重庆大学2008年矩阵论研究生考试试题

重庆大学2008年矩阵论研究生考试试题
重庆大学2008年矩阵论研究生考试试题

重庆大学有限元考试题目

一、简答题 1、弹性力学和材料力学在研究对象上的区别? 答:材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件。弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等。因此,弹性力学的研究对象要广泛得多。 2、理想弹性体的五点假设? 答:连续性假定、完全弹性假定、均匀性假定、各向同性假定、小位移和小变形的假定。 3、什么叫轴对称问题,采用什么坐标系分析?为什么? 答:如果弹性体的几何形状、约束状态以及外载荷都对称于某一根轴,那么弹性体所有的位移、应变和应力也都对称于这根轴,这类问题称为轴对称问题。对于轴对称问题,采用圆柱坐标比采用直角坐标方便得多。当以弹性体的对称轴为Z 轴时,则所有的应力分量,应变分量和位移分量都只与坐标r、z有关,而与θ无关。 4、梁单元和杆单元的区别? 答:梁单元和杆单元在形状上没有多大区别,其截面可以是任何形状,有一方向的长度远远大于另外两个方向。主要区别是受力不同,梁单元主要承受弯矩,杆单元主要承受轴向力。杆单元通常用于网架、桁架的分析;而梁单元则基本上可以适用于各种情况。 5、薄板弯曲问题与平面应力问题的区别? 答:平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷,变形发生在板面内;后者受力特点是当承受垂直于板面的载荷时,板在弯曲应力和扭转应力作用下将变成曲面板。 6、有限单元法结构刚度矩阵的特点? 答:主对称元素总是正的;对称性;稀疏性;奇异性;非零元素呈带状分布。7、有限单元法的收敛性准则? 答:完备性要求,协调性要求。 完备性要求。如果出现在泛函中场函数的最高阶导数是m阶,则有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式。或者说试探函数中必须包括本身和直至m阶导数为常数的项。单元的插值函数满足上述要求时,我们称单元是完备的。 协调性要求。如果出现在泛函中的最高阶导数是m阶,则试探函数在单元交界面上必须具有Cm-1连续性,即在相邻单元的交界面上应有函数直至m-1阶的连续导数。 当单元的插值函数满足上述要求时,我们称单元是协调的。 8、简述圣维南原理在工程实际中的应用? 答:在工程实际中物体所受的外载荷往往比较复杂,一般很难完全满足边界条件。当所关心的并不是载荷作用区域内的局部应力分布时,可以利用圣维南原理加以简化。圣维南原理在钢管混凝土拱桥分析中的应用,能够得到合理的结果,优化了结构性能。圣维南原理在材料力学中也有应用,在工程实际中经常要计算连接件,如铆钉,螺栓,键等,由于构件本身尺寸较小,变形比较复杂,采用计算其名义应力,然后根据直接的试验结果,确定其相应的许用应力,来进行强度计算。 二、论述题 1、任何一个有限元分析问题都是空间问题,什么情况下可以简化为平面问题?轴对称问题?空间梁问题?为什么 答:当物体具有特殊形状,受特殊的外力,特殊的位移约束时,空间问题就可以简化近似的典型问题进行求解,所得到的结果能满足工程上的精度要求,而分析计算工作量大大减少。平面问题分为平面应力问题和平面应变问题,当研究对象一个方向的尺寸远小于另两个方向,外力和约束仅平行于板面作用而沿Z向不变,且仅有的三个应力分量是x、y的函数时,这样的空间问题就可以转换成平面应力问题;当研究对象一个方向的尺寸远大于另外两个方向的尺寸且沿长度方向几何形状和尺寸不变,外力平行于横截面作用而沿长度z方向不变,任意一横截面均可视为对称面,这样的空间问题就可以转换成平面应变问题,如挡土墙、重力坝。如果弹性体的几何形状、约束状态以及外载荷都对称于某一根轴(过该轴的任意平面都是对称平面),那么弹性体的所有应力、应变和位移也就对称与这根轴,这样的问题就可以转换为轴对称问题。当构件的长度远大于其横截面尺寸,如传动轴、梁杆等,这样的问题就可以转换为空间梁问题。 2、阐述有限元的基本思想。试从有限元程序开发和采用成熟软件两方面进行有限元分析 答:有限元的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个结点相互连接,然后根据变形协调条件综合求解。由于单元的数目是有限的,接点的数目也是有限的,所以称为有限单元法。 有限元程序开发:力学模型的确定;结构的离散化;计算载荷的等效节点力;计算各单元的刚度矩阵;组集整体刚度矩阵;施加便捷约束条件;求解降阶的有限元基本方程;求解单元应力;计算结果的输出。 成熟软件①前处理器:定义单元类型;定义材料属性;建模;约束,载荷施加等②求解器。单元刚度矩阵生成;约束处理;线性方程组,单元位移及应力等求解③后处理器:结果查询与显示;验算等。 3、有了本门课程的有限元分析技术基础,如果以后涉足机械方面的有限元分析,你觉得应从哪些方面深化学习和开展工作,具体采用哪些方式? 答:一、学习数学基础知识 (1)矩阵论,由于涉及到多维广义坐标下的运算,有限元多以矩阵的形式表达,力求简化形式,突出重点。(2)泛函和变分。泛函是寻找场函数在积分域上的最优值问题,变分是泛函研究的重要手段。(3)数值方法,有限元本身就是数值方法,在实现有限元分析的过程中,要用到大量的数值方法和算法。(4)数学分析,其中的多元函数积分,向量函数的积分应用较多。 二、学习程序实现和使用 (1)程序实现,有限元最终是通过程序实现的,有限元的理论研究与编程密不可分,应学习C或C++等语言。(2)程序使用,熟练掌握大型有限元程序,如ANSYS、SAP等,使用程序使用有限元,要注意观察程序的计算结果,有意识的根据单元的特性分析结果特点。 三、要有一定的力学基础 熟练理论力学,材料力学、结构力学,特别是弹性力学,很多工程中的有限元问题未能很好的解答,并非由于软件的功能所致,而是我们的知识不够。

