对实际问题的抽象和简化,引入一些数学符号、变量和参数,用数学语言和方法建立变量参数间的内在关系,得出一个可以近似刻画实际问题的数学模型,进而对其进行求解、模拟、分析检验的过程。它大致分为模型准备、模型假设、模型构成、模型求解、模型分析、模型检验及应用等步骤。这一过程往往需要对大量的数据进行分析、处理、加工,建立和求解复杂的数学模型,这些都是手工计算难以完成的,往往在计算机上实现。在目前用于数学建模的软件中,matlab 强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。 1 Matlab在数学建模中的应用 下面将联系数学建模的几个环节,结合部分实例,介绍matlab 在数学建模中的应用。 1.1 模型准备阶段 模型准备阶段往往需要对问题中的给出的大量数据或图表等进行分析,此时matlab的数据处理功能以及绘图功能都能得到很好的应用。 1.1.1 确定变量间关系 例1 已知某地连续20年的实际投资额、国民生产总值、物价指数的统计数据(见表),由这些数据建立一个投资额模型,根据对未来国民生产总值及物价指数的估计,预测未来的投资额。

表1 实际投资额、国民生产总值、物价指数的统计表 记该地区第t年的投资为z(t),国民生产总值为x(t),物价指数为y(t)。 赋值: z=[90.9 97.4 113.5 125.7 122.8 133.3 149.3 144.2 166.4 195 229.8 228.7 206.1 257.9 324.1 386.6 423 401.9 474.9 424.5]' x=[596.7 637.7 691.1 756 799 873.4 944 992.7 1077.6 1185.9 1326.4 1434.2 1549.2 1718 1918.3 2163.9 2417.8 2631.6 2954.7 3073]' y=[0.7167 0.7277 0.7436 0.7676 0.7906 0.8254 0.8679 0.9145 0.9601 1 1.0575 1.1508 1.2579 1.3234 1.4005 1.5042 1.6342 1.7842 1.9514 2.0688]' 先观察x与z之间,y与z之间的散点图 plot(x,z,'*') plot(y,z,'*') 由散点图可以看出,投资额和国民生产总值与物价指数都近似呈

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

MATLAB及其在数学建模中的应用

Modeling and Simulation 建模与仿真, 2015, 4(3), 61-71 Published Online August 2015 in Hans. https://www.360docs.net/doc/ba2862468.html,/journal/mos https://www.360docs.net/doc/ba2862468.html,/10.12677/mos.2015.43008 Study of MATLAB and Its Application in Mathematical Modeling Chuanqi Qin, Ting Wang, Yuanfeng Jin School of Science, Yanbian University, Yanji Jilin Email: yfkim@https://www.360docs.net/doc/ba2862468.html, Received: Jul. 22nd, 2015; accepted: Aug. 11th, 2015; published: Aug. 18th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/ba2862468.html,/licenses/by/4.0/ Abstract This article firstly introduces the development and the features of MATLAB software. And then the concept and the process of mathematical modeling are explained. After, the article briefly intro-duces some MATLAB solution methods of mathematical modeling problems, giving several in-stances of some methods. At the last of this article, through a relatively complete example, it fo-cuses on the application of MATLAB in mathematical modeling. It has been found that the applica-tion of MATLAB in mathematical modeling can improve the efficiency and quality of mathematical modeling, enrich the means and methods of mathematical modeling, and play a very important role in the teaching of mathematical modeling course. Keywords MATLAB, Mathematical Modeling, Mathematic Model MATLAB及其在数学建模中的应用 秦川棋,王亭,金元峰 延边大学理学院,吉林延吉 Email: yfkim@https://www.360docs.net/doc/ba2862468.html, 收稿日期:2015年7月22日;录用日期:2015年8月11日;发布日期:2015年8月18日

matlab数学建模实例

第四周3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj()for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769;if (abs(x1)<1.0e-8)x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20;k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1;end x1k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1;end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while(abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

