双调谐回路放大器实验报告

双调谐回路放大器实验报告
双调谐回路放大器实验报告

竭诚为您提供优质文档/双击可除双调谐回路放大器实验报告

篇一:实验一调谐放大器实验报告

实验一调谐放大器实验报告

一、实验目的

1.熟悉电子元器件和高频电路实验箱。

2.练习使用示波器、信号发生器和万用表。

3.熟悉谐振电路的幅频特性分析——通频带与选择性。

4.熟悉信号源内阻及负载对谐振电路的影响,从而了解频带扩展。

5.熟悉和了解放大器的动态范围及其测试方法。

二、实验仪器

1.双踪示波器

2.高频信号发生器

3.万用表

4.实验板g1

三、实验内容及步骤

单调谐回路谐振放大器

1.实验电路见图1-1

L1

图1-1单调谐回路谐振放大器原理图

(1)按图1-1所示连接电路,使用接线要尽可能短(注意接线前先测量+12V电源电压,无误后,关断电源再接线,注意接地)

(2)接线后仔细检查,确认无误后接通电源。

2.静态测量

实验电路中选Re=1K,

测量各静态工作点,并计算完成表1-1

表1-1

*Vb,Ve是三极管的基极和发射极对地电压。

3.动态研究

(1)测量放大器的动态范围Vi~Vo(在谐振点上)

a.选R=10K,Re=1K。把高频信号发生器接到电路输入端,电路输出端接示波器。选择正常放大区的输入电压Vi,调节频率f使其为10.7mhz,调节ct,使回路“谐振”,此时调节Vi由0.02V变到0.8V,逐点记录Vo电压,完成表1-2的第二行。(Vi的各点测量值也可根据情况自己选定)

b.当Re分别为500Ω,2KΩ时,重复上述过程,完成表1-2的第

三、四行。在同一坐标纸上画出Ic不同时的动态范围曲线Vo—Vi,并进行比较与分析。

*Vi,Vo可视为峰峰值

(2)测量放大器的频率特性a.当回路电阻R=10k时,

选择正常放大区的输入电压Vi,将高频信号发生器的输出端接至电路的输入端,调节频率f,使其为

10.7mhz,调节ct使回路谐振,使输出电压幅度为最大,此时的

回路谐振频率f0=10.7mhz为中心频率,然后保持输入电压Vi不

变,改变频率f由中心频率向两边逐点偏离(在谐振频率附近注

意测量Vo变化快的点),测得在不同频率f时对应的输出电压Vo,完成表1-3的第一行(频率偏离范围自定,可以参照3db带宽来确

定,即信号的幅值为信号最大幅值的0.707倍的两个频率之差为

放大器的3db带宽)。

b.改变回路电阻R=2K、470Ω,重复上述操作,完成表1-3的第

三、四行。画出不同谐振回路电阻对应的幅频特性曲线,比较通

频带。

计算f0=10.7mhz时的电压放大倍数及回路的通频带和Q 值

A=vo/vi=0.61/0.02=30.5

bw=fmax-fmin=fo/Q=

Q=R/(2*pi*fo*L)=

四、实验总结

本实验的关键是谐振点的调节。

动态测量过程中,应保持在同一谐振点上。另外值得注意的是不

同的Re值对输入信号的影响。对于不同的Re值在增大过程中出现

不同程度的失真的现象,是由于经三极管放大后相对谐振回路输入过大造成的。

测放大器频率特性时,应注意选择谐振点附近的频率下的输出,找出Vo的突变点,以便确定不同的R对应的同频带,以判断频率选择性,确定最佳匹配负载。

篇二:单调谐回路谐振放大器实验报告

—、实验准备

1.做本实验时应具备的知识点:?放大器静态工作点?Lc 并联谐振回路?单调谐放大器幅频特性2.做本实验时所用到的仪器:?单调谐回路谐振放大器模块?双踪示波器?万用表?频率计?高频信号源

二、实验目的

1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3.熟悉放大器静态

工作点的测量方法;