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

重庆大学矩阵论大作业-参考模板

矩阵分析在-------机械振动中的应用 摘要:随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。本文采用了矩阵论中所学的矩阵相似变换、矩阵正交化及特征方程等相关知识,对多自由度系统的自振动的运动微分方程进行了研究分析,引入正则坐标并采用坐标变化法求得了振动系统的自由响应。 关键词:多自由度系统,正则坐标,自由响应 一、引言 20世纪60年代,随着计算机技术的进步,航空航天技术和综合自动化的发展需要,对于复杂的机械结构特性分析也越来越重要。而对于像航天器等复杂的机械结构需要用更多的自由度来描述,多自由度系统的振动方程式二阶常微分方程组。建立系统方程是振动分析的前提,但随着自由度的增多,所建立的系统运动微分方程也越来越复杂,对于离散系统运用牛顿第二定律的方式来对方程进行求解也越来越困难,为此发展了柔度系数法和刚度系数法,而拉尔朗日方程是建立系统控制方程的最通用方法,他使用功、能和广义力等物理量,得到了完全刻画系统的最少方程。本文只考虑阻尼矩阵能够被无阻尼振形矩阵对角化的情形,分析其基本理论方程,并用实例进行论证求解。 二、多自由度系统的自由振动理论 本文主要对多自由度系统的自由振动进行求解,在介绍多自由度系统的振动之前,先介绍单自由度无阻尼的自由振动以便了解机械振动理论的基本原理。 1.单自由度无阻尼系统的自由振动