10909-数学建模-应用MATLAB建模的一个例子

应用MATLAB 的一个例子 ——数学也是一门技术 王天顺 整理 本来想用 “数学也是一门技术”作题目,主要是基于两点,一是从数学的应用角度,它的确具备了作为一门技术的特征,这也就是今天我要通过一个例子要表达的;二是咱们在座的大多数都是从事职业教育的老师,不知道我理解得是不是正确,职业教育与普通教育的区别是较为侧重于教授技术,我主观上感觉这个题目和大家的关系更紧密一些。但是,这个题目有点太大了!和领导商量了一下还是换个题目吧。 首先可以证明:数学确是一门技术,比如说要从技术的定义入手,流行的做法是:查查《辞海》,查查相关的如《科学学辞典》和《科技辞典》等等,看看他们是怎样给技术定义的;其次,论述一下数学的确是符合这些定义的。 实际上,我也确实查阅过这些资料,可以说没有问题,一定可以找到证据证明这个论断! 注:“技术”一词的中文解释有两种,一种是以《辞海》为代表的解释,把技术定义为:(1 )泛指根据生产实践经验和自然科学原理而发展成的各种工艺操作方法与技能;(2)除操作技能外, 广义的还包括相应的生产工具和其他物质设备,以及生产的工艺过程或作业程序、方法。另一种是以《科学学辞典》和《科技辞典》为代表的解释,把技术定义为:是为社会生产和人类物质文化生活需要服务的,供人类利用和改造自然的物质手段、智能手段和信息手段的总和。 可见, “技术”一词所包含的内容除了有形的物化形态之外,还包括无形的智能形态方面。无形的智能形态的技术是客观存在的,在某种意义上说,这方面技术的作用并不亚于物化形态的技术,更不能为物化形态技术所取代(背景资料)。因此,有关“技术”的涵义,有人概括为:指的是有形的物化技术和无形的智能技术的总和。 当然,容易想到我们把数学看作一门技术,可能更多的是从技术的无形“智能形态”角度论述的。我想这只是他的一个方面,今天先给各位介绍的是一个例子,展现他的另一个方面,用数学(包括相关的软件)去解决一个实际问题,其过程就像“传统的”、物化形态的技术一样;其次,结合上述例子,探讨有关数学建模及相关培训指导工作的一般原则和步骤,谈一点个人对此项工作的认识;最后,介绍我校的这些年数学建模培训工作的一些具体做法。 一、足球比赛中的吊门问题 1. 问题:只考虑如下的因素:球与球门的距离为a ,守门员与球门的距离为b (假设在调 门过程中,守门员不能移动),球门高h ,守门员最大摸高H ,球出脚的初速度为0v ,与水平方向的夹角为α(称为初射角).针对下列数据求能吊门成功的α,h=2.44m ,H=3.20m ,s m v /300= ,重力加速度g=10m/s 2,针对下列几组数据分别给出具体能吊门成功的相应初射角范围,要求精度在小数点后第4位。 (1) a=6m ,b=1m ; (2) a=10m ,b=3m ; (3) a=20m ,b=5m ; 2. 问题分析 (1) 在不考虑空气阻力的情况下,抛射体的运动轨迹是抛物线:

matlab数学建模实例

第四周 3. function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度( 分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end x3 k 牛顿法: function y=newton(x0)

x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G; n=n+1; end n Seidel迭代法: function s=seidel(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1);

matlab数学建模实例

m a t l a b数学建模实例集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第四周3. function y=mj() for x0=0::8 x1=x0^*x0^2+*; if (abs(x1)< x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>= x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>= x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0);

k=1; while (abs(x1-x0)>= x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>= x0=s; s=B*x0+G; n=n+1; end n Seidel迭代法: function s=seidel(a,d,x0) D=diag(diag(a));

协作图+顺序图

学生宿舍管理系统——协作图 协作图又名“通信图”。即Communication Diagram,而“协作”作为一个结构事物用于表达静态结构和动态行为的概念组合,表达不同事物相互协作完成一个复杂功能。协作图是一种交互图,强调的是发送和接收消息的对象之间的组织结构。一个协作图显示了一系列的对象和在这些对象之间的联系以及对象间发送和接收的消息。对象通常是命名或匿名的类的实例,也可以代表其他事物的实例,例如协作、组件和节点。使用协作图来说明系统的动态情况。协作图使描述复杂的程序逻辑或多个平行事务变得容易。 协作图显示某组对象如何为了由一个用例描述的一个系统事件而与另一组对象进行协作的交互图。使用协作图可以显示对象角色之间的关系,如为实现某个操作或达到某种结果而在对象间交换的一组消息。如果需要强调时间和序列,最好选择序列图;如果需要强调上下文相关,最好选择协作图。 画图步骤: (1)在双击打开软件start UML选择empty project,出现如图1.1所示。 (2)新建model1,然后新建一个协作图。 (3)在图中的工具栏选取协作图图 Object图标,在右边的图中添加一个Object,并输入名称。

