分式的条件求值(整体代入)(人教版)(含答案)

分式的条件求值(整体代入)(人教版)(含答案)
分式的条件求值(整体代入)(人教版)(含答案)

111

学生做题前请先回答以下问题

问题1:分式运算的基础是什么?

问题2:约分、通分运算的理论依据是什么?

问题3:解有条件的分式化简求值题目,既要盯准目标,又要抓住条件;既要根据目标变换条件,又要根据条件来调整目标.常用的技巧有______________,_________,___________,_____________.

问题4:____________,适用已知与所求中含有相同的部分;

____________,适用于颠倒之后能够拆分,然后进行整体代入;

____________,适用于已知条件为连比的形式;

____________,适用于分式的取值分析等.

分式的条件求值(整体代入)(人教版)

一、单选题(共9道,每道10分)

1.若,则的值为( )

A.2

B.-5

C. D.

答案:D

解题思路:

试题难度:三颗星知识点:整体代入

2.若,则( )

111

A. B.11

C.-3

D.3

答案:D

解题思路:

试题难度:三颗星知识点:整体代入

3.已知,满足,且,则的值为( )

A.1

B.-1

C. D.

答案:A

解题思路:

试题难度:三颗星知识点:整体代入

4.已知,则的值等于( )

A. B.

C. D.

答案:B

解题思路:

试题难度:三颗星知识点:整体代入

5.设,,则( )

A. B.

C. D.3

答案:A

解题思路:

111 试题难度:三颗星知识点:整体代入

6.若,且,则( )

A. B.

C.10

D.12

答案:A

解题思路:

试题难度:三颗星知识点:整体代入

7.已知,则( )

A. B.

C. D.

答案:B

解题思路:

试题难度:三颗星知识点:整体代入

8.已知,则( )

A. B.

C. D.

答案:C

解题思路:

试题难度:三颗星知识点:整体代入

9.已知,,均为实数,且,则的值为( )

A. B.

C.1

D.3

答案:C

解题思路:

试题难度:三颗星知识点:整体代入

二、填空题(共1道,每道10分)

10.若,且,则____.

答案:13

解题思路:

试题难度:知识点:整体代入

初中数学分式化解求值解题技能大全

化简求值常用技巧 在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质 例1 如果12x x +=,则2 42 1 x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2 x ,得 原式=. 2222 1111 11 213 1()1x x x x = ==-++ +-. 2、倒数法 例2 如果12x x +=,则2 42 1 x x x ++的值是多少? 解:将待求分式取倒数,得 4222222 1111()1213x x x x x x x ++=++=+-=-= ∴原式=1 3 . 3、平方法 例3 已知12x x + =,则221 x x +的值是多少? 解:两边同时平方,得 2222 1124,42 2.x x x x ++ =∴+=-= 4、设参数法 例4 已知 0235a b c ==≠,求分式2222323ab bc ac a b c +-+-的值. 解:设235 a b c k ===,则 2,3,5a k b k c k ===. ∴原式=22222 2323532566 .(2)2(3)3(5)5353 k k k k k k k k k k k ?+??-??==-+-- 例5 已知 ,a b c b c a ==求a b c a b c +--+的值. 解:设a b c k b c a ===,则 ,,.a bk b ck c ak === ∴3 c ak bk k ck k k ck ==?=??=,

初中数学竞赛条件分式求值的方法与技巧(含答案)

条件分式求值的方法与技巧 求条件分式的值是分式化简、计算的重要内容,解题主要有以下三个方面: 一、将条件式变形后代入求值 例1已知432z y x ==,z y x z y x +--+22求的值. 解:设4 32z y x ===k , 则x =2k ,y =3k ,z =4k . ∴ 原式=5 45443224322==+-?-?+k k k k k k k k . 说明:已知连比,常设比值k 为参数,这种解题方法叫参数法. 例2已知的值求 b a b a b ab a +-=-+,0622. 解:由0622=-+b ab a 有(a +3b )(a -2b )=0, ∴ a +3b =0或a -2b =0, 解得a =-3b 或a =2b . 当a =-3b 时,原式= 233=+---b b b b ; 当a =2b 时,原式=3122=+--b b b b . 二、将求值变形代入求值. 例3已知)1 1()11()11(,0c b a a c b b a c c b a +++++=++求的值. 解:原式=1)111(1)111(1)111(-+++-+++-++a c b a b a c b c b a c =3))(111(-++++a b c c b a ∵ a +b +c =0, ∴ 原式=-3. 例4已知31=+x x ,的值求1 242 ++x x x . 分析:∵ 1)1(111222224-+=++=++x x x x x x x , ∴ 可先求值式的倒数,再求求值式的值.