矩阵论研究报告

矩阵论在方程解耦及最小二乘法中的应用摘要:模态(也称为固有振动模态,或主模态)是多自由度线性系统的一种固有属性,可由系统的特征值(也称为固有值)与系统的特征矢量(也称为固有矢量,或者主振型)二者共同来表示的;它们分别从时空两个方面来刻画系统的振动特性。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型,其可以使得耦合方程组解耦。作用于一个n维自由度系统,可以转换到模态坐标下来解耦,确定在模态坐标下响应,然后通过线性变换得到物理坐标下的响应。惯常使用中,将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数[1]。 在科学实验和工程计算中,我们希望从给定的数据出发,构造一个近似函数,使数据点均在离曲线的上方或下方不远处,所求的曲线称为拟合曲线,它既能反映数据的总体分布,又不至于出现局部较大的波动,更能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小,这就是最小二乘法。最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配,使这些求得的数据与实际数据之间误差的平方和为最小[2],则需要范数的知识。 关键字:模态,方程解耦,最小二乘 一、引言 数学中解耦是指使含有多个变量的数学方程变成能够用单个变量表示的方程组,即变量不再同时共同直接影响一个方程的结果,从而简化分析计算。通过适当的控制量的选取,坐标变换等手段将一个多变量系统化为多个独立的单变量系统的数学模型,即解除各个变量之间的耦合。 对离散型函数(即数表形式的函数)考虑数据较多的情况.若将每个点都当作插值节点,则插值函数是一个次数很高的多项式,比较复杂,而且由于龙格振荡现象,这个高次的插值多项式可能并不接近原函数。最小二乘法在实际工程数据处理中应用广泛,在工程问题中,使用最小二乘法根据两个变量的几组实验数据可 1

矩阵论课外报告---最小二乘法

一、 报告摘要 在已知曲线大致模型的情况下,运用曲线拟合最小二乘法,使得观测数据与曲线模型数据之间的误差平方和最小。进而求得曲线的模型参数,并由所求的曲线模型进行分析预测。 二、 题目内容 一颗导弹从敌国发射,通过雷达我们观测到了它的飞行轨迹,具体有如下数据: 我国军情处分析得出该导弹沿抛物线轨道飞行。 问题:预测该导弹在什么水平距离着地。 三、 基本术语 1. 内积 设V 是实数域R 上的线性空间,如果V 中任意两个向量,αβ都按某一个确定的法则对应于惟一确定的实数,记作(,)αβ,并且(,)αβ满足 i. 对任意的,V αβ∈,有(,)(,)αββα= ii. 对任意的,,V αβγ∈,有(,)(,)(,)a αβγγβγ+=+ iii. 对任意的,,k R V αβ=∈有(,)(,)k k αβαβ= iv. 对任意的V α∈,有(,)0αα≥。当且仅当0α=时,(,)0αα= 则称(,)αβ为向量,αβ的内积。如无特殊说明的,我们认为对任意向量

1212(,,,),(,,,)n n a a a b b b αβ== ,其内积(,)αβ为 1122(,)n n a b a b a b αβ=+++ 2. 范数 如果V 是数域K 上的线性空间,且对于V 的任以向量χ,对应于一个实数函数χ,它满足如下三个条件。 i. 非负性 当0χ≠时0χ>;当0χ=时,0χ=; ii. 齐次性 ,a a V χχχ=∈; iii. 三角不等式 ,,V χζχζχζ+≤+∈; 则称χ为V 上χ的范数。 可以证明对于向量12(,,,)n χξξξ= 的长度 χ= 是一种范数,我们称为2-范数,记为2χ。 3. 线性方程组 设有n 个未知数m 个方程的线性方程组 11112211 21122222 1122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=?? ????+++=? 可以写成以向量x 为未知元的向量方程 Ax b = 则A 为该方程的系数矩阵,(,)B A b =为增广矩阵。该线性方程有解的条件如下 i. 当A 的秩()R A 和B 的秩()R B 满足()()R A R B <时,该方程无解 ii. 当()()R A R B n ==时,该方程有唯一解。

矩阵理论研究生课程大作业

研究生“矩阵论”课程课外作业 姓名:学号: 学院:专业: 类别:组数: 成绩:

人口迁移问题和航班问题 (重庆大学 机械工程学院,机械传动国家重点实验室) 摘要:随着人类文明的进程,一些关于数学类的问题越来越贴近我们的生活,越发觉得数学与我们息息相关。本文将利用矩阵理论的知识对人口迁移问题和航班问题进行分析。 人口迁移问题 假设有两个地区——如南方和北方,之间发生人口迁移。每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示: 问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说明理由;如果不会,那么北方的最终人口分布会怎样? 解 设n 年后北方和南方的人口分别为n x 和n y , 我们假设最初北方有0x 人,南方有0y 人。则我们可得,1=n 时,一年后北方和南方的人口为 ???+=+=0 010 0175.05.025.05.0y x y y x x (1-1) 将上述方程组(1-1)写成矩阵的形式 ??? ? ??=???? ??0011y x A y x 其中 ?? ? ???=75.05.025.05.0A 2=n 时,两年后北方和南方的人口为 ???? ??=???? ??=???? ??0021122y x A y x A y x 依次类推下去,n 年后北方和南方的人口为 ??? ? ??=???? ??00y x A y x n n n (1-2) N S 0.5 0.25 0.5 0.75