(4)根据题目需求,在左边的工具栏中,选取其他协作图所需图标,在右边的图中画出。添加开始和结束标志,然后用横线把它们连接起来。即画出一个完整的协作图。 宿舍管理员 学生基本信息表宿舍分配界面床位 宿舍住宿情况表 打开修改住宿信息查询空床位 显示空床位基本信息 确认学生信息学生 显示学生具体信息 输入学号查询学生信息 图1 系统协作图

学生宿舍管理系统——顺序图 顺序图是将交互关系表示为一个二维图。纵向是时间轴,时间沿竖线向下延伸。横向轴代表了在协作中各独立对象的类元角色。类元角色用生命线表示。当对象存在时,角色用一 条虚线表示,当对象的过程处于激活状态时,生命线是一个双道线。 UML顺序图一般用于:确认和丰富一个使用情境的逻辑。表示用例的实现,系统的动态分析. 画图步骤: (1)在双击打开软件start UML选择empty project,出现如图1.1所示。 (2)新建model1,然后新建一个通信图。 (3)在图中的工具栏选取协作图图Lifeline图标,在右边的图中添加一个Lifeline,并输入名称。 (4)根据题目需求,在左边的工具栏中,选取其他通信图所需图标,在右边的图中画出。添加开始和结束标志,然后用横线把它们连接起来。即画出一个完整的通信图。

基于matlab的数学建模

MATLAB在数学建模中的应用 (张威10322010910级专升本电气一班) 摘要 随着社会和计算机技术的发展,数学科学与计算机技术相结合,在社会各领域发挥着越来越重要的作用,能够方便、高效的解决各种实际问题。在目前用于数学建模的软件中,Matlab强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。Matlab是一款非常好的软件,功能强大,应用面广。从实例出发,论述Matlab在数学建模中的应用,以提高对Matlab软件的认识,提高解决实际问题的能力。本文结合数学建模的几个环节,用一些实例阐述了Matlab在数学建模中的应用。将Matlab用于数学建模可以提高数学建模的效率和质量。丰富数学建模的方法和手段,具有重要的意义。 关键词:Matlab软件,数学建模,最优化 Abstract With the development of society and computer technology,mathematics,science and computer technology in all areas of society is playing an increasingly important role,It can easily and efficiently to solve practical problems.In the currently used mathematical modeling software,Matlab powerful numerical calculations,drawings,and a variety of toolbox functions,can quickly and efficiently solve the mathematical modeling involved in many areas of concern,much of those mathematical modeling all ages.Matlab is a very good software,powerful,wide range of applications.Starting from the example,discussed in Matlab in the application of mathematical modeling to improve understanding of the Matlab software,to improve the ability to solve practical problems.In this paper,several aspects of mathematical modeling with Matlab examples described in the application of mathematical modeling.Mathematical modeling of Matlab for mathematical modeling can improve the efficiency and quality.Extensive mathematical modeling methods and means of great significance. Key Words:MATLAB software,Mathematical modeling,Optimization

数学建模matlab例题参考及练习讲课稿

数学建模m a t l a b例题参考及练习

数学实验与数学建模 实验报告 学院: 专业班级: 姓名: 学号: 完成时间:年月日

承 诺 书 本人承诺所呈交的数学实验与数学建模作业都是本人 通过学习自行进行编程独立完成,所有结果都通过上机验 证,无转载或抄袭他人,也未经他人转载或抄袭。若承诺 不实,本人愿意承担一切责任。 承诺人: 年 月 日 数学实验学习体会 (每个人必须要写字数1200字以上,占总成绩的20%) 练习1 一元函数的图形 1. 画出x y arcsin =的图象. 2. 画出x y sec =在],0[π之间的图象. 3. 在同一坐标系中画出x y = ,2x y =,3x y =,3x y =,x y =的图象. 4. 画出3232)1()1()(x x x f ++-=的图象,并根据图象特点指出函数)(x f 的 奇偶性. 5. 画出)2ln(1++=x y 及其反函数的图象.