解:∵ 1)1(12224-+=++x x x x x 8132=-=, ∴ 8 11242=++x x x . 三、将条件式和求值式分别变形后代入求值. 例5 已知y xy x y xy x y x ---+=-2232,311则分式的值为__________. 解法一:∵ 311=-y x , ∴ y -x =3xy ?x -y =-3xy . ∵ 原式=xy y x xy y x 2)(3)(2--+- 5 3233)3(2=--+-=xy xy xy xy . 解法二:将分子、分母同除以xy (≠0). ∴原式=x y x y 121232---+ 5 332323)11(2)11(23=--?-=-----=y x y x 分析:∵ 填空题不需要写出解题过程,故可取满足已知等式的特殊值求解. 解法三:取x =2 1,y =-1,

中考分式化简求值专项练习与答案

中考专题训练——分式化简求值 1、先化简,再求值:??? ? ?+---÷--11211222x x x x x x ,其中21=x 2、先化简,再求值:324 44)1225(222+=++-÷+++-a a a a a a a ,其中 3、先化简,再求值:4 12)211(22-++÷+-x x x x ,其中3-=x

4、先化简,再求值:(x 2+4x -4)÷ x 2-4 x 2+2x ,其中x =-1 5、先化简,再求值:22122 121x x x x x x x x ---??-÷ ?+++??,其中x 满足012=--x x . 6、先化简,再求值:1221214322+-+÷??? ??---+x x x x x x ,其中x 是不等式组? ??<+>+15204x x 的整数解.

7、化简求值:a b a b a b ab a b ab a 12252962 222-???? ??---÷-+-,其中a ,b 满足{ 42=+=-b a b a 8、先化简,再求值:1 1121122++???? ??---+÷x x x x x x ,其中x 的值为方程152-=x x 的解. 9、先化简,再求值:2344(1)11 x x x x x ++--÷++,其中x 是方程12025x x ---=的解。

10、先化简,再求值:,2222444222-+÷??? ? ??--+--a a a a a a a 其中3-=a 11、先化简,再求值:11)1211( 2+÷---+a a a a ,其中13+=a . 12、先化简,再求值: 2244(1),442x x x x -÷--+-其中222-=x

分式化简求值解题技巧

分式化简求值解题技巧 一、整体代入例1、已知,求的值.22006a b +=b a b ab a 42121232 2+++例2、已知,求的值.311=-y x y xy x y xy x ---+2232练一练: 1.已知,求的值. 511=+y x y xy x y xy x +++-22322.已知,求分式的值211=+y x y x xy y y x x 33233++++3. 若,求分式的值ab b a 32 2=+)2121(222b a b b a b -+-+

二、构造代入 例3、已知,求的值.2520010x x --=2 1)1()2(23-+---x x x 例4已知不等于0,且, a b c ,,0a b c ++=求的值.)11()11(11 (b a c c a b c b a +++++练一练: 4. 若,求的值1=ab 221111b a +++5.已知,试求代数式的值x x 12=+3 4121311222+++-?-+-+x x x x x x x 三、参数辅助,多元归一 例5 、已知,求的值。432z y x ==222z y x zx yz xy ++++

练一练6.已知,求分式的值23=-+b a b a ab b a 2 2-四、倒数代入例6、已知,求的值.41=+x x 1 242 ++x x x 练一练 7. 若,求分式的值.2132=+-x x x 1242 ++x x x 8.已知,求的值.2 11222-=-x x )1(1111(2x x x x x +-÷+--9. 已知,求的值.5 1,41,31=+=+=+c a ac c b bc b a ab bc ac ab abc ++

分式化简求值几大常用技巧

分式化简求值几大常用技巧 在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质 例1 如果1 2x x +=,则242 1x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2 x ,得 原式=. 2222 1111 1 1 213 1()1x x x x = ==-++ +-. 2、倒数法 例2 如果1 2x x +=,则2421x x x ++的值是多少? 解:将待求分式取倒数,得 42222 22 1111()1213x x x x x x x ++=++=+-=-= ∴原式=1 3 . 3、平方法 例3 已知12x x + =,则221 x x +的值是多少? 解:两边同时平方,得 2222 1124,42 2.x x x x ++ =∴+=-= 4、设参数法 例4 已知 0235a b c ==≠,求分式2 22 2323ab bc ac a b c +-+-的值. 解:设235 a b c k ===,则 2,3,5a k b k c k ===. ∴原式=22222 2323532566 .(2)2(3)3(5)5353 k k k k k k k k k k k ?+??-??==-+-- 例5 已知 ,a b c b c a ==求a b c a b c +--+的值. 解:设a b c k b c a ===,则 ,,.a bk b ck c ak ===