现在只需求出n A 就可得出若干年后北方和南方的人口数。 下面将使用待定系数法[1]求n A )1)(25.0(25 .025.125 .05.0)75.0)(5.0(75 .05.025 .05 .02--=+-=?---=----= -λλλλλλλλλA E 所以 1,25.021==λλ 矩阵A 的最小多项式为 )1)(25.0()(--=λλλm 设A a E a A n 10+= 由此可得方程组 ???=+=+125.025.01010a a a a n 解方程组得 ???????-=+-=75.025.0175.025.025.010n n a a 所以 ?? ????+?--?+=-++-=+=++11 1025.05.025.05.05.025.025.025.05.025.075.0175 .025.0175.025.025.0n n n n n n n A E A a E a A 所以由式(1-2),我们得到n 年后北方和南方的人口 北方:01 075.025.025.075.025.05.025.0y x x n n n +-+?+= 南方:01 075 .025.05.075.025.05.05.0y x y n n n +++?-= 当∞→n 时,得 )(3 1 )75.025.025.075.025.05.025.0(lim lim 0001 0y x y x x n n n n n +=-+?+=+∞→∞→

南航矩阵论2013研究生试卷及答案

南京航空航天大学2012级硕士研究生

二、(20分)设三阶矩阵,,. ????? ??--=201034011A ????? ??=300130013B ???? ? ??=3003003a a C (1) 求的行列式因子、不变因子、初等因子及Jordan 标准形; A (2) 利用矩阵的知识,判断矩阵和是否相似,并说明理由. λB C 解答: (1)的行列式因子为;…(3分)A 2121)1)(2()(,1)()(--===λλλλλD D D 不变因子为; …………………(3分)2121)1)(2()(,1)()(--===λλλλλd d d 初等因子为;……………………(2分) 2)1(,2--λλJordan 标准形为. ……………………(2分) 200011001J ?? ?= ? ??? (2) 不相似,理由是2阶行列式因子不同; …………………(5分) 0,a = 相似,理由是各阶行列式因子相同. …………………(5分) 0,a ≠共 6 页 第 4 页

三、(20分)已知线性方程组不相容. ?? ???=+=+++=++1,12,1434321421x x x x x x x x x (1) 求系数矩阵的满秩分解; A (2) 求广义逆矩阵; +A (3) 求该线性方程组的极小最小二乘解. 解答:(1) 矩阵,的满秩分解为 ???? ? ??=110021111011A A . …………………(5分)10110111001101A ??????=?????????? (2) . ……………………(10分)51-451-41-52715033A +?? ? ?= ? ??? (3) 方程组的极小最小二乘解为. …………(5分)2214156x ?? ? ?= ? ??? 共 6 页 第 5 页

矩阵论答案

习题 一 1.(1)因 cos sin sin cos nx nx nx nx ?? ? ? -?? cos sin sin cos x x x x ????-??= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++?? ??-++?? ,故由归纳法知 cos sin sin cos n nx nx A nx nx ?? =??-?? 。 (2)直接计算得4 A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出23,A A 即可。 (3)记J=0 1 0 1 1 0 ?????? ?????????? ,则 , 112211111 () n n n n n n n n n n n n n n i i n i n n i n n n a C a C a C a C a C a A aE J C a J a C a a -----=-????????=+==?? ???????? n ∑。 2.设11 22 (1,0),0 a A P P a A E λλ-??===?? ?? 则由得 2 1112111 1 1 210 0 0 a λλλλλλλ?? ????==?????????????? 1时,不可能。 而由2 112222 0 0 000 0 0 a λλλλλλ?? ????==?????????????? 1时,知1i λ=±所以所求矩阵为1i PB P -, 其中P 为任意满秩矩阵,而 1231 0 1 0 1 0,,0 10 1 0 1B B B -??????===?????? --?????? 。 注:2 A E =-无实解,n A E =的讨论雷同。 3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2 n 个未知数时线 性方程AX -XA=0有2 n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵,