6. 画出321+=x y 及其反函数的图象. 练习2 函数极限 1. 计算下列函数的极限. (1)x x x 4cos 12sin 1lim 4-+π→. 程序: sym x ; f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4) 运行结果: lx21 ans = 1 (2). 程序: sym x ; f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2) 运行结果: lx22 ans = exp(3) (3)22)2(sin ln lim x x x -ππ→. 程序: sym x ; f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2) 运行结果: lx23 ans = x x x sec 3 2 ) cos 1 ( lim + π →

序列图和协作图的建模

实验五序列图和协作图的建模 构件图和部署图的建模 班级:11软件1班学号:20110311133 姓名:王金亮一、实验目的 学会序列图和协作图的绘制 理解序列图中消息、生命线、对象、激活要素 理解协作图中对象之间的组织关系 学会部署图和构件图的绘制 掌握使用Rational Rose绘制序列图、协作图、部署图和构件图的方法 二、实验基础操作 1、要求学生能仿照教科书上的操作步骤,完成下面序列图的绘制: ●序列图的绘制 ●对象的创建 ●消息的绘制 ●消息的设置 2、要求学生能仿照教科书上的操作步骤,完成下面协作图的绘制: ●对象的创建 ●链和消息的绘制 ●序列图和协作图的转换 3、要求学生能仿照教科书上的操作步骤,完成下面构件图的绘制: ●构件的绘制 ●构件间关系的绘制 4、要求学生能仿照教科书上的操作步骤,完成下面部署图的绘制: ●节点的绘制 ●节点的设置 ●连接的绘制 三、实验设计 1、要求学生能仿照教科书上的操作步骤,完成下面序列图绘制:

● 需求分析 ● 确定序列对象 2、要求学生能仿照教科书上的操作步骤,完成下面协作图绘制: ● 协作图元素的确认 ● 确定元素之间的关系 3、根据教科书上的237-238页的上机题,完成序列图和协作图建模 4、要求学生能仿照教科书上的操作步骤,完成下面构件图绘制: 赵翔 : 会员 : Book : ShoppingCart : ShoppingCartPage 图1 创建序列图对象 赵翔 : 会员 : Book : ShoppingCart : ShoppingCartPage 修改购物车 修改书籍数量 获得购物车书籍信息 更新数据 返回执行结果 删除购物车中的书籍 执行删除 更新数据 返回执行结果 去结账 图2 会员编辑购物车序列图

