导数及其应用(1)

导数及其应用(1)
导数及其应用(1)

导数及其应用(1)

一、基础训练:

1.曲线(3ln 1)y x x =+在点()1,1处的切线方程为 430x y --= . 2.已知)1(3)1()(23-'+'+=f x f x x x f ,则)1()1(-'+'f f 的值为 4

3

- . 3.函数x e x x f )3()(-=的单调递增区间是 ),2(+∞ . 4.函数2

1ln 2

y x x =

-的单调递减区间为 ()0,1 . 5.函数32()31f x x x =-+在x = 2 处取得极小值.

6.若0,0a b >>,且函数()32422f x x ax bx =--+在1x =处有极值,则a b += 6 . 二、例题分析:

例1.设函数32()2f x x a x b x a =+++,2

()32

gx x x =-+,其中x R ∈,,a b 为常数,已知曲线()y f x =与()y g x =在点()2,0处有相同的切线l . 求,a b 的值,并写出切线l 的方程.

解:因为()23g x x '=-,所以直线l 的斜率(2)1k g '==,所以切线l 的方程为:2y x =-.

由(2)1281(2)8820f a b f a b a '=++=??=+++=?,得25a b =-??=?

所以a 的值为-2,b 的值为5,切线l 的方程为2y x =-.

例2.已知,a b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点.

(1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点.

解:(1)因为()232f x x ax b '=++,

所以()()1320

1320

f a b f a b '=++=???'-=-+=??,解得30a b =-??=?

经检验:3,0a b =-=符合题意.

(2)由题意知:()()

()2

3

3212g x x x x x '=-+=-+

令()0g x '=,解得122,1x x =-=

'(),()f x f x 随x 的变化情况如下表:

所以,()g x 的极小值点为2x =-,()g x 无极大值.

例3.函数3

1()3

f x x kx =

-,其中实数k 为常数. (I) 当4k =时,求函数的单调区间;

(II) 若曲线()y f x =与直线y k =只有一个交点,求实数k 的取值范围. 解:(I)因为2'()f x x k =-

当4k =时,2'()4f x x =-,令2'()40f x x =-=,所以122,2x x ==-

'(),()f x f x 随x 的变化情况如下表:

所以()f x 的单调递增区间是(,2)-∞-,(2,)+∞ 单调递减区间是(2,2)- (II)令()()g x f x k =-,所以()g x 只有一个零点 ;因为2'()'()g x f x x k ==- 当0k =时,3()g x x =,所以()g x 只有一个零点0

当0k <时,2'()0g x x k =->对R x ∈成立, 所以()g x 单调递增,所以()g x 只有一个零点

当0k >时,令2'()'()0g x f x x k ==-=,解得1x =2x =所以'(),()g x g x 随x 的变化情况如下表:

()g x 有且仅有一个零点等价于(0g <

即2(03g k =<,解得904k << 综上所述,k 的取值范围是94

k <

备用题:已知函数()ln (1)f x m x m x =+- ()m ∈R .

(Ⅰ)当2m =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性;

(III)若()f x 存在最大值M ,且0M >,求m 的取值范围. 解:(Ⅰ)当2m =时,()2ln f x x x =+.

22()1x f x x x

+'=

+=. 所以(1)3f '=. 又(1)1f =, 所以曲线()y f x =在点(1,(1))f 处的切线方程是13(1)y x -=-, 即320x y --=. (Ⅱ)函数()f x 的定义域为(0,)+∞, (1)()1m m x m

f x m x x

-+'=

+-=. ①当0m ≤时,由0x >知()10m

f x m x

'=

+-<恒成立, 此时()f x 在区间(0,)+∞上单调递减. ②当m ≥1时,由0x >知()10m

f x m x

'=

+->恒成立, 此时()f x 在区间(0,)+∞上单调递增.

③当01m <<时,由()0f x '>,得1m x m <

-,由()0f x '<,得1m

x m

>-, 此时()f x 在区间(0,

)1m m -内单调递增,在区间(,)1m m

+∞-内单调递减.

(III)由(Ⅱ)知函数()f x 的定义域为(0,)+∞,

①当0m ≤或m ≥1时,()f x 在区间(0,)+∞上单调,此时函数()f x 无最大值.

②当01m <<时,()f x 在区间(0,)1m m -内单调递增,在区间(,)1m m

+∞-内单调递减, 所以当01m <<时函数()f x 有最大值. 最大值(

)ln 11m m M f m m m m

==---. 因为0M >,所以有ln 01m m m m ->-,解之得e

1e m >+. 所以m 的取值范围是e

(,1)1e

+.

三、巩固练习:

1.在平面直角坐标系xOy 中,点P 在曲线C :3103y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 ()2,15- .

2.已知曲线()ln f x x =在点00(,())x f x 处的切线经过点(0,1)-,则0x 的值为 1 . 3.函数

32()15336f x x x x =--+的单调减区间为 ()1,11- .

4.函数x x y ln =的单调减区间为 ??

? ??e 1,0 .

5.函数()3

2

26f x x x m =-+(m 为常数)在[]2,2-上有最大值3,则此函数在[]2,2-上的

最小值是 37- .