∴3 c ak bk k ck k k ck ==?=??=, ∴3 1,1k k == ∴a b c == ∴原式= 1.a b c a b c +-=-+ 5、整体代换法 例6 已知 113,x y -=求2322x xy y x xy y +---的值. 解:将已知变形,得 3,y x xy -=即3x y xy -=- ∴原式= 2()32(3)333 .()23255 x y xy xy xy xy x y xy xy xy xy -+?-+-===----- 例: 例5. 已知a b +<0 ,且满足a a b ba b 2 2 22++--=,求a b a b 33 13+-的值。 解:因为a a b ba b 2 2 22++--= 所以()()a b a b +-+-=220 所以()()a b a b +-++=210 所以a b +=2或a b +=-1 由a b +<0 故有a b +=-1 所以a b a b a ba a b b a b 3322 1313+-= +-+-()() = -?-+-= -+-11331 2222() a a b b ab a a b b ab = +--=---= --()()a b a b a b a b a b a b a b 2233113311331 =-1 评注:本题应先对已知条件a a b ba b 22 22++--=进行变换和因式分解,并由a b +<0确定出a b +=-1,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。 6、消元代换法 例7 已知1,abc =则 111a b c ab a bc b ac c ++=++++++ . 解:∵1,abc =∴1,c ab = ∴原式=1 11111a b ab ab a b ab b a ab ab ++ ++?++?++

八年级----条件分式求值攻略

小专题(十五) 条件分式求值攻略 类型1 归一代入法 将条件式和所求分式作适当的恒等变形,然后整体代入,使分子、分母化归为同一个只含相同字母积的分式,便可约分求值. 1.已知1a +1b =3,求5a +7ab +5b a -6ab +b 的值. 类型2 整体代入法 将条件式和所求分式作适当的恒等变形,然后整体代入求值. 2.已知a 2-a +1=2,求2a 2-a +a -a 2的值. 3.已知1x -1y =5,求3x +5xy -3y y -3xy -x 的值. 4.已知a +b +c =0,求c(1a +1b )+b(1c +1a )+a(1b +1c )的值. 类型3 设辅助元代入法 在已知条件中有连比或等比时,一般可设参数k ,往往立即可解. 5.已知a 2=b 3=c 4,求3a -2b +5c a +b +c 的值. 6.已知x 3=y 4=z 7≠0,求3x +y +z y 的值.

类型4 构造互倒式代入法 构造x 2+1x 2=(x±1x )2?2迅速求解,收到事半功倍之效. 7.已知m 2+ 1m 2=4,求m +1m 和m -1m 的值. 8.若x +1x =3,求x 2+1x 2的值. 类型5 主元法 若两个方程有三个未知数,故将其中两个看作未知数,剩下的第三个看作常数,联立解方程组,思路清晰、解法简洁. 9.已知3x -4y -z =0,2x +y -8z =0,求x 2+y 2+z 2 xy +yz +2xz 的值. 10.若4x -3y -6z =0,x +2y -7z =0(xyz ≠0),求代数式5x 2+2y 2-z 2 2x 2-3y 2-10z 2 的值. 类型6 倒数法 已知条件和待求式同时取倒数后,再逆用分式加减法法则对分式进行拆分,然后将三个已知式相加,这样解非常简捷. 11.已知x +1x =3,求x 2 x 4+x 2+1 的值. 12.已知三个数x 、y 、z 满足 xy x +y =-2,yz y +z =43,zx z +x =-43.求xyz xy +yz +zx 的值.

