新能源汽车锂离子动力电池充放电特性

新能源汽车锂离子动力电池充放电特性
新能源汽车锂离子动力电池充放电特性

锂离子动力电池的充放电特性

热度:Loading...日期:15-08-21, 10:17 AM 来源:

锂离子电池充电从安全、可靠及兼顾充电效率等方面考虑,通常采用两段式充电方法。第1阶段为恒流限压,第2阶段为恒压限流。锂离子电池充电的最高限压值根据正极材料

不同而有一定的差别。锂离子电池基本充放电电压曲线如图所示。图中曲线采用的充放电电流均为0.3C。对于不同的锂离子电池,区别主要有两点:第1阶段恒流值,根据电池正极材料和制造工艺不同,最佳值存在一定的差别,一般采用电流范围为0.2C~0.3C;不同锂离子电池在恒流时间上存在很大的差别,恒流可充入容量占总体容量的比例也存在很大差别,从电动汽车实际应用的角度看,恒流时间越长,充电时间越短,更有利于应用。

图1 锂离子电池基本充放电电压曲线

锂离子电池放电在中前期电压稳定,下降缓慢,但在放电后期电压下降迅速,如图1

中的C段所示。在此阶段必须进行有效的控制,防止电池过放电,避免对电池造成不可逆

性损害。

①充电电流对充电特性的影响。以额定容量100A·h某锂离子电池为例,在SOC=40%、恒温20℃的情况下,采用不同充电率充电,充电曲线如图2所示。

如充电曲线所示,随着充电电流的增加,恒流时间逐步减少,恒流可充人容量和能量也逐步减少。在实际电池组应用中,可以以锂离子电池允许的最大充电电流充电,达到限压后,再进行恒压充电,这样在减少充电时间的基础上,也保证了充电的安全性;另外,应综合考虑充电时间和效率,选择适中的充电电流,以减少内阻能耗。

图2 锂离子电池充电曲线

放电深度对充电特性的影响。在恒温环境温度20℃下,对额定容量100 A·h锂离子电池在不同SOC、以0.3C恒流限压进行充电。试验参数见表1,充电曲线如图3所示。在图3中,曲线从左到右放电容量依次增加。

表1 不同放电深度充电试验参数

图3 锂离子电池20℃、0.3C恒流充电曲线

从表1和图3可以得到如下三个结论:随放电深度的增加,充电所需时间增加,但平均每单位容量所需的充电时间减少,即充电时间的增加同放电深度不成正比增加;随放电深度的增加,恒流充电时间所占总充电时间比例增加,恒流充电容量占所需充入容量的比重增加;随放电深度的增加,等安时充放电效率有所降低,但降低幅度不大。

③充电温度对充电特性的影响。在不同环境温度下对锂离子电池进行充电,以某额定容量200A·h锂离子电池为例,采用恒流限压方式,记录充电截止条件是充电电流下限为1A 的充电参数,见表2。

表2 不同温度电池充电参数

锂离子电池工作原理

锂离子电池工作原理 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe

放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C 锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 组成部分 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10--20微米的电解铝箔。 (2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。 (3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

锂电池的充放电次数及检测仪

一般决定锂电池使用寿命的是它的充电循环次数,所谓充电循环次数,是指锂电池从满电状态把电池电量放倒0,又充满的过程。无论是三元锂电池还是磷酸铁锂电池,如果采取浅放浅充的方式充放电,其使用寿命将会延长很多,三元锂电池的充电循环次数能很轻松地突破1000次。 往往说到锂电池循环次数这个问题,基本上都会和“充电周期”挂上关系,这两者其实可以说是同个意思,你可以说:电池循环次数是以周期来计算的,也可以反过来说锂电池充电周期是以循环次数来计算的,这两种说法都不为过。 什么是充电周期?一次充电周期指的是锂电池一次完整的充放电过程,也就是说当电池使用电量达到电池容量的100%,即完成了一个充电周期,但不一定通过一次充电就完成。这点是很多人的一个认知误区。 锂电池的寿命是500个充电周期。怎么才能算作是一个充放电周期呢?一个充电周期意味着锂电池的所有电量由满用到空,再由空充到满的过程,这并不等同于充一次电。所谓的500次,是指锂电池厂家在恒定的放电深度(80%)实现了625次左右的可充次数,达到了500个充电周期。再来个算式就更清楚了:625×80%=500.(忽略锂电池容量减少等因素)。 实际中,由于生活中的各种影响,特别是充电时的放电深度不是恒定的,所以,“500个充电周期”只能算作是参考。进口三元锂电池充放电次数可达到约3000次左右,国产的大概也就是800-1000次。