6.若函数()32

31f x x a x =-+的图象与直线3y =只有一个公共点,则实数a 的取值范围是

()1,1-

7.已知()3

f x ax bx c =++在2x =处取得极值16c -.

(1)求实数,a b 的值;(2)若()f x 有极大值28,求()f x 在[]3,3-上的最小值. 解:(1)()2

3f x ax b '=+;因为()f x 在2x =处取得极值16c -

所以()()282212f a b c f a b

=++???'=+??,解得1,12a b ==-

经检验:1,12a b ==-符合题意.

(2)由(1)知: ()312f x x x c =-+,令()23120f x x '=-=,解得122,2x x =-=

'(),()f x f x 随x 的变化情况如下表:

所以,()f x 的极大值为()282428f c -=-++=,所以12c =.

所以()3

1212f x x x =-+,又()()321,24f f -==-,所以()min 4f x =-.

8.已知函数133

1(223

+-+=x m mx x x f )

,m ∈R . (Ⅰ)当1=m 时,求曲线)(x f y =在点))2(,2(f 处的切线方程; (Ⅱ)若)(x f 在区间(2,3)-上是减函数,求m 的取值范围. 解:(Ⅰ)当1=m 时,3

21()313

f x x x x =

+-+, 又2

'()23f x x x =+-,所以'(2)5f =. 又5(2)3

f =

, 所以所求切线方程为 5

5(2)3

y x -

=-,即153250x y --=. 所以曲线)(x f y =在点))2(,2(f 处的切线方程为025315=--y x .

(Ⅱ)因为2232('m mx x x f -+=), 令'(0f x =)

,得3x m =-或x m =. ①当0m =时,2'(0f x x =≥)

恒成立,不符合题意. ②当0m >时,()f x 的单调递减区间是(3,)m m -,若()f x 在区间(2,3)-上是减函数,

则32,

3.m m -≤-??≥?

解得3m ≥.

③当0m <时,()f x 的单调递减区间是(,3)m m -,若()f x 在区间(2,3)-上是减函数,

则2,

3 3.

m m ≤-??

-≥?,解得2m ≤-.

综上所述,实数m 的取值范围是3m ≥或2m ≤-.

9.已知函数2()()(0)x f x ax bx c e a =++>的导函数'()y f x =的两个零点为3-和0.

(Ⅰ)求()f x 的单调区间;

(Ⅱ)若()f x 的极小值为1-,求()f x 的极大值.

解:(Ⅰ)22()(2)()[(2)]x x x f x ax b e ax bx c e ax a b x b c e '=++++=++++.

令2()(2)g x ax a b x b c =++++, ∵0x

e >,

∴'()y f x =的零点就是2

()(2)g x ax a b x b c =++++的零点,且()f x '与()g x 符号相同.

又∵0a >,

∴当3,0x x <->或时,()g x >0,即()0f x '>,当30x -<<时,()g x <0,即()0f x '<, ∴()f x 的单调增区间是(-∞,-3),(0,+∞),单调减区间是(-3,0).

(Ⅱ)由(Ⅰ)知,x =0是()f x 的极小值点,所以有1,

0,93(2)0,c b c a a b b c =-??

+=??-+++=?

解得1,1,1a b c ===-.

所以函数的解析式为2()(1)x

f x x x e =+-.

又由(Ⅰ)知,()f x 的单调增区间是(-∞,-3),(0,+∞),单调减区间是(-3,0). 所以,函数()f x 的极大值为3

3

5

(3)(931)f e e --=--=

10.已知函数211

()ln (,0)22

f x x a x a a =

--∈≠R . (Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间;

(Ⅲ)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.

(Ⅰ)2a =时,211()2ln ,(1)022f x x x f =

--= 2

'(),

'(1)1f x x f x

=-=-

曲线()y f x =在点(1,(1))f 处的切线方程10x y +-=

(Ⅱ)2'()(0)a x a

f x x x x x

-=-=

>

①当0a <时, 2

'()0x a

f x x

-=

>恒成立,函数()f x 的递增区间为()0,+∞

②当0a >时,令'()0f x =,解得x =

x =

所以函数()f x 的递增区间为

+∞,递减区间为

(Ⅲ)对任意的[1,)x ∈+∞,使()0f x ≥成立,只需任意的[1,)x ∈+∞,min ()0f x ≥

①当0a <时,()f x 在∞[1,+)上是增函数, 所以只需(1)0f ≥ ,而11

(1)ln1022

f a =--= ,所以0a <满足题意;

②当01a <≤时,01<

≤,()f x 在∞[1,+)上是增函数,

所以只需(1)0f ≥ 而11

(1)ln1022

f a =

--= ,所以01a <≤满足题意;

③当1a >时1>,()f x 在上是减函数,∞)上是增函数,

所以只需0f ≥即可, 而(1)0f f <= ,从而1a >不满足题意; 综合①②③实数a 的取值范围为(,0)(0,1]-∞ .

(完整word版)第一章导数及其应用测试题(含答案)

第一章导数及其应用测试题 一、 选择题 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 2 2sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ). A .]21,21[2π e B .)2 1 ,21(2πe C .],1[2πe D .),1(2π e 8.积分 =-? -a a dx x a 22( ).