UML实践----用例图、顺序图、状态图、类图、包图、协作图

UML实践----用例图、顺序图、状态图、类图、包图、协作图 2009-01-20 作者:Randy Miller 来源:网络 面向对象的问题的处理的关键是建模问题。建模可以把在复杂世界的许多重要的细节给抽象出。许多建模工具封装了UML(也就是Unified Modeling Language?),这篇课程的目的是展示出UML的精彩之处。 UML中有九种建模的图标,即: ?用例图 ?类图 ?对象图 ?顺序图 ?协作图 ?状态图 ?活动图 ?组件图 ?配置图 本课程中的某些部分包含了这些图的细节信息的页面链接。而且每个部分都有一个小问题,测试一下你对这个部分的理解。 为什么UML很重要? 为了回答这个问题,我们看看建筑行业。设计师设计出房子。施工人员使用这个设计来建造房子。建筑越复杂,设计师和施工人员之间的交流就越重要。蓝图就成为了这个行业中的设计师和施工人员的必修课。 写软件就好像建造建筑物一样。系统越复杂,参与编写与配置软件的人员之间的交流也就越重要。在过去十年里UML就成为分析师,设计师和程序员之间的“建筑蓝图”。现在它已经成为了软件行业的一部分了。UML提供了分析师,设计师和程序员之间在软件设计时的通用语言。 UML被应用到面向对象的问题的解决上。想要学习UML必须熟悉面向对象解决问题的根本原则――都是从模型的建造开始的。一个模型model就是根本问题的抽象。域domain就是问题所处的真实世界。 模型是由对象objects组成的,它们之间通过相互发送消息messages来相互作用的。记住把一个对象想象成“活着的”。对象有他们知道的事(属性attributes)和他们可以做的事(行为或操作behaviors or operations)。对象的属性的值决定了它的状态state。 类Classes是对象的“蓝图”。一个类在一个单独的实体中封装了属性(数据)和行为(方法或函数)。对象是类的实例instances。 用例图 用例图Use case diagrams描述了作为一个外部的观察者的视角对系统的印象。强调这个系统是什么而不是这个系统怎么工作。 用例图与情节紧紧相关的。情节scenario是指当某个人与系统进行互动时发生的情况。下面是一个医院门诊部的情节。 “一个病人打电话给门诊部预约一年一次的身体检查。接待员找出在预约记录本上找出最近的没有预约过的时间,并记上那个时间的预约记录。” 用例Use case是为了完成一个工作或者达到一个目的的一系列情节的总和。角色actor是发动与这个工作有关的事件的人或者事情。角色简单的扮演着人或者对象的作用。下面的图是一个门诊部Make Appointment用例。角色是病人。角色与用例的联系是通讯联系communication association(或简称通讯communication) 角色是人状的图标,用例是一个椭圆,通讯是连接角色和用例的线。 一个用例图是角色,用例,和它们之间的联系的集合。我们已经把Make Appointment作为一个含有四个角色和四个用例的图的一部分。注意一个单独的用例可以有多个角色。

UML各种图例齐全—用例图、类图、状态图、包图、协作图、顺序图详细说明画法和功能

UML各种图例 面向对象的问题的处理的关键是建模问题.建模可以把在复杂世界的许多重要的细节给抽象出.许多建模工具封装了UML(也就是Unified Modeling Language?),这篇课程的目的是展示出UML的精彩之处. UML中有九种建模的图标,即: ?用例图 ?类图 ?对象图 ?顺序图 ?协作图 ?状态图 ?活动图 ?组件图 ?配置图 本课程中的某些部分包含了这些图的细节信息的页面链接.而且每个部分都有一个小问题,测试一下你对这个部分的理解. 为什么UML很重要? 为了回答这个问题,我们看看建筑行业.设计师设计出房子.施工人员使用这个设计来建造房子.建筑越复杂,设计师和施工人员之间的交流就越重要.蓝图就成为

了这个行业中的设计师和施工人员的必修课. 写软件就好像建造建筑物一样.系统越复杂,参与编写与配置软件的人员之间的交流也就越重要.在过去十年里UML就成为分析师,设计师和程序员之间的“建筑蓝图”.现在它已经成为了软件行业的一部分了.UML提供了分析师,设计师和程序员之间在软件设计时的通用语言. UML被应用到面向对象的问题的解决上.想要学习UML必须熟悉面向对象解决问题的根本原则――都是从模型的建造开始的.一个模型model就是根本问题的抽象.域domain就是问题所处的真实世界. 模型是由对象objects组成的,它们之间通过相互发送消息messages来相互作用的.记住把一个对象想象成“活着的”.对象有他们知道的事(属性attributes)和他们可以做的事(行为或操作behaviors or operations).对象的属性的值决定了它的状态state. 类Classes是对象的“蓝图”.一个类在一个单独的实体中封装了属性(数据)和行为(方法或函数).对象是类的实例instances. 用例图 用例图Use case diagrams描述了作为一个外部的观察者的视角对系统的印象.强调这个系统是什么而不是这个系统怎么工作. 用例图与情节紧紧相关的.情节scenario是指当某个人与系统进行互动时发生的情况.下面是一个医院门诊部的情节. “一个病人打电话给门诊部预约一年一次的身体检查.接待员找出在预约记录本上找出最近的没有预约过的时间,并记上那个时间的预约记录.” 用例Use case是为了完成一个工作或者达到一个目的的一系列情节的总和.角色actor是发动与这个工作有关的事件的人或者事情.角色简单的扮演着人或者对象的作用.下面的图是一个门诊部Make Appointment用例.角色是病人.角色与用例的联系是通讯联系communication association(或简称通讯communication)

相关文档
最新文档