正常用锂电池充电放电次数高达到2000次、锂电池有三元锂电池、铁锂电池、聚合物锂电池,各有差距。正常用铅酸电池各充电放电次数高达500次、如平液电池、富液电池、胶体电池等各有不同。 目前的新能源汽车上使用的动力电池主要是三元锂电池、钴酸锂电池、磷酸铁锂电池这三种,无论是哪一种类型的电池,都存在着使用寿命,动力电池的寿命是按照循环使用次数来进行衡量的,充放电的次数越多,电池的使用寿命就会越少。对于动力电池电芯循环使用次数国家强制要求必须要在1000次以上,磷酸铁锂一般可以做到2000次,而三元锂电池一般也能1000次以上。 不同的电池有不同的循环使用寿命。通常三元锂动力电池的循环使用寿命在1500次到2000次左右。所以单纯的充电次数并不会影响到电池的寿命。动力电池的寿命只会根据循环次数来减少。充电次数并不能够直接决定动力锂电池的使用寿命,在一次充放电的循环中多次充电也只能算是电池损耗的一次循环使用。所以我们在使用电动汽车的时候,不需要担心充电次数多而影响到动力锂电池的使用寿命。 杭州固恒能源科技有限公司从事于新能源汽车后市场领域,是一家专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的企业。研发了一系列动力电池,机电,机电控制维保领域的相关产品,有效的降低了服务商的运营维护成本,延长了电池的使用寿命,我们致力于打造

锂电池的充放电系统

本科毕业论文(设计、创作) 题目:锂电池的充放电系统 学生姓名:学号:1002149 所在院系:专业:电气工程及其自动化入学时间:2010 年9 月导师姓名:职称/学位:副教授/硕士导师所在单位: 完成时间:2014 年 5 月安徽三联学院教务处制

锂电池的充放电系统 摘要:随着时代的发展,便携化设备应用的越来越广泛,而锂电池则成为便携化设备的主要的电源支持。锂电池与其他二次电池不同的是更需更安全高效的充电控制要求,因为这些特点让锂电池在实际的使用中有很多不便。因此,基于特征的锂离子电池的充电和放电特性,锂离子电池充电的充电过程和控制单元的的发展趋势,本文设计出了一款智能充放电系统。本文设计的控制单元大部分是由基于MAX1898的充电电路和AT89C51的控制单元构造而成。以LM7805 为MAX1898与AT89C51提供电源支持。本文还提供了用于锂离子电池的充电和放电控制系统的程序框图和功能。 锂离子充电电池和锂离子电池,微控制器,发电,转换和电压隔离光耦部分,放电特性充电芯片,锂离子电池充电电路设计,锂离子电池的程序设计充电作为主要内容本文。 关键词:单片机、MAX1898、AT89C51

Li-ion battery charge and discharge system Abstract:With the progress of the times, portable device applications more widely, and lithium battery becomes more portable equipment's main power supply support. Lithium secondary batteries with other difference is safer and more efficient charging needs control requirements , because these features make lithium batteries have a lot of inconvenience in actual use . Therefore, The body on the characteristics of lithium ion rechargeable electric discharge pool,the development trend of lithium-ion battery charging process and control unit , the paper designed an intelligent charging and discharging system . This design of the control unit is constructed from long MAX1898 -based charging circuit and a control unit from AT89C51 . Provide power supply support for LM7805 MAX1898 with AT89C51. This article also provides a block diagram and function for lithium-ion battery charge and discharge control system. Lithium- ion battery characteristics , charge and discharge characteristics of lithium -ion batteries , the introduction of lithium-ion battery charging circuit design, rechargeable lithium-ion battery is designed to generate part of the program the microcontroller parts, power supply , voltage conversion and opto-isolated part of the charging chip , etc. as the main content of the paper . Key words: SCM,STC89c51, MAX1898