教师用导数及其应用1

第十二章 导数及其应用 【知识图解】 【方法点拨】 导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。 1.重视导数的实际背景。导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。 2.深刻理解导数概念。概念是根本,是所有性质的基础,有些问题可以直接用定义解决。在理解定义时,要注意“函数()f x 在点0x 处的导数0()f x '”与“函数()f x 在开区间(,)a b 内的导数()f x '”之间的区别与联系。 3.强化导数在函数问题中的应用意识。导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。 4.重视“数形结合”的渗透,强调“几何直观”。在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。 5.加强“导数”的实践应用。导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。 6.(理科用)理解和体会“定积分”的实践应用。定积分也是解决实际问题(主要是几何和物理问题)

的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速直线运动的路程和变力作的功等,逐步体验微积分基本定理。 第1课 导数的概念及运算 【考点导读】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等); 2.掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念; 3.熟记基本导数公式; 4.掌握两个函数和、差、积、商的求导法则; 5.了解复合函数的求导法则.会求某些简单函数的导数.(理科) 【基础练习】 1.设函数f (x )在x =x 0处可导,则0lim →h h x f h x f )()(00-+与x 0,h 的关系是 仅与x 0有关而与h 无关 。 2.一点沿直线运动,如果由始点起经过t 秒后的距离为t t t t s 873 741234-+-= ,那么速度为零的时刻是 1,2,4秒末。 3.已知)1()('23f x x x f +=, 则=)2('f 0 。 4.已知),(,cos 1sin ππ-∈+=x x x y ,则当2'=y 时,=x 3 2π±。 5.(1)已知a x x a x f =)(,则=)1('f 2ln a a a +。 (2)(理科)设函数5()ln(23)f x x =-,则f ′1 ()3 =15-。 6.已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。 解:因为点P (1,2)在曲线ax x y +=3上,1=∴a 函数ax x y +=3和c bx x y ++=2的导数分别为a x y +='23和b x y +='2,且在点P 处有公切数 b a +?=+?∴12132,得b=2 又由c +?+=12122,得1-=c 【范例导析】 例1. 电流强度是单位时间内通过导体的电量的大小。从时刻0t =开始的t 秒内,通过导体的电量(单位:库仑)可由公式2 23q t t =+表示。 (1) 求第5秒内时的电流强度; (2) 什么时刻电流强度达到63安培(即库仑/秒)? 分析:为了求得各时刻的电流强度,类似求瞬时速度一样,先求平均电流强度,然后再用平均电流强度逼近瞬时电流强度。 解:(1)从时刻0t 到时刻0t t + 通过导体的这一横截面的电量为:

导数的简单应用

第三讲导数的简单应用 考点一导数的几何意义1.导数公式 (1)(sin x)′=cos x; (2)(cos x)′=-sin x; (3)(a x)′=a x ln a(a>0); (4)(log a x)′=1 x ln a(a>0,且a≠1). 2.导数的几何意义 函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y -f(x0)=f′(x0)·(x-x0). [对点训练] 1.(2018·兰州质检)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为() A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) [解析]f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1, ∴P(1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y=2x -1上,故选C. [答案]C 2.(2018·大同模拟)过点(1,-1)且与曲线y=x3-2x相切的切线方程为()

A .x -y -2=0或5x +4y -1=0 B .x -y -2=0 C .x -y +2=0 D .x -y -2=0或4x +5y +1=0 [解析] 设切点坐标为(x 0,y 0),y 0=x 30-2x 0,则曲线在(x 0,y 0) 处的切线斜率为y ′=3x 20-2,当x 0=1时斜率为1,切线方程为x - y -2=0,当x 0≠1时,过(1,-1)点的切线的斜率为x 30-2x 0+1x 0-1 =x 20+x 0-1=3x 20-2,解得x 0=-12,其斜率为-54,切线方程为5x +4y -1 =0,所以A 正确,故选A. [答案] A 3.(2018·西安质检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( ) A .0 B .2 C .1 D .3 [解析] 因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以 令y ′=2x -3x =-1,得x =1,x =-32(舍),即切点为(1,1),又切点 (1,1)在直线y =-x +m 上,所以m =2,故选B. [答案] B 4.若曲线y =x 在点(a ,a )处的切线与两个坐标轴围成的三角形的面积为2,则a =________. [解析] y =x =x 12 ,∴y ′=12x -12 ,于是曲线在点(a ,a )处的 切线方程为y -a =1 2a (x -a ),令x =0,得y =a 2;令y =0,得x

导数在实际生活中的应用1教案

导数在实际生活中的应用1 教学目标 1、使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用 2、提高将实际问题转化为数学问题的能力 教学重点理利用导数解决生活中的一些优化问题 教学难点利用导数解决生活中的一些优化问题 教学过程 一.创设情景 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二.新课讲授 1、导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方 面: (1)与几何有关的最值问题; (2)与物理学有关的最值问题; (3)与利润及其成本有关的最值问题; (4)效率最值问题。 2、解决优化问题的方法: 首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 3 三.例题讲解 4、学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海