4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通

频带、Q值)的影响;

5.掌握测量放大器幅频特性的方法。

三、实验内容

1.用万用表测量晶体管各点(对地)电压Vb、Ve、Vc,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;

3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

四、基本原理

1.单调谐回路谐振放大器原理

小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。单调谐回路谐振放大器原理电路如图1-1所示。图中,Rb1、Rb2、Re用以保证晶体管工作于放大区域,从而放大器工作于甲类。ce是Re的旁路电容,cb、cc是输入、输出耦合电容,L、c是谐振回路,Rc是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

单管放大电路实验报告—王剑晓

单管放大电路实验报告 电03 王剑晓 2010010929 单管放大电路报告

一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理 实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减小; U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部失真(截 止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则: 电压增益A i=U O/U i=-?(R C// R L)/r be; 输入电阻R i=R B1//R B2//r be; 输出电阻R O= R C; 其中r be=r bb’+(1+?)U T/ I EQ,体现了直流工作点对动态特性的影响; 分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的影 响。由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减小, 那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,与直 流无关; 如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动态 参数分别变为 电压增益A i=U O/U i=-?(R C// R L)/[r be+(1+?) R E1];

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

实验一小信号调谐(单调谐)放大器实验指导

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,微调C3,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

实验二 节流调速回路性能实验

实验二节流调速回路性能实验 一、实验目的 1.了解节流调速回路的构成,掌握其回路的特点。 2.通过对节流阀三种调速回路性能的实验,分析它们的速度—负载特性,比较三种节流调速方法的性能。 3.通过对节流阀和调速阀进口节流调速回路的对比实验,分析比较它们的调速性能。 二、实验原理 原理图见图 1.通过对节流阀的调整,使系统执行机构的速度发生变化。 2.通过改变负载,可观察到负载的变化对执行机构速度的影响。 三、实验仪器 实验台、秒表 图4-1节流调速回路的速度—负载特性实验原理图 四、实验内容 1.采用节流阀的进口节流调速回路的调速性能。 2.采用节流阀的出口节流调速回路的调速性能。

五、实验原理图及说明 整个实验系统分为两大部分:实验回路部分和加载回路部分。左边部分为实验回路,油缸19为工作油缸,通过调节节流阀7、8、9及单向调速阀6的开口大小,可分别构成三种节流调速回路。电磁换向阀3用于油缸19换向,溢流阀2起限压和溢流作用;右边部分为加载回路,油缸20为负载油缸(注意:加载时一定要是油缸20无杆腔进油),负载的大小由溢流阀11调节。 六、实验步骤(参考实验系统原理图) 本实验主要需解决的问题是:各种调速回路如何构成,主油缸运动速度的调节,如何加负载及负载大小的调节。 1.进口节流调速回路 1)实验回路的调整 a) 将调速阀6、节流阀9关闭、节流阀7调到某一开度,回油路节流阀8全开。 b) 松开溢流阀2,启动液压泵1,调整溢流阀,使系统压力为4MPa 。 c) 操纵电磁换向阀3,使主油缸19往复运动,同时调节节流阀7的开度,使工作缸活塞杆运动速度适中(使油缸19空载时向右运动全程时间为4S左右)。 d) 检查系统工作是否正常。退回工作缸活塞。 2)加载回路的调整 (1)松开溢流阀11,启动油泵18。 (2)调节溢流阀11使系统压力为0.5MPa。 (3)通过三位四通电磁换向阀17的切换,使加载油缸活塞往复运动3—5次,排除系统中的空气,然后使活塞杆处于退回位置。 3)节流调速实验数据的采集 (1)伸出加载缸活塞杆,顶到工作缸活塞杆头上,通过电磁换向阀3使工作缸19活塞杆推着加载缸20活塞杆一起向右运动。测得工作缸19活塞杆全程运动时间。退回工作缸活塞杆。 (2)通过溢流阀11调节加载缸的工作压力P12-3(每次增加0.5MPa,重复步骤(1),逐次记载工作缸活塞杆全程运动时间,直至工作缸活塞杆推不动所加负载为止。 (3)操纵换向阀3,11使油缸19,20的活塞杆缩回,松开溢流阀2、11,停油泵1、18。 2.节流阀的出口节流调速回路 将节流阀6、9关死,阀7全开,阀8调到某一开度,其余同方法与步骤同实验1 3.调速阀的进油节流调速回路 将节流阀7、9关死,阀8全开,阀6调到某一开度,其余同方法与步骤同实验1 七、实验报告 1.根据实验数椐,画出三种调速回路的速度—负载特性曲线。 2.分析比较节流阀进油节流调速回路、节流阀出口节流调速回路和调速阀进油节流调速回路的性能。