矩阵论武汉理工大学研究生考试试题科学硕士

武汉理工大学研究生考试试题(2010) 课程 矩阵论 (共6题,答题时不必抄题,标明题目序号) 一,填空题(15分) 1、已知矩阵A 的初级因子为223 ,(1),,(1)λλ-λλ-,则其最小多项式为 2、设线性变换T 在基123,,εεε的矩阵为A ,由基123,,εεε到基123,,ααα的过渡矩阵为P ,向量β在基123,,εεε下的坐标为x ,则像()T β在基123,,ααα下的坐标 3、已知矩阵123411102101,,,00113311A A A A -????????==== ? ? ? ?--???????? ,则由这四个矩阵所生成的子空间的维数为 4、已知0100001000011 000A ?? ? ?= ? ???,则1068A A A -+= 5、已知向量(1,2,0,)T i α=--,21i =-,则其范数 1α= ;2α= ;∞α= ; 二,(20)设1112112121220a a V A a a a a ??????==-=?? ?????? ?为22?R 的子集合, 1、证明:V 是22?R 的线性子空间; 2、求V 的维数与一组基; 3、对于任意的1112111221222122,a a b b A B a a b b ????== ? ????? V ∈,定义 2222212112121111234),(b a b a b a b a B A +++= 证明:),(B A 是V 的一个内积; 4、求V 在上面所定义的内积下的一组标准正交基。 三、(15分)设{} 23210[](),0,1,2i F t f t a t a t a a R i ==++∈=为所有次数小于3的实系数 多项式所成的线性空间,对于任意的22103()[]f t a t a t a F t =++∈,定义:

研究生矩阵论课后习题答案(全)习题二

习题二 1.化下列矩阵为Smith 标准型: (1)222211λλλλ λλλλλ?? -?? -????+-?? ; (2)2222 00 000 00(1)00000λλλλλλ ?? ?? -? ? ??-?? -?? ; (3)2222 232321234353234421λλλλλλλλλλλλλλ?? +--+-??+--+-????+---?? ; (4)23014360220620101003312200λλλλλλλλλλλλλλ????++??????--????---?? . 解:(1)对矩阵作初等变换 23221311(1)100 10 000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-???????????→-???→? ??? ????-++???? , 则该矩阵为Smith 标准型为 ???? ? ?????+)1(1λλλ; (2)矩阵的各阶行列式因子为 44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为 22 2341234123()()() ()1,()(1),()(1),()(1)()()() D D D d d d d D D D λλλλλλλλλλλλλλλλ== =-==-==-故该矩阵的Smith 标准型为

2210000(1)0000(1)00 00(1)λλλλλλ?? ??-????-?? -??; (3)对矩阵作初等变换 故该矩阵的Smith 标准型为 ?? ?? ??????+--)1()1(112 λλλ; (4)对矩阵作初等变换 在最后的形式中,可求得行列式因子 3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为 2541234534()() ()()()1,()(1),()(1)()() D D d d d d d D D λλλλλλλλλλλλλ==== =-==-故该矩阵的Smith 标准形为 2 1 0000 010 0000100000(1)00 00 0(1)λλλλ?????????? -?? ??-?? . 2.求下列λ-矩阵的不变因子: (1) 21 0021002λλλ--????--????-??; (2)100 1000 λαββλα λαββ λα+????-+? ???+??-+?? ;