_ x _ x _ 60 _ 60 x 报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。如何设计海报的尺寸,才能使四周空心面积最小 解:设版心的高为xdm ,则版心的宽为 128 x dm,此时四周空白面积为 128512 ()(4)(2)12828,0S x x x x x x =++-=++> 求导数,得' 2512()2S x x =-。 令' 2512()20S x x =-=,解得16(16x x ==-舍去)。 于是宽为128128 816 x ==。 当(0,16)x ∈时,' ()S x <0;当(16,)x ∈+∞时,' ()S x >0. 因此,16x =是函数()S x 的极小值,也是最小值点。 所以,当版心高为16dm ,宽为8dm 时,能使四周空白面积最小。 答:当版心高为16dm ,宽为8dm 时,海报四周空白面积最小。 5、圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省 解:设圆柱的高为h ,底半径为R ,则表面积 S=2πRh+2πR 2 由V=πR 2h ,得2 V h R π=,则 S(R)= 2πR 2V R π+ 2πR 2=2V R +2πR 2 令 22()V s R R '=-+4πR=0 解得,R=3 2V π,从而h=2V R π=2 3() 2V ππ =34V π=23V π 即h=2R 因为S(R)只有一个极值,所以它是最小值 答:当罐的高与底直径相等时,所用材料最省 6、在边长为60 cm 的正 方形铁片的四角切去相等的正方形,再把它

高考数学大一轮复习配套课时训练:第二篇 函数、导数及其应用 第11节 导数的简单应用(含答案)

第11节导数的简单应用 课时训练练题感提知能 【选题明细表】 A组 一、选择题 1.函数f(x)=4x3-3x2-6x+2的极小值为( B ) (A)3 (B)-3 (C)(D)- 解析:f′(x)=12x2-6x-6=6(x-1)(2x+1), 因此f(x)在(-∞,-),(1,+∞)上为增函数, 在(-,1)上为减函数, 所以函数f(x)在x=1处取到极小值f(1)=-3.故选B. 2.(2013广东省六校质检)已知y=x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值范围是( D ) (A)b<-1或b>2 (B)b≤-1或b≥2

(C)-1

又x∈[0,], 所以x=. 且f()=+, 又f(0)=2,f()=, 所以f()为最大值. 故选B. 5.(2013济宁模拟)若函数h(x)=2x-+在(1,+∞)上是增函数,则实数k的取值范围是( A ) (A)[-2,+∞) (B)[2,+∞) (C)(-∞,-2] (D)(-∞,2] 解析:因为h′(x)=2+, 若h(x)在(1,+∞)上是增函数, 则h′(x)≥0在(1,+∞)上恒成立, 故2+≥0恒成立, 即k≥-2x2恒成立. 又x>1, ∴-2x2<-2, 因此,需k≥-2,故选A.

高中数学选修1-1第三章《导数及其应用》知识点归纳及单元测试[1]

第三章《导数及其应用》单元测试题 一、 选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A)x x f π4)(=' (B)x x f 2 4)(π=' (C) x x f 28)(π=' (D)x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B)[]8,2 (C)[]2,1 (D)[]2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时, ()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则( ) (A ) 10<b (D )2 1< b 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.294 e B.22e C.2 e D.22e 7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 8.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有 ()0f x ≥,则 (1)'(0)f f 的最小值为( )A .3 B .52 C .2 D .3 2 9.设2 :()e ln 21x p f x x x mx =++++在(0)+∞, 内单调递增,:5q m -≥,则p 是q 的

高中数学_导数的简单应用教学设计学情分析教材分析课后反思

《导数的简单应用》教学设计 教材分析: 教材的地位和作用,导数的简单应用”是高中数学人教A 版教材选修2-2第一章的内容,它是中学数学与大学数学一个的衔接点。导数的应用我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具 通过本节的学习可以使学生具有树立利用导数处理问题的意识。 根据新课程标准的要求如下: (1)知识与技能目标:能利用导数求函数的单调区间;能结合函数的单调区间求参数的取值范围。 (2) 情感、态度与价值观目标: 培养学生善于观察、勇于探索的良好习惯和严谨的科学态度,渗透辩证唯物主义的方法论和认识论。 3.教学重点与难点: 教学重点:(1)函数单调性的判断与单调区间的求法; (2)利用函数的单调性求参数的取值范围。 教学难点:(1)含参函数的单调区间的求法; (2) 构造函数求参数的取值范围。 针对这节复习课的特点我设计了 (一) 必备知识(二)典例分析(三)要点总结(四)课堂达标四个主要教学环节. 环节(一):必备知识: 我设计了三个问题(1)由给定某函数图像,让学生观察函数的图像,体会导数与函数单调性,当如果)(x f '>0,与函数y=f(x)在这个区间内单调递增,如果)(x f '<0,那么函数y=f(x)在这个区间内单调递减的直观印象。而且直接从图象入手,以直观形象带动学生对知识的回忆,学生在观察原函数图像的过程中就在进行知识和信息的整理,既能充分调动学生参与课堂的积极性,又加深了学生对函数的单调性和导数的关系的理解,同时也为后面例题做好铺垫。 (2)由给定导函数图像,让学生亲自动手画出原函数的图像,既能充分调动学生参与课堂的积极性,而且直接从问题入手,以问题带动学生对知识的回忆,学生在动手画原函数图像的过程中就在进行知识和信息的整理,加深了学生对函数的单调性和导数的关系的理解,同时也为后面例题做好铺垫。(3)通过判断正误,深化学生对概念的理解与掌握,