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

音频功率放大器实验报告_音频功率放大器课程设计报告.docx

音频功率放大器实验报告_音频功率放大器课程设计报告 本科实验报告 课程名称:姓名:学院:系:专业:学号:指导教师: 电子电路安装与调试 信息与电子工程学院 电子科学与技术 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备五、实验步骤与过程六、实验调试、实验数据记录七、实验结果和分析处理八、讨论、心得 一、实验目的 1、学习并初步掌握音频功率放大器的设计、调试方法。 2、学习并掌握电路布线、元器件安装和焊接。 3、掌握音频功率放大器各项主要性能及指标的调试方法。 二、实验任务与要求 1、设计 (1)设计一音频功率放大器,使其达到如下主要技术指标:负载阻抗:R L =4Ω额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制: 低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3% 输入灵敏度:U " i (2)设计满足以上设计要求的稳压电源。 2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。 3、根据给定的功率放大器的原理图(三),做如下工作: (1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。 (2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。(3)安装实验电路板 (4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 些电路参数后的性能测试(电路图中括号内的数字)。 (5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。三、实验原理和实验方案设计 作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。因此,根据不同音源的需要,可以画出音频放大器的原理框图,如图1所示。 P.2 装订线 图1音频功率放大器框图 1、各部分电路电压增益的确定 根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为 : V o ===6.32V 所以整机中频电压增益为:A O um =

液压与气压传动测试实验报告书-2015

实验报告 课程名称:液压与气压传动 实验项目:液压与气压传动测试实验实验班级: 学号,姓名:, 总页数:11 指导教师:李益林刘涵章实验时间:2015.3. ~2015-7. 机电学院液压与气压传动实验室

目录 目录 (2) 实验一液压泵拆装 (3) 1.CB—B10型齿轮泵流量计算 (3) 2.YB1-10双作用叶片泵排量计算 (3) 3.思考题 (4) 实验二液压泵性能测试 (5) 一、叶片泵测试与计算 (5) 二、画P—Q特性曲线图 (5) 实验三液压阀拆装 (6) 实验四溢流阀性能测试 (7) 一、溢流阀测试数据记录及处理 (7) 二、画启闭特性曲线图 (7) 实验五节流阀进油路节流调速回路的速度负载特性测试 (8) 一、测试数据记录及处理 (8) 实验六调速阀进油路节流调速回路的速度负载特性测试 (9) 一、测试数据记录及处理 (9) 画负载特性曲线图 (10) 实验七基本液压传动系统工作原理图绘制 (10) 1.观察S001液压传动系统试验台,标出各种液压元件的名称。 (10) 2.观察S001液压传动系统试验台,完成填充。 (11) 3.液压元件图形符号描述传动系统示意图。 (11)