重庆大学学术型硕士研究生培养方案-重庆大学航空航天学院

重庆大学学术型硕士研究生培养方案 力学(专业代码:080100) 一、培养目标 本学科专业培养能够从事力学方面的教学、科研或相关工程设计工作的高层次人才。学位获得者应具备坚实的力学和数学基础理论和较宽广的专业知识;较为熟练地掌握一门外国语;了解本学科理论研究和工程应用的前沿动态;具有一定的理论分析、试验研究及数值分析能力,能结合与本学科相关的实际问题从事科学研究或工程技术工作,并取得较系统的研究成果。 二、学科、专业及研究方向简介 重庆大学工程力学专业创建于1978年。1981年获得固体力学硕士学位授权点,是全校最早的硕士授权点之一;1986年获得固体力学博士学位授权点,是原重庆大学八个最早获得博士学位授权点的学科之一;2003年获得力学博士学位授权一级学科;2007年力学一级学科被确立为重庆市重点学科。 重庆大学力学博士学位授权一级学科包括固体力学、工程力学、流体力学和一般力学与基础力学四个二级学科博士学位授权点;固体力学、工程力学、流体力学和一般力学与基础力学四个硕士学位授权点。本学科拥有先进的MTS材料实验机和并行计算机系统等一批重要设备,为力学理论、试验和数值研究提供必要的条件。近年来,本学科承担了数十项国家和省部级项目以及大量重点横向合作项目,获得了丰富的科研成果。 1. 本学科主要研究领域: (1)多场耦合理论与智能材料及结构力学 (2)生物材料力学与高性能复合材料制备 (3)材料与结构的强度与破坏

(4)超常环境下材料及其微结构特性的理论与测试 (5)纳米材料特性及其微结构机理、多尺度及跨尺度分析 (6)结构动态特性及失效 (7)结构运动与变形耦合动力学及控制 (8)微重力下晶体生长过程的流体动力学、热张力流和浮力流理论、方法及其应用 (9)输配电装备及系统安全的关键力学问题 (10)多孔介质力学及其应用 (11)生物力学 (12)振动测试理论与技术 (13)智能与虚拟仪器的研制与开发 (14)可压缩流体动力学 (15)超音速流和冲击波 (16)线性波和非线性波 2. 主要研究方向: (1)材料的强度理论与破坏机理 (2)智能材料及结构力学 (3)材料特性的多尺度及跨尺度分析 (4)结构分析与优化 (5)结构振动及控制 (6)复合材料力学 (7)非线性动力学 (8)力学测试技术及仪器 (9)计算流体力学 (10)气体动力学 (11)线性波与非线性波 (12)浅水动力学 (13)多相流体力学 (14)环境流体力学

硕士研究生课程考试试题矩阵论答案

华北电力大学硕士研究生课程考试试题(A 卷) 2013~2014学年第一学期 课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页 特别注意:所有答案必须写在答题册上,答在试题纸上一律无效 一、判断题(每小题2分,共10分) 1. 方阵 A 的任意一个特征值的代数重数不大于它的几何重数。 见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n 2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L . 正确,线性无关的向量张成一组基 3.如果12,V V 是V 的线性子空间,则12V V ?也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。 4. n 阶λ-矩阵()A λ是可逆的充分必要条件是 ()A λ的秩是n . 见书60页,需要要求矩阵的行列式是一个非零的数 5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根. 二、填空题(每小题3分,共27分) (6)210021,003A ?? ?= ? ???则A e 的Jordan 标准型为223e 1 00e 0 ,00 e ?? ? ? ?? ?。 首先写出A e 然后对于若当标准型要求非对角元部分为1. (7)301002030λλλ-?? ?+ ? ?-??的Smith 标准型为10003000(3)(2)λλλ?? ?- ? ?-+?? 见书61-63页,将矩阵做变换即得

研究生矩阵论课后习题答案(全)习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() (Λ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1Λ=m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1,Λ=,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1,Λ=, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ΛΛ,,,,21m S S S , 其中m m m A c A c c S +++=Λ10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() (Λ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1,Λ=,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21Λ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1Λ=, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a ΛΛΛ2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a ΛΛΛ21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A ΛΛΛ2121) ()(2)(1)()1(τ,