导数及其应用大题精选 (1)

导数及其应用大题精选 姓名____________班级___________学号____________分数______________ 1 .已知函数 )0()(>++ =a c x b ax x f 的图象在点(1,)1(f )处的切线方程为1-=x y . (1)用a 表示出c b ,; (2)若x x f ln )(≥在[1,+∞)上恒成立,求a 的取值范围. 2 .已知2 ()I 若()f x 在x=1处取得极值,求a 的值; ()II 求()f x 的单调区间; (Ⅲ)若()f x 的最小值为1,求a 的取值范围 . 4 .已知函数 ()ln f x x x =. (Ⅰ)求()f x 的单调区间; (Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 5 .已知函数()ln a f x x x =- ,其中a ∈R . (Ⅰ)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (Ⅱ)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.

6 .已知函数2 ()4ln f x ax x =-,a ∈R . (Ⅰ)当1 2 a = 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性. 7 .已知函数()e (1)x f x x =+. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若对于任意的(,0)x ∈-∞,都有()f x k >,求k 的取值范围. 8 .已知函数a ax x x f 23)(3 +-=,)(R a ∈. (Ⅰ) 求)(x f 的单调区间; (Ⅱ)曲线)(x f y =与x 轴有且只有一个公共点,求a 的取值范围. 9 .已知函数 22()2ln (0)f x x a x a =->. (Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若()f x 在[1]e , 上没有零点,求实数a 的取值范围. 10.已知曲线 ()x f x ax e =-(0)a >. (Ⅰ)求曲线在点(0,(0)f )处的切线; (Ⅱ)若存在实数0x 使得0()0f x ≥,求a 的取值范围.

数学人教A版选修2-2讲义:第一章导数及其应用1.1 1.1.1~1.1.2

1.1.1~1.1.2 变化率问题 导数的概念 1.平均变化率 函数f (x )从x 1到x 2的平均变化率Δy Δx =□ 01f (x 2)-f (x 1)x 2-x 1 . 若函数y =f (x )在点x =x 0及其附近有定义,则函数y =f (x )在x 0到x 0+Δx 之间的平均变化率是Δy Δx =□ 02f (x 0+Δx )-f (x 0)Δx . 2.瞬时变化率 设函数y =f (x )在x 0附近有定义,当自变量在x =x 0附近改变Δx 时,函数值的改变量Δy =□ 03f (x 0+Δx )-f (x 0). 如果当Δx 趋近于0时,平均变化率Δy Δx 趋近于一个常数L ,则常数L 称为函数f (x )在x 0的瞬时变化率,记作□ 04lim Δx →0 f (x 0+Δx )-f (x 0)Δx =L . 3.函数y =f (x )在x =x 0处的导数 一般地,函数y =f (x )在点x 0处的瞬时变化率是lim Δx →0 Δy Δx =□ 05lim Δx →0 f (x 0+Δx )-f (x 0) Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或□ 06y ′| x =x 0.即f ′(x 0)=□ 07lim Δx →0 f (x 0+Δx )-f (x 0)Δx . 简言之,函数y =f (x )在x =x 0处的导数就是y =f (x )在x =x 0处的□ 08瞬时变化率.

导数概念的理解 (1)Δx→0是指Δx从0的左右两侧分别趋向于0,但永远不会为0. (2)若f′(x0)=lim Δx→0Δy Δx存在,则称f(x)在x=x0处可导并且导数即为极限值. (3)令x=x0+Δx,得Δx=x-x0, 于是f′(x0)=lim x→x0f(x)-f(x0) x-x0 与概念中的f′(x0)=lim Δx→0 f(x0+Δx)-f(x0) Δx意 义相同. 1.判一判(正确的打“√”,错误的打“×”) (1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.() (2)瞬时变化率是刻画某函数值在区间[x1,x2]上变化快慢的物理量.() (3)在导数的定义中,Δx,Δy都不可能为零.() 答案(1)√(2)×(3)× 2.做一做 (1)自变量x从1变到2时,函数f(x)=2x+1的函数值的增量与相应自变量的增量之比是________. (2)函数f(x)=x2在x=1处的瞬时变化率是________. (3)函数y=f(x)=1 x在x=-1处的导数可表示为________. 答案(1)2(2)2(3)f′(-1)或y′|x =-1 探究1求函数的平均变化率 例1求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率,并求当x0=2,Δx=0.1时平均变化率的值. [解]函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为 f(x0+Δx)-f(x0) (x0+Δx)-x0= [3(x0+Δx)2+2]-(3x20+2) Δx =6x0·Δx+3(Δx)2 Δx=6x0+3Δx. 当x0=2,Δx=0.1时,函数y=3x2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.