实验一液压泵拆装 1.CB—B10 型齿轮泵流量计算 1)计算齿轮轴齿数:Z = 个。 2)测量齿顶圆直径D= mm. 3)测量齿轮齿宽: B = mm,CM. 4)计算齿轮模数:m = D / ( Z+ 2 ) = mm,CM. 标准模数m : 数值计算后,应向下面标准模数值靠近取值(mm)。 5)当转速n= 1450 r/min 的电机,泵的容积效率取ηv= 85% 时,计算齿轮泵排量 V = 2π·Z·m2 ·B (mL/r)(齿宽、模数用厘米单位代入计算。) 6)因为实际齿槽容积比齿轮体积稍大一些,通常取V = 6.66Zm2 B 7)计算齿轮泵流量q v = 6.66·Z·m2·B· n·ηv·10-3 (L/min) (齿宽、模数用厘米单位代入计算。) 2.YB1-10双作用叶片泵排量计算 1)YB1-10双作用叶片泵铭牌参数: 额定压力= Map ,额定转速= 转/分, 排量= 毫升/转。 2)测量定子内表面大圆弧直径D =mm,半径R = CM。 3)测量定子内表面小圆弧直径d =mm,半径r = CM。 4)测量定子宽度:B = mm,CM。 5)测量叶片厚度:δ = mm,CM。 6)计算叶片数: Z = 片。 7)叶片倾角:θ= 13 度。 8)叶片泵转速:n = r/min。(取>1000 ~<1450 ) 9)叶片泵工作区环形体积:V1 = 2π(R2 - r2)B 10)叶片所占容积:V2 = 2·[(R - r)/cosθ]·B·δ·Z 11)双作用叶片泵理论排量V t = V1- V2(mL/r),即

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

实验一_高频小信号调谐放大器实验报告

本科生实验报告 实验课程高频电路实验 学院名称信科院 专业名称物联网工程 学生姓名刘鑫 学生学号201313060108 指导教师陈川 实验地点6C1001 实验成绩 二〇年月二〇年月

高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验仪器与设备 高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器 三、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f0的表达式为

∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑ C 为调谐回路的总电容,∑ C 的表达式为 ie oe C P C P C C 2221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,g Σ为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = fo/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20

单管放大电路的设计与实现实验报告

华中科技大学 《电子线路设计、测试与实验》实验报告 实验名称:单管放大电路的设计与实现 院(系): 专业班级: 姓名: 学号: 时间: 地点:华中科技大学南一楼 实验成绩: 指导教师:

一、实验目的 1.掌握单管放大电路的工作原理。 2.掌握MOSFET共源放大电路以及BJT共射放大电路静态工作点的设置与调整方法。 3.了解电路参数变化对于电路静态工作点的影响。 4.学习使用PSpice或Multisim软件对模拟电子电路进行仿真分析。 5.掌握BJT单极共射放大电路主要性能指标(A v、R i、R o)的测量方法。 二、实验元器件 类型型号(参数)数量 三极管9013 1只 电位器100kΩ1只 电阻51Ω、1kΩ、100kΩ各1只; 10kΩ、10kΩ各2只; 电容10μF 2只 47μF 1只 三、实验原理及参考电路 1.参考电路 实验电路如图1所示。该电路采用自动稳定工作点的分压式射极偏置电路,其温度稳定性好。 图1 2.静态工作点的估算与调整 静态工作点是指输入交流信号为零时三极管的基极电流IBE、集电极电流I CQ、和管压降V CEQ。 根据上图所示的直流通路可得出: 开路电压V BB = R b12V CC/(R b11+R b12) 内阻R B = R b11//R b12

则I BQ =(V BB–V BEQ)/( R B +(1+β)( R e1 +R e2)) I CQ = βI BQ V CEQ ≈ V CC – (R C + R e1 +R e2)I CQ 当管子确定后,改变V CC、R B、R B2、R C、(或R E)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过R P调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。 3.放大电路电压增益的测量 放大电路电压增益A v 是指输出电压与输入电压的有效值之比,即 A v =V o /V i。 对于该电路,放大电路的电压增益A v 为 A v= -β(R C // R L) /( r be + (1 + β)R e1) 当三极管跟负载电阻选定后,A v主要取决于静态工作点I CQ。 4.输入电阻的测量 对于上述参考电路图所示参数,放大电路输入电阻为: R i = R b11//R b12//[r be + (1 + β)R e1] 三极管输入电阻r be 为: r be = 300 + (1+β)CQ 测量原理为:在信号源与放大电路之间串一个已知阻值的电阻R,用万用表分别测出R 两端的电压V S,和V i,则输入电阻为: Ri = Vi / Ii = Vi R /( V s- V i) 5.输出电阻的测量 输出电阻的测量原理为:用万用表分别测量放大器的开路电压V O和负载电阻上的电压V OL,则输出电阻R O可通过计算求得。 R O =( V O – V OL)R L /V OL 当R L = R O 时,测量误差最小。 6.幅频特性的测量 放大器的幅频特性是指放大器的增益与输入信号频率之间的关系曲线。一般用逐点法进行测量。在保持输入信号幅值不变的情况下,改变输入信号的频率,住店测量不同频率点的电压增益。利用各点数据,在单对数坐标纸上描绘出幅频特性曲