重庆大学全日制专业学位研究生培养方案2016版

重庆大学全日制专业学位研究生培养方案 土木工程学院建筑与土木工程领域(085213) 一、专业(领域)简介 建筑与土木工程领域(土木工程学科)是研究建造各类工程设施所进行的勘测、设计、施工、管理、监测、维护等的工程领域,其涉及的领域方向有结构工程,岩土工程,桥梁与隧道工程,防灾减灾工程及防护工程,土木工程建造等。本领域覆盖的技术主要有设计技术、施工技术、维护与加固技术、管理技术、实验技术、计算机分析与仿真技术等。 建筑与土木工程领域(土木工程学科)覆盖建筑业、交通运输业、水利、环境和公共设施管理业、采矿业以及电、燃气和水的生产和供应业等与国家的经济社会发展有着密切联系的行业。 二、培养目标 1.人才培养目标及定位: 培养掌握土木工程专业领域坚实的基础理论和系统深入的专业知识,具有较强的解决工程实际问题的能力,并具有创新能力的应用型、复合型高层次工程技术和工程管理人才。 2.知识要求: 基本知识包括基础知识和专业知识,涵盖本领域任职资格涉及的主要知识点。 (1)基础知识

掌握扎实的基础知识,包括按特定领域方向可选的矩阵论、概率论、数值分析、应用统计、随机过程、应用泛函分析、优化理论与方法等应用数学知识及相关物理、化学知识;外语、信息检索等工具性知识;自然辩证法、工程伦理、经济、管理以及法律法规等人文社科知识。 (2)专业知识 掌握本领域某一方向较为系统的专业基础知识及较为全面的专业技术知识,主要包括:弹塑性力学及有限元的理论与应用、结构动力学及其工程应用、土力学及其工程应用、现代土木工程材料、混凝土结构理论与应用、钢结构理论与应用、岩土工程理论与应用、地下结构理论与应用、桥梁结构理论与应用、现代施工技术、现代土木工程项目管理、结构防灾减灾技术、结构全寿命维护技术等。 随着领域外延的进一步扩大,不同学科与不同领域间的交叉进一步加深,本领域工程硕士专业学位获得者还可以根据自身的特点和需求,掌握相关专业的基础理论和专业知识。 3.能力要求: 建筑与土木工程领域(土木工程学科)的研究生教育应具备以下四个方面的能力: (1)获取知识能力 能够通过检索、阅读等一切可能的途径快速获取能够符合专业需求及关联问题信息的能力,并具备自主学习和终身学习的能力。 (2)应用知识能力

研究生2008矩阵理论试卷

矩阵理论试卷(A )(2008级) (共1页) 成绩 学院班级__ _; 姓名___ __; 学号_ __ __ 1 (15分)给定 2222{()|}ij ij R A a a R ??==∈(数域R 上二阶实方阵按通常矩阵的加法与数乘构成的线性空间)的子集 221122i j {()|0, } i j V A a a a a R ?==+=∈ (1)证明V 是22R ?的子空间;(2)求V 的维数和一组基;(3)求3253A ??= ?-?? 在所求基下的坐标。 2 (15分)设α为n 维欧氏空间V 中的单位向量,对V 中任意一向量x , 定义线性变换: ()2(,)T T x x x αα=-, (1)证明:T 为正交变换; (2)证明 T 对应特征值1有n-1 个线性无关的特征向量;(3)问T 能否在某组基下的矩阵为对角阵,说明理由。 3 (15分)设矩阵010120110A ?? ?=- ? ?-?? (1)求A 的若当标准形;(2)求A 的最小多项式;(3)计算532()45g A A A A E =+-+。 4(10分)设3 R 中的线性变换T 如下:123122323(,,)(2,,) ; ()i T x x x x x x x x x x R =--+∈ (1) 写出T 在基T T T 123 =(1, 1, 0),=(0, 1, 1), =(0, 0, 1)βββ下的矩阵;(2) 求3()T R 及()Ker T 。 5 (10分)已知多项式矩阵 2210007(2)00()00(1)00 00(1)(5)A λλλλλλλ-?? ?++ ?= ?- ?++??,求()A λ的初等因子及史密斯标准形。 6(10分)在欧氏空间4R 中, 对任意两个向量12341234(,,,) , (,,,),T T a a a a b b b b αβ==定义内积 1122334(, )2a b a b a b a b αβ=+++ 求齐次方程组1234123 20 = 0x x x x x x x +-+=??+-? 的解空间的一组标准正交基。 7 (10分)(1) 设A 为可逆矩阵, 证明对任何矩阵的算子范数, 都有11||||||||--≥A A 。 (2)设???? ? ??--+-=21512363 11684i i A , 利用(1)的结论分别估计11||||-A 和∞-||||1A 的下界。 8(15分)已知200111113?? ?= ? ?-?? A , 求矩阵函数()e t f =A A 。