锂离子电池工作原理

锂离子电池工作原理

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越

快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe 放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

新能源汽车动力电池及其管理系统试卷A

新能源汽车动力电池及其管理系统试卷A 汽运19-301(26人) 一、【单选题】(每题2分共20分) 【单选题】 1、可逆电池的定义是:外接电源电压(A)电池装置电动势。(2分) A.大于 B.等于 C.小于 D.不一定 【单选题】 2、以下电池中不作为电动汽车动力电池的是(D)。(2分) A.铅酸电池 B.锂离子电池 C.镍氢电池 D.锌银电池 【单选题】 3、关于蓄电池的检测,下列说法正确的是(D)。(2分) A.外观检查时,只检查蓄电池接线柱、电缆和托架固定架是否有腐蚀即可。 B.外观检查时,只检查蓄电池周围无漏液,壳体和桩柱无破损裂纹即可。 C.用万用表检测蓄电池电压,只要在12.6V以上就一定可以用。 D.万用表检测的蓄电池端电压,只能作为检测的参考因素。 【单选题】 4、(B)电池性能比较高,可以快速充电、高功率放电、能量密度高,且循环寿命长,但高温下安全性能差。(2分) A.镍氢电池 B.锂离子电池 C.铅酸电池 D.锌银电池 【单选题】 5、动力电池包衰减诊断故障代码在下列(B)情况下可能出现。(2分) A.电池组已经退化到需要进行更换 B.电池组已经退化到只有原电池容量的20%左右 C.车辆的动力电池包电压为0伏 D.这些诊断故障代码是根据汽车的行驶里程设定的 【单选题】 6、动力电池的能量储存与输出都需要模块来进行管理,即动力电池能量管理模块,也称为动力电池管理系统,或动力电池能量管理系统,简称(C) 。(2分) A.BBC B.ABS C.BMS D.EPS 【单选题】 7、集中式动力电池管理系统的特征是(D)。(2分) A.电池管理系统与电池包分开 B.电池信息采集器与电池管理控制器分开 C.电池信息采集器与电池模组分开 D.信息采集器和管理器集合在一起

锂电池组保护板均衡充电基本工作原理

成组锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。 本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。 锂电池组保护板均衡充电基本工作原理 采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。单节锂电池保护芯片数目依据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进行保护。该系统在充电保护的同时,通过保护芯片控制分流放电支路开关器件的通断实现均衡充电,该方案有别于传统的在充电器端实现均衡充电的做法,降低了锂电池组充电器设计应用的成本。

纯电动车BMS与整车系统CAN通信协议

文件类型:技术类密级:保密 正宇纯电动车 电池管理系统与整车系统CAN通信协议 (GX-ZY-CAN-V1.00) 版本记录 版本制作者日期说明 V1.00 用于永康正宇纯电动车系统姓名日期签名 拟定 审查 核准

1 范围 本标准规定了电动汽车电池管理系统(Battery Management System ,以下简称BMS)与电机控制器(Vehicle Control Unit ,简称VCU)、智能充电机(Intelligent Charger Unit ,简称ICU)之间的通信协议。 本标准适用于电动汽车电池管理系统与整车系统和充电系统的数据交换。 本标准的CAN 标识符为29位,通信波特率为250kbps 。 本标准数据传输采用低位先发送的格式。 本标准应用于正宇纯电动轿车电池管理系统。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的版本适用于本文件。凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ISO 11898-1:2006 道路车辆 控制器局域网络 第1部分:数据链路层和物理信令(Road Vehicles – Controller Area Network (CAN) Part 1:Data Link Layer and Physical Signalling). SAE J1939-11:2006 商用车控制系统局域网络(CAN)通信协议 第11部分:物理层,250Kbps ,屏蔽双绞线(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 11:Physical Layer,250Kbps,Twisted shielded Pair). SAE J1939-21:2006商用车控制系统局域网络(CAN )通信协议 第21部分:数据链路层(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 21:Data Link Layer). 3 网络拓扑结构说明 电动汽车网络采用CAN 互连结构如下所示,CAN1总线为电池管理系统与电机控制器之间的数据通信总线,CAN2总线为电池管理系统与充电机之间的数据通信总线。电池管理系统内部主控单元与电池管理单元之间通过内部CAN 总线进行数据通信。电机控制器将BMS 的提供的总电压、电流及最高单体电压、最低单体电压、温度及关键状态显示在车载仪表上。 BMS-CCU BMS-BMU (1#)BMS-BMU (2#) 电池组远程监控终端(BWT) 彩色显示屏 (HMI)电机控制器(MCU ) 智能充电机 (ICU) INCAN CAN2 CAN1 RS232 RS485 图一 整车总线拓扑