专题训练七分式化简求值解题技巧

专题训练七分式化简求值 解题技巧 Prepared on 21 November 2021

【专题训练七】 分式化简求值解题技巧 例1、(1)如果242114x x x =++,那么42251553x x x -+= 。 (2)若 a b c d b c d a ===,则a b c d a b c d -+-=+-+ 。 例2、若a b c 、、满足1111a b c a b c ++=++,则a b c 、、中 ( ) A 、必有两个数相等 B 、必有两个数互为相反数 C 、必有两个数互为倒数 D 、每两个数都不相等 例3、化简求值:22214( )2442a a a a a a a a ----÷++++,其中a 满足2210a a +-= 。 例4、已知2410,a a ++=且42321533a ma a ma a ++=++,求m 的值。 例5、已知a b c 、、满足222222222 1222b c a c a b a b c bc ac ab +-+-+-++=,求证:这三个分数的值有两个为1,一个为1-。 针对性训练 1、已知30,x y -=那么22 2()2x y x y x xy y +?-=-+ 。 2、已知7x y +=且12xy =,则当x y <时,11x y -= 。 3、已知0abc ≠,且 a b c b c a ==,则3223a b c a b c ++=-- 。 4、已知2310x x -+=,则2 421 x x x =++ 。 5、已知0abc ≠,0,a b c ++=则111111()()()a b c b c c a a b +++++= 。 6、已知323x y -=,则23796x y xy xy y x --=+- 。 7、若4360,270(0)x y z x y z xyz --=+-=≠,则代数式222 222 522310x y z x y z +-=-- 。

【教育资料】专题训练(一) 分式化简求值常见题型归纳学习精品

专题训练(一) 分式化简求值常见题型归纳 ? 类型一 代入求值型 一、直接代入型 1.先化简,再求值:? ????a 2 a -1+11-a ·1a ,其中a =-12. 二、选择代入型 2.先化简:x 2 +x x 2-2x +1÷? ?? ??2x -1-1x ,再从-2<x <3的范围内选取一个你喜欢的x 值代 入求值. 3.若a 满足-3≤a≤3,请你选取一个合适的数a 使得代数式a 2 -1a ÷? ?? ?? 1-1a 的值是一 个奇数. 三、整体代入型 4.已知x ,y 满足x =5y ,求分式x 2 -2xy +3y 2 4x 2+5xy -6y 2的值. 5.已知a +b b =52,求a -b b 的值. 6.若1a -1b =12,求a -b ab -ab a - b 的值. 7.已知1x +1y =5,求2x -3xy +2y x +2xy +y 的值. 8.已知a 满足a 2 +2a -15=0,求1a +1-a +2a 2-1÷(a +1)(a +2)a 2 -2a +1的值. 9.已知t +1t =3,求t 2 +? ????1t 2的值. 10.已知x +1x =4,求x 2 x 4+x 2 +1的值. ? 类型二 设比例系数或用消元法求值 11.已知2a -3b +c =0,3a -2b -6c =0,abc ≠0,则a 3 -2b 3 +c 3 a 2 b -2b 2 c +3ac 2=________. 12.已知x 2=y 3=z 4≠0,求xy +yz +zx x 2+y 2+z 2的值.

? 类型三 利用非负数的性质挖掘条件求值 13.已知x 2 -4x +4与|y -1|互为相反数,则式子? ????x y -y x ÷(x +y)的值为________. 14.已知??????x -12x -3+? ?? ??3y +1y +42 =0,求32x +1-23y -1的值. ? 类型四 值恒不变形 15.已知y =x 2 +6x +9x 2-9÷x +3x 2-3x -x +3,试说明不论x 为任何使原式有意义的值,y 的 值均不变. 详解详析 1.解:原式=????a 2a -1-1a -1·1a =a 2-1a -1·1a =(a +1)(a -1)a -1 ·1a =a +1a . 当a =-1 2时,a +1a =-1 2+1-1 2 =-1. 2.解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2 x -1. 由题意,可取x =2代入上式,得x 2x -1=22 2-1 =4.(注意:x 不能为0和±1) 3.解:原式=a +1.由原代数式有意义,得a ≠0且a ≠1,又代数式的值是奇数,且-3≤a ≤3,所以a =±2. 4.解:由已知可得y ≠0,将分式的分子、分母同除以y 2 ,得原式=????x y 2 -2·x y +34·????x y 2+5·x y -6. 又已知x =5y ,变形得x y =5,将其代入原式,得????x y 2 -2·x y +34·????x y 2 +5·x y -6=52-2×5+34×52+5×5-6=18 119. 5.[解析] 由a -b b =a +b -2b b =a +b b -2,再将已知条件代入该式即可求解.