矩阵论试题

2017—2018学年第一学期《矩阵论》试卷 (17级专业硕士) 专业 学号 姓名 得分 一.判断题(每小题3分,共15分) 1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零, 即ker A =0。( ) 2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个 线性空间。( ) 3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分 必要条件是A 的谱半径1)(

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D 在基12,,,,1-n x x x 以及基12)! 1(1,,!21, ,1--n x n x x 下的矩阵分别为 , 。 5.设A 是复数域上的正规矩阵,则A 满足: ,并 写出常用的三类正规矩阵 。 三.计算题(每小题12分,共48分) 1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α 变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。 。

上海交大研究生矩阵理论答案

n k r n n 1 2 习题 一 1.( 1)因 cosnx sin nx sin nx cosnx cosx sin x sin x = cosx cos(n sin(n 1)x 1)x sin( n cos(n 1)x 1)x ,故由归纳法知 cosnx sin nx A 。 sin nx cosnx ( 2)直接计算得 A 4 E ,故设 n 4 k r (r 0,1,2,3) ,则 A n A 4 k A r ( 1) A , 即 只需算出 A 2, A 3 即可。 0 1 0 1 ( 3 )记 J= ,则 , 1 0 n 1 n 1 2 n 2 n a C n a C n a C n a n C 1 a n 1 C n 1a A n (aE J ) n n C i a i J n i i 0 n n a n 。 C 1a n 1 a n 2. 设 A P 1 a 2 P 1(a 1,0),则由A 2 E 得 a 1时, 1 1 1 1 0 1 2 1 2 1 0 2 不可能。 1 而由 a 1 0时, 2 1 知 1 所以所求矩阵为 PB P 1 , 其中 P 为任意满秩矩阵,而 i i 2 2 2 1 0 1 0 1 0 B 1 , B 2 , B 3 。 0 1 0 1 1 注: A 2 E 无实解, A n E 的讨论雷同。 3. 设 A 为已给矩阵,由条件对任意 n 阶方阵 X 有 AX=XA ,即把 X 看作 n 2 个未知数时线 性方程 AX XA=0 有 n 2 个线性无关的解, 由线性方程组的理论知其系数矩阵为零矩阵, 1

矩阵论的实际应用(朱月)

“矩阵论”课程研究报告科目:矩阵理论及其应用教师:舒永录 姓名:朱月学号:20140702057t 专业:机械工程类别:学术 上课时间:2014 年9月至2014年12 月 考生成绩: 阅卷评语: 阅卷教师(签名)

相关变量的独立变换 摘要:用矩阵的理论及方法来处理实际生活中或现代工程中的各种问题已 越来越普遍。在工程中引进矩阵理论不仅是理论的表达极为简洁,而且对理论的实质刻画也更为深刻,这一点是毋庸置疑的。本文将矩阵论的知识用于解决实用机械可靠性设计问题。 正文 一、问题描述 在建立机械系统可靠性模型时,一般总假设个元素间关于强度相互独立。但是实际中,各元素间关于应力和强度又往往是相关的,并且这种相关性有时会对系统的可靠度产生显著影响。对于一些随机变量之间不是完全相关,但也不是完全独立的情况,就要进行相关变量的独立变换。 二、方法简述 设系统的基本变量为),,(21n x x x X ,??,各变量之间相关,则随机变量x 的 n 维正态概率密度函数为[1] )1()()(21exp ||2()(1 2 12 ? ??--???-=---X X T X X n X C X C X f μμπ) 式中 ?? ? ???????????=2321232212131212 ),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(21n X n n n n X n X X x x x x x x x x x x x x x x x x x x C σσσ 称为随机变量X 的协方差矩阵。矩阵中的任意元素),cov(j i x x 是变量i x 与变 量j x 的协方差,|C X |是协方差矩阵的行列式,1 -X C 是协方差矩阵的逆矩阵,X ,X μ及 )X X μ-(是n 维列向量 ?? ? ?? ?????--=-????? ?????=?? ??? ?????=n n X n X n x x X x x μμμμμμ 1111, , X

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

相关文档
最新文档