磷酸铁锂电池地放电特性及寿命

磷酸铁锂电池(以下简称锂铁电池)作为铁电池的一种,一直受到业界朋友的广泛关注(也有人说锂铁电池其实就是锂离子电池的一种)。就铁电池而言,它可以分为高铁电池和锂铁电池,今天我们以型号为STL18650的锂铁电池为例,来具体说明一下锂铁的电池的放电特性及寿命。 STL18650的锂铁电池(容量为1100mAh)在不同的放电率时其放电特性如图2所示。最小的放电率为0.5C,最大的放电率为10C,五种不同的放电率形成一组放电曲线。由图1中可看出,不管哪一种放电率,其放电过程中电压是很平坦的(即放电电压平稳,基本保持不变),只有快到终止放电电压时,曲线才向下弯曲(放电量达到800mAh以后才出现向下弯曲)。在0.5~10C的放电率范围内,输出电压大部分在2.7~3.2V范围内变化。这说明该电池有很好的放电特性。 图1 STL18650的放电特性 容量为1000mAh的STL18650在不同的温度条件下(从-20~+40℃)的放电曲线如图2所示。如果在23℃时放电容量为100%,则在0℃时的放电容量降为78%,而在-20℃时降到65%,在+40℃放电时其放电容量略大于100%。 从图3中可看出,STL18650锂铁电池可以在-20℃下工作,但输出能量要降低35%左右。 图2 STL18650在多温度条件下的放电曲线 STL18650的充放电循环寿命曲线如图4所示。其充放电循环的条件是:以1C充电率充电,以2C放电率放电,历经570次充放电循环。从图3的特性曲线可看出,在经过570次充放电循环,其放电容量未变,说明该电池有很高的寿命。

图3 STL18650的充放电循环寿命曲线 过放电到零电压试验 采用STL18650(1100mAh)的锂铁动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。 试验的结果是,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。 这试验说明该电池即使出现过放电(甚至到0V),并存放一定时间,电池也不泄漏、损坏。这是其他种类锂离子电池不具有的特性。

动力电池充放电效率测试方法及特性

电动汽车能量流研究需要考虑电池充放电效率的影响,然而目前针对不同充放电模式下的充放电效率研究并不充分,实验方法、测试系统与分析结果仍不具备普遍适用性。因此,本文提出了一种电动汽车充放电效率表征方法和试验方法,并搭建了测试台架系统;在此基础上,针对某款电动汽车动力电池,定量研究了不同充电模式、放电工况下充放电效率的变化规律,从而为整车能量流研究提供了一种有效的动力电池充放电效率测试方法,接下来就为大家详细的讲解一下希望对大家有所帮助。 1 动力电池及其充放电效率 动力电池是电动汽车的能量来源,锂离子电池以其高能量密度和功率密度、长循环寿命、低自放电率等优势,成为电动汽车的首选动力电池;其中,磷酸铁锂电池(LiFePO4)和三元锂离子电池(NCA、NMC)等具有更高的安全性能,因此广泛应用于电动汽车领域。图1 所示为锂离子电池的基本结构与工作原理示意图,其充放电过程是通过Li+在正负极柱之间嵌入和脱出实现的。 2 实验平台和测试方法 实验平台结构包含试验箱、电池模拟器、12V 开关电源、冷却循环水机、上位机等试验仪器及设备。其中,动力电池系统在实验过程中放置于试验箱内,由高压线连接至电池模拟器,通过控制电池模拟器的功率及电流方向,实现动力电