导数及其应用复习题及答案 (11)

第 1 页 共 1 页 导数及其应用复习题及答案 6.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析 y ′=-3x 2+27=-3(x +3)(x -3),当00;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案 3 7.(2020·安徽江南十校联考)已知x =1是函数f (x )=(x 2+ax )e x 的一个极值点,则曲线y =f (x )在点(0,f (0))处的切线斜率为________. 解析 由f (x )=(x 2+ax )e x ,得f ′(x )=(x 2+ax +2x +a )e x , 因为x =1是函数f (x )=(x 2+ax )e x 的一个极值点, 所以f ′(1)=(3+2a )e =0,解得a =-32. ∴f ′(x )=? ?? ??x 2+12x -32e x ,所以f ′(0)=-32. 所以曲线f (x )在点(0,f (0))处的切线斜率为-32. 答案 -32 8.(2020·汉中调研)直线y =b 分别与直线y =2x +1和曲线y =ln x 相交于点A ,B ,则|AB |的最小值为________. 解析 设两个交点分别为A ? ?? ??b -12,b ,B (e b ,b ), 则|AB |=e b -b -12. 令g (x )=e x -x -12,则g ′(x )=e x -12. 由g ′(x )=0,得x =-ln 2. 所以g (x )在区间(-∞,-ln 2)单调递减,在区间(-ln 2,+∞)上单调递增, ∴g (x )min =g (-ln 2)=1+ln 22. 答案 1+ln 22

导数的简单应用专题训练

导数的简单应用专题训练 1.设f (x )=x ln x ,f ′(x 0)=2,则x 0=( ) A .e 2 B .e C . ln 2 2 D .ln 2 解析:选B ∵f ′(x )=1+ln x ,∴f ′(x 0)=1+ln x 0=2,∴x 0=e ,故选B . 2. 已知函数f (x )与f ′(x )的图象如图所示, 则函数g (x )= f (x ) e x 的递减区间为( ) A .(0,4) B .(-∞,1),???? 43,4 C .??? ?0,43 D .(0,1),(4,+∞) 解析:选D g ′(x )=f ′(x )e x -f (x )e x (e x )2 =f ′(x )-f (x ) e x ,令g ′(x )<0即 f ′(x )-f (x )<0, 由图可得x ∈(0,1)∪(4,+∞),故函数单调减区间为(0,1),(4,+∞),故选D . 3. 若函数f (x ) ln x 在(1,+∞)上单调递减,则称f (x )为P 函数.下列函数中为P 函数的序 号为( ) ①f (x )=1 ②f (x )=x ③f (x )=1 x ④f (x )=x A .①②④ B .①③ C .①③④ D .②③ 解析:选B 当x >1时:f (x )ln x =1 ln x 单调递减,①是;????x ln x ′=ln x -1ln 2x ,所以函数在(e ,+∞)上单调递增, ②不是;????1x ln x ′=-(ln x +1)ln 2 x <0,∴③是;????x ln x ′=(ln x -2)2x ln 2x ,所以函数在(e 2,+∞)上单调递增,④不是;选B . 4.已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值是( ) A .e B .2e C .1 D .2 解析:选C 由函数的解析式可得y ′=a e x +1,则切线的斜率k =y ′|x =x 0=a e x 0+1,

导数及其应用(1)

江苏省2010届高三数学专题过关测试 导数及其应用(1)  班级姓名学号成绩 一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的) 题号12345678 答案 1. 函数y=x2cos x的导数为 A.y′=x2cos x-2x sin x B.y′=2x cos x+x2sin x C.y′=2x cos x-x2sin x D.y ′=x cos x-x2sin x 2. 若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x-y-1=0,则 A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在 3. 函数 在区间 上的最大值是( ) A. B. C. D. 4.函数y=x3-3x的极大值为m,极小值为n,则m+n为 A.0 B.1 C.2 D.4  5.已知函数 在 时取得极值,则实数 的值是( )

A. B. C. D. 6.在函数 的图象上,其切线的倾斜角小于 的点中,坐标为整数的点的个数是() A. B. C. D. 7.三次函数y=f(x)=ax3+x在x∈(-∞,+∞)内是增函数,则 A.a>0 B.a<0 C.a=1 D.a= 8.函数 的定义域为开区间 ,导函数 在 内的图象如图所示,则函数

在开区间 内有极小值点( ) A.1个 B.2个 C.3个 D. 4个 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 9.曲线 在点 处的切线方程是 . 10.与直线2x-6y+1=0垂直,且与曲线y=x3+3x2-1相切的直线方程是 ___________. 11.将正数a分成两部分,使其平方和为最小,这两部分应分成 __________和_________. 12.已知函数 在 处可导,且 ,则 . 三、解答题:(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.) 13.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3

高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章 单元测试题 一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点() A.1 个B.2 个 C.3 个D.4 个 1 1 2.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在 1 同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是() C.8D.4 2 3.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( ) ππ3 A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π) 3 π 3 C.[ 4π,π ) D.[ 2,4π] 1 4.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()

3 3 A.m≥2 B.m>2 3 3 C.m≤2 D.m<2 x 2 2 5.函数f ( x) =cos x-2cos 2的一个单调增区间是 () f x 0+3 -f x 0 Δx 6.设f ( x) 在x=x0 处可导,且lim Δx =1, Δx→0 则 f ′(x0)等于( ) A.1 B.0 C.3 x+9 7.经过原点且与曲线y=x+5相切的切线方程为() A.x+y=0 B.x+25y=0 C.x+y= 0 或x+25y=0 D.以上皆非 8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2- 3b<0 时,f ( x) 是() A.增函数 B.减函数 C.常数 D.既不是增函数也不是减函数