条件分式求值的方法与技巧

条件分式求值的方法与技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

学科: 奥数 教学内容:条件分式求值的方法与技巧 求条件分式的值是分式化简、计算的重要内容,解题主要有以下三个方面: 一、将条件式变形后代入求值 例1已知 432z y x ==,z y x z y x +--+22求的值. 解:设4 32z y x ===k , 则x =2k ,y =3k ,z =4k . ∴ 原式=5 45443224322==+-?-?+k k k k k k k k . 说明:已知连比,常设比值k 为参数,这种解题方法叫参数法. 例2已知的值求b a b a b ab a +-=-+,0622. 解:由0622=-+b ab a 有(a +3b )(a -2b )=0, ∴ a +3b =0或a -2b =0, 解得a =-3b 或a =2b . 当a =-3b 时,原式=233=+---b b b b ; 当a =2b 时,原式=3 122=+--b b b b . 二、将求值变形代入求值. 例3已知)11()11()11(,0c b a a c b b a c c b a +++++=++求的值. 解:原式=1)111(1)111(1)111(-+++-+++-++a c b a b a c b c b a c =3))(111(-++++a b c c b a ∵ a +b + c =0, ∴ 原式=-3. 例4已知31=+x x ,的值求1242++x x x .

分析:∵ 1)1(111222224-+=++=++x x x x x x x , ∴ 可先求值式的倒数,再求求值式的值. 解:∵ 1)1(12224-+=++x x x x x 8132=-=, ∴ 8 11242=++x x x . 三、将条件式和求值式分别变形后代入求值. 例5 已知y xy x y xy x y x ---+=-2232,311则分式的值为__________. 解法一:∵ 311=-y x , ∴ y -x =3xy ?x -y =-3xy . ∵ 原式=xy y x xy y x 2)(3)(2--+- 5 3233)3(2=--+-=xy xy xy xy . 解法二:将分子、分母同除以xy (≠0). ∴原式= x y x y 121232---+ 5 332323)11(2)11(23=--?-=-----=y x y x 分析:∵ 填空题不需要写出解题过程,故可取满足已知等式的特殊值求解. 解法三:取x =2 1,y =-1,

【精品】分式求值的方法与技巧

分式专题三---分式求值的方法与技巧 一.求值。 1.已知224x B x A x x x ,求A ,B 的值。 2.已知:22)2(2)2(3x B x A x x ,则A=、B= 3.若212112x B x A x x x 恒成立,则A +B =_______________。二.将条件式变形后代入求值。 1.已知432z y x ,z y x z y x 22求的值. (提示:已知连比,常设比值k 为参数,这种解题方法叫参数法)2.

二、将求值变形代入求值. 1.已知31 x x ,的值求1242x x x . 2.已知的值求b a b a b ab a ,0622. 3.已知0132a a ,求142a a 的值。 4.已知y xy x y xy x y x 2232,311 则分式的值为__________. 5.已知231 x x ,求分式221 x x 的值. 6.已知b a 43,则222232b a b ab a =_______________。

7.(2007赤峰)已知1 14a b ,则3227a ab b a b ab . 8.已知311 b a ,则b ab a b ab a 23的值是_________. 9.如果a+a 1 =3,则221 a a __________. 10.已知1a - 1b =3,求分式2a+3ab-2b a-ab-b 的值. 11.若ab=2,a+b=-1,则b a 11 的值为 12.若0152x x ,则x x x x 1122=_______________。

13.已知02322y xy x (x ≠0,y ≠0),求xy y x x y y x 2 2的值。 三、将条件式和求值式分别变形后代入求值. 14.已知a 2+2a -1=0,求分式24 )441 22(22a a a a a a a a 的值. 注意:本例是将条件式化为“122a a ”代入化简后的求值式再求值,这种代入的技巧叫做 整体代入. 15.已知abc =1,则111c ca c b b c b a ab a 的值为________. 16.已知)1 1()1 1()1 1(,0c b a a c b b a c c b a 求的值.

条件分式求值的方法与技巧

条件分式求值的方法与 技巧 The manuscript was revised on the evening of 2021

学科: 奥数 教学内容:条件分式求值的方法与技巧 求条件分式的值是分式化简、计算的重要内容,解题主要有以下三个方面: 一、将条件式变形后代入求值 例1已知 432z y x ==,z y x z y x +--+22求的值. 解:设4 32z y x ===k , 则x =2k ,y =3k ,z =4k . ∴ 原式=5 45443224322==+-?-?+k k k k k k k k . 说明:已知连比,常设比值k 为参数,这种解题方法叫参数法. 例2已知的值求b a b a b ab a +-=-+,0622. 解:由0622=-+b ab a 有(a +3b )(a -2b )=0, ∴ a +3b =0或a -2b =0, 解得a =-3b 或a =2b . 当a =-3b 时,原式= 233=+---b b b b ; 当a =2b 时,原式=3122=+--b b b b . 二、将求值变形代入求值. 例3已知)11()11()11(,0c b a a c b b a c c b a +++++=++求的值. 解:原式=1)111(1)111(1)111(-+++-+++-++a c b a b a c b c b a c =3))(111(-++++a b c c b a ∵ a +b + c =0, ∴ 原式=-3.