池不同模式下的充放电;同时电池充放电数据通过CAN 总线进行通讯,并上传至上位机系统。实验过程中,电池模拟器及电池管理系统BMS 实时检测动力电池组总电压、单体电压、电池组温度等参数并设置保护措施,从而保证实验过程电池处于安全工作状态。 3 实验及结果分析 实验用动力电池系统采用三元电芯作为单体电池,整体模块标称能量为46kwh。充放电过程中,设置系统总电压、单体电压、温度等参数的安全范围;一旦检测到参数超出上下限安全阈值,将电池模拟器输出电流设置为0,并切断电池模拟器与动力电池系统的连接。 实验过程中,分别采用2.6kw 慢充、6.6kw 定功率充电、快充、1/3C 标准充电(15.3kw)以及1C 充电(46kw)对电池包进行充电,并通过变功率、45kw、6.5kw 、14.9kw 以及28.4kw 等效模拟车辆NEDC 工况、1C 放电、60km/h 等速、90km/h 等速、120km/h 等5 种驾驶工况。 杭州固恒能源科技有限公司从事于新能源汽车后市场领域,专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的高新技术企业。产品涉及动力电池检测与维护、数据监测与存储、电池模组级单体电池的高效分选以及成组、储能管理系统等设备领域,客户遍及国内各动力电池厂家,新能源汽车厂家、梯次利用回收企业以及储能应用等企业。

锂电池充放电系统的设计毕业设计

题目:锂电池充放电系统的设计 所在院系:信息与通信技术系专业:电气工程及其自动化

摘要 随着电子技术的快速发展使得各种各样的电子产品都朝着便携化和小型轻量化的方向发展,也使得更多的电气化产品采用基于电池的供电系统。目前为止,较多使用的电池有镍镉、镍氢、铅蓄电池和锂电池。由于不同类型电池的充电特性不同,通常对不同类型,甚至不同电压、容量等级的电池使用不同的充电器,但这在实际使用中有很多不便。 本设计是一种基于单片机的锂离子电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对充电器的核心器件MAX1898充电芯片、AT89C2051单片机进行了较详细的介绍。阐述了系统的软硬件设计。以C 语言为开发工具,进行了设计和编码。保证了系统的可靠性、稳定性、安全性和经济性。 该充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需求;充电器短路保护功能;充电状态显示的功能。在生活中更好的维护了充电电池,使电池更好被运用到生活中。 关键词:单片机、MAX1898、AT89C51

Abstract Electronic technology's fast development causes various electronic products develops toward portable and the small lightweight direction, It also causes the more electrification products to use based on battery's power supply system. At present, the many use's batteries have the nickel cadmium, the nickel hydrogen, the lead accumulator and the lithium battery. Their respective characteristic had decided they will coexist in a long time develop. Because the different type battery's charge characteristic is different, usually to different type, even different voltage, capacity rank battery use different battery charger, but this has many inconveniences in the actual use. This topic design is one kind lithium ion battery charger which is based on Single Chip, in the design, it has chosen succinctly, the highly effective hardware, the design stable reliable software, explained in detail system's hardware composition, including the monolithic integrated circuit electric circuit, the charge control electric circuit, the voltage transformation and the light pair isolating circuit, and to this battery charger's core component - MAX1898 charge chip, at89C2051 monolithic integrated circuit has carried on the detailed introduction. Elaborated system's software and hardware design. Take the C language as the development kit, has carried on the detailed design and the code. Has realized system's reliability, the stability, the security and the efficiency. The intelligence battery charger has the examination lithium ion battery's condition; The automatic cut over charge pattern meets when rechargeable battery's charge needs; Battery charger has short circuit protection function; The charge condition demonstration's function. The battery charger has made the better maintenance rechargeable battery in the life,and lengthened the rechargeable battery’s service life. Key words: SCM,STC89c51, MAX1898