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

高频实验:小信号调谐放大器实验报告要点

实验一 小信号调谐放大器实验报告 一 实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。 图1.1 高频小信号调谐放大器的频率选择特性曲线 小信号调谐放大器技术参数如下: 1 0.707

1.增益:表示高频小信号调谐放大器放大微弱信号的能力 2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。 2.实验电路 原理图分析: In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。 通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。 电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC 谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

节流调速实验

节流调速实验 一、实验目的: 速度调节回路是液压传动系统的重要组成部分,依靠它来控制工作机构的运动速度 ,例如 在机床中我们经常需要调节工作台(或刀架)的移动速度,以适应加工工艺要求。液压传动的优点之一就是能够很方便地实现无级调速。液压传动系统速度的调节,一般有三种,即节流调速 ,容积调速,节流 -容积调速. 节流调速回路是由定量泵、流量控制阀、溢流阀和执行元件等组成,它通过改变流量控制阀阀口的开度,即通流截面积来调节和控制流入或流出执行元件的流量,以调节其运动速度。节流调速回路按照其流量控制阀类型或安放位置的不同,有进口节流调速,出口节流调速和旁路节流调速三种。流量控制阀采用节流阀或调速阀时,其调速性能各有自己的特点,同时节流阀、调速回路不同,它们的调速性能也有差别。 通过本实验要达到以下目的: 1.通过亲自拼装实验系统,了解节流调速回路的构成,掌握其回路的特点。 2.分析、比较采用节流阀的进油节流调速回路中,节流阀具有不同通流面积时的速度负载特性; 3.分析、比较采用节流阀的进、回、旁三种调速回路的速度负载特性; 4.分析比较节流阀、调速阀的调速性能。 二、实验内容: 1 测试采用节流阀的进油路节流调速回路的速度负载特性; 2.测试采用节流阀的回油路节流调速回路的速度负载特性; 3.测试采用节流阀的旁油路节流调速回路的速度负载特性; 4.测试采用调速阀的进油路节流调速回路的速度负载特性; 三、实验方法: 图为 QCS003B 型液压实验台节流调速回路性能实验的液压系统原理图. 该液压系统由两个回路组成。左半部是调速回路,右半部则是加载回路. 在加载回路中,当压力油进入加载液压缸 18 右腔时,由于加载液压缸活塞杆与调速回路液压缸 17 (以后简称工作液压缸)的活塞杆将处于同心位置直接对顶,而且它们的缸筒都固定在工作台上,因此工作液压缸的活塞杆受到一个向左的作用力(负载 FL),调节溢流阀9可以改变 FL 的大小. 在调速回路中,工作液压缸17的活塞杆的工作速度 V与节流阀的通流面积a、溢流阀调定压力P1 (泵 1 的供油压力)及负载 FL 有关。而在一次工作过程中, a 和 P1 都预先调定不再变化,此时活塞杆运动速度 V只与负载FL有关.V与FL之间的关系,称为节流调速回路的速度负载特性。 a 和 P1 确定之后,改变负载 FL 的大小,同时测出相应的工作液压缸活塞杆速度V ,就可测得一条速度负载特性曲线。

相关文档
最新文档