例4已知31=+x x ,的值求1242++x x x . 分析:∵ 1)1(11122 2224-+=++=++x x x x x x x , ∴ 可先求值式的倒数,再求求值式的值. 解:∵ 1)1(12224-+=++x x x x x 8132=-=, ∴ 8 11242=++x x x . 三、将条件式和求值式分别变形后代入求值. 例5 已知y xy x y xy x y x ---+=-2232,311则分式的值为__________. 解法一:∵ 311=-y x , ∴ y -x =3xy ?x -y =-3xy . ∵ 原式=xy y x xy y x 2)(3)(2--+- 5 3233)3(2=--+-=xy xy xy xy . 解法二:将分子、分母同除以xy (≠0). ∴原式= x y x y 121232---+ 分析:∵ 填空题不需要写出解题过程,故可取满足已知等式的特殊值求解. 解法三:取x =2 1,y =-1,

分式计算技巧

分式计算常用技巧 专题 典例引路—分式运算的常用技巧 分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,这节课我们来学习运用数学思想和方法技巧来对分式进行运算。 1、整体 例1 计算(1)242++-a a (2)11 32+--+x x x x 例2 .3353,511)1(的值求若y xy x y xy x y x ---+=- .1 11,1)2(的值求 已知++++++++=c ac c b bc b a ab a abc .3515x 5,411x )3(224242的值求如果x x x x +-=++ 整体思想就是考虑数学问题时,不是着眼于它的局部特征,而是把注意和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密联系着的量作为整体来处理的思想方法。整体思想在处理数学问题时,有广泛的应用。 2、倒数求值法 例3 的值求已知1 a ,51)1(242 ++=+a a a a

.1 x ,71)2(242 2的值求若++=+-x x x x x 3、连等设k 法 例4 .32x ,543x )1(的值求已知z y x y z y +-+== .) )()((abc ,)2(的值求已知 a c c b b a c b a b a c a c b ++++=+=+ .))()((xyz ,543)3(的值求已知 z x z y y x z x z y y x ++++=+=+ 4、分组运算法 例5 3 4123112112222++-++-++++x x x x x x x x 计算

120道分式化简求值练习题库

化简求值题 1. 先化简,再求值: 12112---x x ,其中x =-2. 2、先化简,再求值: ,其中a=﹣1. 3、先化简,再求值: ,其中x=. 4、先化简,再求值: ,其中. 5先化简,再求值 ,其中x 满足x 2﹣x ﹣1=0. 6、化简: b a b a b a b 3a -++-- 7、先化简,再求值: ,其中a=. 8、先化简211111 x x x x -÷-+-( ),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.

9、先化简,再求值:( +1)÷,其中x=2. 10、先化简,再求值:3x –3 – 18x 2 – 9 ,其中x = 10–3 11、先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算. . 12、先化简,再求值: 12-x x (x x 1--2),其中x =2. 13、先化简,再求值: ,其中. 14、先化简22( )5525x x x x x x -÷---,然后从不等组23212x x --≤??

16、先化简,再求值:232( )111 x x x x x x --÷+-- ,其中x = 17先化简。再求值: 2222121111a a a a a a a +-+?---+,其中12 a =-。 18. 先化简,再求值:? ????1+ 1 x -2÷ x 2 -2x +1 x 2-4,其中x =-5. 19. 先化简再计算:22121x x x x x x --??÷- ?+?? ,其中x 是一元二次方程2220x x --=的正数根. 20 化简,求值: 111(1 1222+---÷-+-m m m m m m ) ,其中m =. 21、(1)化简: ÷. (2)化简:22a b ab b a (a b )a a ??--÷-≠ ??? 22、先化简,再求值: ,其中. 3

分式化简求值解题技巧

分式化简求值解题技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分式化简求值解题技巧 一、整体代入 例1、已知22006a b +=,求b a b ab a 42121232 2+++的值. 例2、已知 311=-y x ,求y xy x y xy x ---+2232的值. 练一练: 1.已知 511=+y x ,求y xy x y xy x +++-2232的值. 2.已知 211=+y x ,求分式y x xy y y x x 33233++++的值 3. 若ab b a 32 2=+,求分式)21)(21(222b a b b a b -+-+的值