锂离子电池充放电机理的探索

锂离子电池充放电机理的探索 及“锂亚原子”模型的建立 贵州航天电源科技有限公司张忠林杨玉光 摘要:锂离子电池的研究和发展一直都是以“摇椅理论”为指导,由于受该理论的影响,很多现象很难用传统的电化学理论进行解释。作者在生产实践中通过对一些现象的观察,并做了大量的试验和研究,提出“锂亚原子”的模型,并在此模型的基础上,对锂离子电池的充放电反应机理和一些现象用电化学理论进行了解释。 主题词:锂离子电池、反应机理、锂亚原子 一、前言 锂离子电池是在锂金属电池基础上发展起来的。由于锂金属电池在充放电时出现锂枝晶,刺破隔膜造成短路,出现爆炸等现象,这一问题长期困扰锂金属电池的发展,目前仍很难投入到民用市场。锂离子电池研究始于20世纪80年代,1991年首先由日本索尼公司推出了批量民用产品,由于其具有比能量高、体积小、重量轻、工作电压高、无记忆效应、无污染、自放电小等优点,受到市场欢迎,并迅速占领市场,广泛用于移动通讯、笔记本电脑、移动DVD、摄像机、数码相机、蓝牙耳机等便携式电子产品。目前主要产地集中在日本、中国和韩国,预计2004年全球需求量将达到10亿只。 由于锂离子电池从开始研究到现在才20多年时间,真正投入应用也只有十多年的时间,基础理论的研究还不是十分成熟,对锂离子电池的生产和发展很难起到全面指导作用,特别是对电池充放电反应机理的认识还存在很大分歧,有些现象用目前的理论和机理还很难解释。本文对锂离子电池充放电反应机理提出了一些看法,并对生产中存在的现象进行了解释,希望与锂电池同行共同探讨。二、基本原理 目前锂离子电池公认的基本原理为“摇椅理论”,该理论认为锂离子电池充放电反应机理不是通过传统氧化还原反应来实现电子转移,而是通过锂离子在层状物质的晶格中嵌入和脱出,发生能量变化。

锂离子电池的过充电和过放电产生的问题

针对锂离子电池过充电、过放电问题过充电:锂离子电池过充时,电池电压随极化增大而迅速上升,会引起正极活性物质结构的不可逆变化及电解液的分解,产生大量气体,放出大量的热,使电池温度和内压急剧增加,存在爆炸、燃烧等隐患。 过放电:电池放完内部储存的电量,电压达到一定值后,继续放电就会造成过放电,电池过放电可能会给电池带来灾难性的后果,特别是大电流过放,或反复过放对电池影响更大。一般而言,过放电会使电池内压升高,正负极活性物质可逆性受到破坏,电解液分解,负极锂沉积,电阻增大,即使充电也只能部分恢复,容量也会有明显衰减。 解决措施: 1、改变正极材料:目前钴酸锂正极活性材料在小电芯方面是很成熟的体 系,但是充满电后,仍旧有大量的锂离子留在正极,当过充时,残留在正极的锂离子将会涌向负极,在负极上形成枝晶(使其晶面的半高宽变大,导致某一方向的晶粒尺寸变小,晶体结构的改变导致碳材料出现裂纹,进而破坏负极表面的 SEI 膜并促进 SEI 膜的修复,SEI 膜的过度生长消耗活性锂,因此造成了电池的不可逆容量衰减。如图1所示)这是采用钴酸锂材料的电池过充时必然的结果。甚至在正常充放电过程中,也有可能会有的产生多余的锂离子游离到负极形成枝晶(由于石墨的嵌脱锂电位较低,接近锂的还原电位,因此在某些条件下负极容易出现锂沉积,锂沉积会消耗活性锂,产生不可逆容量损失)。因此寻求高能量密度、高安全、环保和价格便宜的电极材料是动力电池发展的关键。目前国家选择的安全正极材料有锰酸锂、磷酸铁锂等。 (锰酸锂LiMnO 4 分子结构上面可以保证在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构使其氧化性能远远低于钻酸锂,分解温度超过钴酸锂10O℃,即使由于外力发生内部短路、外部短路、过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。 磷酸铁锂(LiFePO 4)及其充电(脱锂)后形成FePO 4 的热稳定性非常好,其在 210~410℃的温度范围内所放出的热量仅为210J/g:而普遍使用的LiCoO2的充电态