第一章导数及其应用第11课时导数在实际生活中的应用教案苏教版选修2_2

导数在实际生活中的应用 【教学目标】 1. 进一步熟练函数的最大值与最小值的求法; ⒉初步会解有关函数最大值、最小值的实际问题. 【教学重点、难点】 解有关函数(如边际函数、边际成本)最大值、最小值的实际问题. 【教学过程】 一、复习引入: 导数在实际生活中有着广泛的应用,例如,用料最省、利润最大、效率最高等最优解问题,常常可以归结为函数的最值问题,从而可用导数来解决. 利用导数求函数的最值步骤: (1)求) (x f在(,) a b内的极值; (2)将) (x f的各极值与) (a f、) (b f比较得出函数) (x f在[,] a b上的最值. 二、例题分析: 例1、在边长为60cm的正方形铁片的四角切去相等的小正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,当箱底的边长是多少时,箱子的容积最大?最大容积是多少? 例2、圆柱形金属饮料罐的容积一定时,它的高与底面半径应怎样选取,才能使所用的材料最省?

b 变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使其容积有最大值? 例3、一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周CD BC AB l ++=最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b . 例4、已知电源的内阻为r ,电动势为E ,当外电阻R 多大时,才能使电功率最大?最大电功率是多少?

例5、强度分别为a ,b 的两个光源A ,B 间的距离为d ,试问:在连结两光源的线段AB 上,何处照度最小?试就a =8,b =1,d =3时回答上述问题.(照度与光的强度成正比,与光源距离的平方成反比) 例6、在经济学中,生产x 单位产品的成本称为成本函数,记为()C x ,出售x 单位产品的收益称为收益函数,记为()R x ,()()R x C x -称为利润函数,记为()P x , (1)如果632()100.00351000C x x x x -=-++,那么生产多少单位产品时,边际)(x C '最低?(边际成本:生产规模增加一个单位时成本的增加量) (2)如果()501000C x x =+,产品的单价()1000.01p x x =-,那么怎样定价可使利润最大?

专题一 第4讲 导数的简单应用

第4讲 导数的简单应用 [考情分析] 1.导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2.应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 考点一 导数的几何意义与计算 核心提炼 1.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)?? ?? f (x ) g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 2.导数的几何意义 (1)函数在某点的导数即曲线在该点处的切线的斜率. (2)曲线在某点的切线与曲线过某点的切线不同. (3)切点既在切线上,又在曲线上. 例1 (1)已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)-ln x ,则f ′(2)的值为( ) A.74 B .-74 C.94 D .-94 答案 B 解析 ∵f (x )=x 2+3xf ′(2)-ln x , ∴f ′(x )=2x +3f ′(2)-1x , 令x =2,得f ′(2)=4+3f ′(2)-1 2, 解得f ′(2)=-7 4 . (2)(2020·北京通州区模拟)直线l 经过点A (0,b ),且与直线y =x 平行,如果直线l 与曲线y =x 2相切,那么b 等于( ) A .-14 B .-12 C.14 D.12

答案 A 解析 直线l 经过点A (0,b ),且与直线y =x 平行,则直线l 的方程为y =x +b ,直线l 与曲线y =x 2相切,令y ′=2x =1,得x =12,则切点为????12,14,代入直线l 的方程,解得b =-14. 易错提醒 求曲线的切线方程要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点. 跟踪演练1 (1)(2020·内蒙古自治区模拟)曲线y =(ax +2)e x 在点(0,2)处的切线方程为y =-2x +b ,则ab 等于( ) A .-4 B .-8 C .4 D .8 答案 B 解析 y ′=e x (ax +2+a ), 故k =y ′|x =0=2+a =-2,解得a =-4, 又切线过点(0,2),所以2=-2×0+b , 解得b =2,所以ab =-8. (2)直线2x -y +1=0与曲线y =a e x +x 相切,则a 等于( ) A .e B .2e C .1 D .2 答案 C 解析 设切点为(n ,a e n +n ),因为y ′=a e x +1, 所以切线的斜率为a e n +1, 切线方程为y -(a e n +n )=(a e n +1)(x -n ), 即y =(a e n +1)x +a e n (1-n ), 依题意切线方程为y =2x +1, 故????? a e n +1=2,a e n (1-n )=1, 解得a =1,n =0. 考点二 利用导数研究函数的单调性 核心提炼 利用导数研究函数单调性的关键 (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域.