二、构造代入 例3、已知2 520010x x --=,求21)1()2(23-+---x x x 的值. 例4已知a b c ,,不等于0,且0a b c ++=, 求)11()11()11 (b a c c a b c b a +++++的值. 练一练: 4. 若1=ab ,求 221111b a +++的值 5.已知x x 12=+,试求代数式34121311222+++-?-+-+x x x x x x x 的值 三、参数辅助,多元归一 例5 、已知4 32z y x ==,求222z y x zx yz xy ++++的值。

练一练 6.已知2 3=-+b a b a ,求分式ab b a 22-的值 四、倒数代入 例6、已知41=+x x ,求1242++x x x 的值. 练一练 7. 若21 32=+-x x x ,求分式1242++x x x 的值. 8.已知211222-=-x x ,求)1 ()1111(2x x x x x +-÷+--的值. 9. 已知5 1,41,31=+=+=+c a ac c b bc b a ab ,求bc ac ab abc ++的值.

分式运算的几种技巧

分式运算的几种技巧 分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。 一、 整体通分法 例1 计算:2 11 ---a a a 【分析】本题是一个分式与整式的加减运算.如能把(-a -1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式. 【解】2222(1)(1)(1)(1)11(1)111111 +--+---=-+=-==------a a a a a a a a a a a a a a a a 二、 先约分后通分法 例2 计算2221 2324+-++-+x x x x x x 分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多。 解:原式=)2)(1(1+++x x x +)2)(2()2(+--x x x x =21 +x +2+x x =21++x x 三、 分组加减法 例3计算21-a +12 +a -12-a -21+a 分析:本题项数较多,分母不相同.因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便。 解:原式=(21-a -21+a )+(12 +a -12-a ) =44 2-a +142--a =)1)(4(1222--a a 四、 分离整数法 例4 计算 3 x 4x 4x 5x 2x 3x 1x 2x -----+++-++ 方法:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。 解:原式= (1)1(2)1(4)1(3)11243 ++++-----+-++--x x x x x x x x =1111(1)(1)(1)(1)1243 +-++---++--x x x x =11111243--+++--x x x x =。。。 五、 逐项通分法

条件分式求值的方法与技巧(含解析)-

条件分式求值的方法与技巧(含解析)- 求条件分式的值是分式化简、计算的重要内容,解题要紧有以下三个方面: 【一】将条件式变形后代入求值 例14 32z y x ==,z y x z y x +--+22求的值、 解:设4 32z y x ===k , 那么x =2k ,y =3k ,z =4k 、 ∴原式=5 45443224322==+-?-?+k k k k k k k k 、 说明:连比,常设比值k 为参数,这种解题方法叫参数法、 例2的值求 b a b a b ab a +-=-+,0622、 解:由0622=-+b ab a 有〔a +3b 〕〔a -2b 〕=0, ∴a +3b =0或a -2b =0, 解得a =-3b 或a =2B 、 当a =-3b 时,原式= 233=+---b b b b ; 当a =2b 时,原式=3122=+--b b b b 、 【二】将求值变形代入求值、 例3)1 1()11()11(,0c b a a c b b a c c b a +++++=++求的值、 解:原式=1)111(1)111(1)111(-+++-+++-++a c b a b a c b c b a c =3))(111(-++++a b c c b a ∵a +b +c =0, ∴原式=-3、 例431=+x x ,的值求1242++x x x 、 分析:∵1)1(11122 2224-+=++=++x x x x x x x , ∴可先求值式的倒数,再求求值式的值、 解:∵1)1(12224-+=++x x x x x 8132=-=,

∴8 11242=++x x x 、 【三】将条件式和求值式分别变形后代入求值、 例5y xy x y xy x y x ---+=-2232,311则分式的值为__________、 解法一:∵311=-y x , ∴y -x =3xy ?x -y =-3xy 、 ∵原式=xy y x xy y x 2)(3)(2--+- 5 3233)3(2=--+-=xy xy xy xy 、 解法二:将分子、分母同除以xy 〔≠0〕、 ∴原式=x y x y 121232---+ 5 332323)11(2)11(23=--?-=-----=y x y x 分析:∵填空题不需要写出解题过程,故可取满足等式的特别值求解、 解法三:取x =2 1,y =-1, )31211(=+=-y x 、 ∴原式 .532/52/3)1()1(2 1221)1(2)1(213212==---??--?--??+? =