(完整版)新能源汽车的核心部件大剖析:电池系统篇

新能源汽车的核心部件大剖析:电池系统篇电池系统的选择和设计 如前文所介绍的情况,各家车厂面临油耗和排放的挑战,不断推出新能源汽车的情况,电池系统成了当前汽车电子电气系统中,一个最为昂贵也最为受人重视的子系统。本文将从电池系统的需求、车用电池的状态,以及当前车厂和电池厂的关系角度来介绍电池系统。 电池系统是在混合动力、插入式混合动力和纯电动汽车中用来存储电能,并提供给电驱动系统的需要的能量。电池中的电能,其来源主要有三种,电池处在较低的荷电状态(SOC)时,车辆利用发动机带动高压发电机给电池供电;刹车的时候,能量回收的时候的电能以及充电模式下,从电网得来的能量,如图1所示,在电池的不同的状态,相应的车辆也处在不同的工作模式下。 图1 电池状态vs 车辆模式 电池系统的选择和设计,很大一部分的参数来自于设计什么样的车型,不同

的车型的规范,将直接决定电池系统和电驱动系统的参数,如下图2所示,根据所需要开发的新能源车的具体参数,其电池系统的基本规范也可以确定下来。而电池系统的基本构成,粗略的来说是从电池单体开始,构建电池模组,配置合适电子和电气系统,在电池包层面进行布置和安全分析。 图2 车型规范对电池系统规范的转化 电池单体的选择 1)电池单体的选择 从基本来看,电池单体选择是考虑电池容量、化学体系和单体形状。 ? 单体类型:可选的有铅酸、镍镉(NiCd)、镍氢(NiMH)、高温电池(NaS 和NaNiCl2)、液流电池和锂离子电池,从综合来看,目前只能依靠锂离子电池来作为储能单元。而离子电池内的化学体系,其参数差异也很大。 ? 密度:对电池来说,两个比较重要的参数是能量密度(决定存储电能)和功率密度(决定放电能力),这两者往往不可兼得。值得注意的是,从电极材料理论密度到单体密度再到电池包密度,由于其他不储能的部分,这两个参数往往递减迅速。 ? 寿命:可分为循环寿命和使用寿命两个参数。循环寿命取决于充放电深度、电压、温度和电流(负荷);使用寿命包括不使用的时间,与温度和电压有

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

浅谈锂离子电池充放电

浅谈锂离子电池充放电 【摘要】本文浅析了锂离子电池充放电的原理,及其对电池寿命的影响。 【关键词】锂离子电池;充放电深度 0.引言 锂离子电池因其端电压高、比能量大、充放电寿命长、放电性能稳定、自放电率低和无污染等优点[1-2],得到了广泛的应用。在日常生活的使用中,超长时间充电和完全用空电量会造成过度充电和过度放电,将对锂离子电池的正负极造成永久的损坏。从分子层面看,过度放电将导致负极碳过度释出锂离子而使得其片层结构出现塌陷,而过度充电将把太多的锂离子硬塞进负极碳结构里去,使得其中一些锂离子再也无法释放出来。因此对锂离子电池充放电过程的研究,有助于对锂电池进行合理的充电控制、对锂电池质量检测及延长锂电池的使用寿命等。 1.锂离子电池的充放电原理 目前锂电池公认的基本原理是所谓的”摇椅理论”。锂电池的充放电不是通过传统的方式实现电子的转移,而是通过锂离子在层状物质的晶体中的出入,发生能量变化。在正常充放电情况下,锂离子的出入一般只引起层间距的变化,而不会引起晶体结构的破坏,因此从充放电反映来讲,锂离子电池是一种理想的可逆电池。在充放电时锂离子在电池正负极往返出入,正像摇椅一样在正负极间摇来摇去,故有人将锂离子电池形象称为摇椅池。 电池由正极锂化合物、中间的电解质膜及负极碳组成。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。一般采用嵌锂过渡金属氧化物做正极,如LiCoO2、LiNiO2、LiMn2O4。做为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz等。电解质采用LiPF6的乙烯碳酸脂(EC)丙烯碳酸脂、(PC)和低粘度二乙基碳酸脂(DEC)等烷基碳酸脂搭配的高分子材料。隔膜采用聚烯微多孔膜如PE、PP 或它们复合膜。外壳采用钢或铝材料,具有防爆的功能。锂离子电池的额定电压为3.6V。电池充满时的电压(称为终止充电电压)一般为 4.2V;锂离子电池终止放电电压为2.5V。如果锂离子电池在使用过程中电压已降到2.5V后还继续使用,则称为过放电,对电池有损害。 锂离子电池的特性是通过其充放电过程中端电压的变化反映出来的。电池端电压的变化间接体现了电池的充放电容量、内阻、表面升温、充放电平台、电极极化程度、寿命等指标随时间变化的规律。因此,充放电电压特性一致的电池在电化学特性上具有很好的一致性[3]。利用电池的动态特性配组的结果也会相应不同。