导数的应用(1)专题

(1)当aHb 时,讨论函数f (X)的单调性; 全国名校高中数学二轮专题提分优质专题汇编(附详解) 导数第2节 导数的应用(1)单调性 1.(优质专题天津文 20( 1))已知函数f(x) =4X -X 4 ,X 迂R ,求f(x)的单调性; 4.(优质专题全国2文21(1))设函数f (x ) = (1 —x 2 )eX . (1)讨论f ( X )的单调性; 2.(2013 广东文 21)设函数 f(x) = x 3-kx 2+x (k 迂 R ). (1)当k =1,求函数f (x)的单调区间; 3 2 4 5.(优质专题重庆文19 (1))已知函数f ( x )= ax 3 +x 2 ( a W R )在x = -—处取得极值. 3 若g (X ) = f ( X )eX ,讨论g (X )的单 调性. 3.(优质专题四川文21 (1))已知函数f(x)=-2xlnx + x 2 -2ax+a 2 ,其中a>0. 6. ( 2013湖北文21) 设a^O ,b^O ,已知函数 ax+ b 设g (X )为f (X )的导函数,讨论g (X )的单调性; 心x+1

全国名校高中数学二轮专题提分优质专题汇编(附详解) 7.(优质专题江苏19( 1))已知函数f (x)= x' + ax2 +b(a,b壬R).试讨论f(x)的单调性. 9.(优质专题新课标2卷文21(1))已知函数f ( X)=lnx+a 1- X).讨论f ( X)的单调性. 8.(优质专题山东文20( 1))设f(x)=xlnx-ax2+(2a-1)x,a迂R . 10.(优质专题全国1文21*( 1))已知函数f( x)= e x(e x-a)—a2x. (1)令g(x )= f '(X ),求g(x )的单调区间; (1)讨论f(X)的单调性;

第一章导数及其应用练习题

第一章导数及其应用练习题 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第一章导数及其应用 1.1 变化率与导数 1.1.1 变化率问题1.1.2 导数的概念 1.已知函数f(x>=2x2-4的图象上一点(1,-2>及邻近一点(1+Δx,-2+Δy>,则错误!等于( >.b5E2RGbCAP A.4B.4xC.4+2ΔxD.4+2(Δx>2 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是( >. A.4 B.4.1 C.0.41 D.3 3.如果某物体的运动方程为s=2(1-t2>(s的单位为m,t的单位为s>,那么其在1.2 s末的瞬时速度为( >.p1EanqFDPw A.-4.8 m/s B.-0.88 m/sC.0.88 m/s D.4.8 m/s 4.已知函数y=2+错误!,当x由1变到2时,函数的增量Δy=________. 5.已知函数y=错误!,当x由2变到1.5时,函数的增量Δy=________. 6.利用导数的定义,求函数y=错误!+2在点x=1处的导数.7.已知函数y=f(x>=x2+1,则在x=2,Δx=0.1时,Δy的值为( >. A.0.40 B.0.41 C.0.43 D.0.44 8.设函数f(x>可导,则错误!错误!等于( >.DXDiTa9E3d A.f′(1> B.3f′(1> C.错误!f′(1> D.f′(3>

9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________. 10.某物体作匀速运动,其运动方程是s=vt,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.RTCrpUDGiT 11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0= 1.6×10-3s,求子弹射出枪口时的瞬时速度.5PCzVD7HxA 12.(创新拓展>已知f(x>=x2,g(x>=x3,求满足f′(x>+2=g′(x>的x的值. 1.1.3导数的几何意义 1.已知曲线y=错误!x2-2上一点P错误!,则过点P的切线的倾斜角为( >.jLBHrnAILg A.30° B.45° C.135° D.165° 2.已知曲线y=2x3上一点A(1,2>,则A处的切线斜率等于( >. A.2 B.4C.6+6Δx+2(Δx>2D.6 3.设y=f(x>存在导函数,且满足错误!错误!=-1,则曲线y=f(x>上点(1,f(1>>处的切线斜率为( >.xHAQX74J0X A.2 B.-1 C.1 D.-2 4.曲线y=2x-x3在点(1,1>处的切线方程为________.

《第一章导数及其应用》教材分析与教学建议(精)

《第一章 导数及其应用》教材分析与教学建议 广州市黄埔区教育局教研室 肖凌戆 导数是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用,任何事物的变化率都可以用导数来描述,其基本思想是以直代曲。导数是研究函数和解决实际生活中优化问题的重要工具. 在普通高中数学课程标准中,规定导数及其应用的教学内容有: (1)导数概念及其几何意义; (2)导数的运算; (3)导数在研究函数中的应用; (4)生活中的优化问题举例(导数在解决实际问题中的应用); (5)定积分与微积分基本定理.(文科数学不做要求) 本章内容在普通高中数学课程标准实验教材中的相应位置是:人教A 版选修1-1第三章,人教A 版选修2-2第一章. 一、课标要求 导数及其应用的基本教学要求是: 1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;通过函数图象直观地理解导数的几何意义. 2.能根据导数定义,求函数2,,y c y x y x ===,3,y x =1y x =,y =只要求求函数2,,y c y x y x ===, 1y x =的导数);能利用给出的基本初等函数的导数公式及导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如()f ax b +的导数(文科数学不做要求);会使用导数公式表. 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 4.结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及在给定区间上不超过三次的多项式函数的最大值、最小值. 5.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 6.通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念.(文科数学不做要求) 7.通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义.(文科数学不做要求) 8.体会微积分的建立在人类文化发展中的意义和价值. 二、课时安排 1.本章理科教学时间约需24课时,具体分配如下: 变化率与导数 约3课时

相关文档
最新文档