分式化简求值经典练习题带答案

分式的化简 一、比例的性质: ⑴比例的基本性质:a c ad bc b d = ?=,比例的两外项之积等于两内项之积. 知识点睛 中考要求

⑵更比性(交换比例的内项或外项): ( ) ( ) ( )a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? 交换内项 交换外项 同时交换内外项 ⑶反比性(把比例的前项、后项交换):a c b d b d a c = ?= ⑷合比性:a c a b c d b d b d ±±= ?=,推广:a c a kb c kd b d b d ±±=?= (k 为任意实数) ⑸等比性:如果....a c m b d n = ==,那么......a c m a b d n b +++=+++(...0b d n +++≠) 二、基本运算 分式的乘法:a c a c b d b d ??= ? 分式的除法:a c a d a d b d b c b c ?÷ =?=? 乘方:()n n n n n a a a a a a a a b b b b b b b b ?=?=?64748 L L L 1424314243个个 n 个 =(n 为正整数) 整数指数幂运算性质: ⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)

⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1 n n a a -= (0a ≠),即n a -(0a ≠)是n a 的倒数 分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减,a b a b c c c +±= 异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc b d bd bd bd ±± =±= 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 结果以最简形式存在. 一、分式的化简求值 【例1】 先化简再求值: 2 11 1x x x ---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,湖南郴州 例题精讲

条件分式求值的方法与技巧完整版

条件分式求值的方法与 技巧 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

学科: 奥数 教学内容:条件分式求值的方法与技巧 求条件分式的值是分式化简、计算的重要内容,解题主要有以下三个方面: 一、将条件式变形后代入求值 例1已知 432z y x ==,z y x z y x +--+22求的值. 解:设4 32z y x ===k , 则x =2k ,y =3k ,z =4k . ∴ 原式=5 45443224322==+-?-?+k k k k k k k k . 说明:已知连比,常设比值k 为参数,这种解题方法叫参数法. 例2已知的值求b a b a b ab a +-=-+,0622. 解:由0622=-+b ab a 有(a +3b )(a -2b )=0, ∴ a +3b =0或a -2b =0, 解得a =-3b 或a =2b . 当a =-3b 时,原式=233=+---b b b b ; 当a =2b 时,原式=3 122=+--b b b b . 二、将求值变形代入求值. 例3已知)11()11()11(,0c b a a c b b a c c b a +++++=++求的值. 解:原式=1)111(1)111(1)111(-+++-+++-++a c b a b a c b c b a c =3))(111(-++++a b c c b a ∵ a +b + c =0, ∴ 原式=-3. 例4已知31=+x x ,的值求1242++x x x . 分析:∵ 1)1(11122 2224-+=++=++x x x x x x x , ∴ 可先求值式的倒数,再求求值式的值. 解:∵ 1)1(12224-+=++x x x x x 8132=-=,

中考化简求值题专项练习及答案

专项辅导(4) 化简求值题及答案 化简求值题在中考数学中占有十分重要的地位,纵观近几年省的中考数学试题,都出现了此类题目,所占分值为8分,可见此类题目的重要性!在难度上化简求值题并不难,侧重于对基础知识的考查.进行适当的练习能够对此类题目更好的掌握,在考试中不至于失分! (2008.)1.先化简,再求值: ,1 12112a a a a a a ÷+---+其中21-=a . (2009.)2.先化简,2 21111 2 -÷??? ??+--x x x x 然后从1,1,2-中选取一个合适的数作为x 的值代入求值. (2010.)3.已知,2 ,42,212+=-=-= x x C x B x A 将它们组合成 ()C B A ÷-或C B A ÷-的形式,请你从中任选一种进行计算,先化 简,再求值,其中.3=x

(2011.)4.先化简,1441112 2 -+-÷??? ? ?--x x x x 然后从-2≤x ≤2的围选取一个合适的整数作为x 的值代入求值. (2012.)5.先化简,42442 2??? ? ?-÷-+-x x x x x x 然后从5-<x <5的围选 取一个合适的整数作为x 的值代入求值. 以下题目选取的是九年级上册数学中的化简求值题.请认真完成! 6.先化简,再求值:,221 122y xy x y y x y x ++÷???? ? ?+ --其中y x ,的值分别为.23,23-=+=y x

7.先化简,再求值:,121112 ++÷??? ? ? +-a a a a 其中.23=a 8.先化简,再求值:,1 121112-÷ ??? ??+-+-+x x x x x x 其中2=x . 9.先化简,再求值:,244442232??? ? ??+ -????? ??++-x y x xy y xy x y y x 其中y x ,的值分别为.1 212?????+=-=y x 10.(2009.)先化简,再求值: ),2(4 24 42+?-+-x x x x 其中.5=x

相关文档
最新文档