动力电池测试项目和测试标准

测试项目 1.测试项目:循环特性(12℃*10Cycle): 测试方式:电池在12±2℃的环境下以0.2C的电流进行充放电循环10次,再将电池在常温下标准充放电一次 评价标准:解析结果:负极锂析出状态 2.测试项目:电池倍率放电特性测试 测试方式:池在室温下:①放电:CC 0.5C-下限电压;②休止10min;③充电CC/CV0.5C-上限电压0.05C截止④休止5min;⑤放电CC 0.2C-下线 电压;⑥休止10min;⑦调整倍率至0.5C、1C、2C重复③~⑥步骤。 评价标准:放电容量,维持率 3.测试项目:电池温度放电特性测试 测试方式:电池在室温下以CC/CV 0.5C满充电至上限电压,0.05C截止; 然后分别在25℃、-20℃、-10℃、0℃、60℃的环境下放置2小时后进行0.2C放电 至下限电压。 评价标准:放电容量,维持率 4.测试项目:60℃/7天储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在60±2℃的环境中储存7天,最后在室温下放置2Hr后进行标准放电, 记录储存前后放电容量,试验完成后进行尺寸外观检查。 评价标准:残存容量≥80%,外观无漏液。参考项[恢复容量≥80%,内阻增加比例≤25%],厚度增加比例≤10% 5.测试项目:常温/30天储存测试

测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存 前后放电容量,试验完成后进行尺寸、外观检查。 评价标准:残存容量≥90%。参考项[恢复容量≥95%,内阻增加比例≤25%] 6.测试项目:85℃*4H储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存 前后放电容量,试验完成后进行尺寸、外观检查。 评价标准:残存容量≥90%。参考项[恢复容量≥95%,内阻增加比例≤25%] 7.测试项目:高温高湿测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在60±2℃/95%RH的环境中储存7Day,最后在室温下放置进行0.2C残存 放电及0.2C回复放电,试验完成后进行尺寸外观检查。 评价标准:回复容量≥80%,外观无漏液、表面无损害。参考项[内阻增加比例≤40%] 8.测试项目:循环(0.5C)特性测试 测试方式:电池在室温下先进行标准充电,之后测定电池厚度,再将电池在室温下以0.5C 的电流进行充放电循环500次,充放电之间休止30min;试验完成后进行厚 度检查。 评价标准:放电容量维持率:第1次=100%,第500次≥80%Cmin;厚度增加比例≤11%(Thickness Max)。 9.测试项目:过充电(3C-4.6V)测试 测试方式:室温下将完全放电电池以CC CV方式3C充电至4.6V,充电电流至20mA时或充电时间至8H后结束,试验完成2H后进行外观检查。 评价标准:电池无破裂、起火、冒烟、爆炸且电池最高温度≤150℃。 10.测试项目:过充电(1C-4.8V)测试 测试方式:室温下将完全放电电池以CC CV方式1C充电至4.8V,充电电流至20mA时或充电时间至8H后结束,试验完成2H后进行外观检查。 评价标准:电池无破裂、起火、冒烟、爆炸且电池最高温度≤150℃。 11.测试项目:电池过放电测试 测试方式:室温下将待测电池以0.2C的电流恒流放电至3.0V,后以CCCV 1C-充电截止电压反向充电90min结束试验完成2H后进行外观检查。 评价标准:电池无破裂、起火、冒烟、爆炸且电池最高温度≤150℃。

相关文档
最新文档