三. 试用拉格朗日方程建立弹簧振子的运动微分方程,并求出其振动

三. 试用拉格朗日方程建立弹簧振子的运动微分方程,并求出其振动
三. 试用拉格朗日方程建立弹簧振子的运动微分方程,并求出其振动

三. 试用拉格朗日方程建立弹簧振子的运动微分方程,并求出其振动周期(已知:弹簧的倔强系数为K ,物块的质量为m )。

四. 长l 2,质量为m 的均匀棒,其上端A 靠在光滑的墙上,下端则固联一不能伸长的线BC ,线的上端固结于墙上C 点,C 点与A 点在同一垂直线上,棒与墙所成的角度为α,线与墙所成的角度为β,如果ABC 平面为与墙垂直的铅垂面。求平衡时αβ与之间的关系。(用刚体平衡方程求解)。

三. 解:系统自由度1=S ,取q=x,系统的动能2'21x m T = 系统的势能22

1kx V = =-=V T L 2'21x m -221kx 代入拉氏方程:0)(=??-??x

l x l dt d ,得: 0''=+kx x m 0''=+

∴x m k x 令m

k w =2,则w 为弹簧振子简谐振动的圆频率。 k

m W T ππ22==∴

四. 解:αβ

cos 0(1)0sin 0(2)0sin 2cos 0(3)()0yi xi

B i

T mg F N T F mgl N l m F ββαα?-==?-==??-==?∑∑∑ )

1()2((3)N tg N mg tg mg ββ==得:。代入式得 sin 2cos 0mgl mg tg l αβα-?= 即:202tg tg tg tg αβαβ-=∴

=

运动微分方程

运动微分方程 弹性体体积V ,表面积S ,密度ρ,单位质量所受的体力为f,体力场为f(x,t),单位向量为n 的面元dS 的面力场为t(n,x,t),x 为原点到受力点的向量,t 为时间。弹性体在t 时刻的动量P (t) dV v dt d dV f dS t dt dP F f V f m F dV f dS t F F F dV v m v p V i V i s i i i V i s i i V i i ??????= += ?=?=+=+===ρρρρρ动量定理合力弹性体动量体体面 ******************************************************************************* 散度定理:散度定理是矢量场中体积分与面积分之间的一个转换。???=??s V S d F dV F 散度:表征矢量场A 产生的体积(三维)或面积(二维)的相对膨胀率,其表达式为▽·A 。 z R y Q x P R Q P z y x F ??+ ??+??=???????=??),,(),,( ,P,Q ,R 为F 在x,y,z 上的分量。 散度定理的证明:S d F dV F s V ?=???????。 令()R Q P F ,,= ,假设F =(0,0,R),则需要证明 dS n R dV R s V z ?? ????=),0,0( 如下图,投影区为U 。 dxdy y x z y x R y x z y x R dxdy dz R dV R U y x Z y x Z z D z ))],(,,()),(,,([)() ,() ,(底顶 顶底????????-== S=S 底+S 顶+S 侧面

(完整word版)拉格朗日方程的应用及举例08讲

1 拉格朗日方程的应用及举例 拉格朗日方程有以下几个特点:(1)拉格朗日方程适用于完整系统,可以获得数目最少的运动微分方程,即可以建立与自由度数目相同的n 个方程,是一个包含n 个二阶常微分方程组,方程组的阶数为2n 。求解这个方程组可得到以广义坐标描述的系统运动方程。(2)拉格朗日方程的形式具有不变性。对于任意坐标具有统一的形式,即不随坐标的选取而变化。特别是解题时有径直的程序可循,应用方便。(3)所有的理想约束的约束反力均不出现在运动微分方程中。系统的约束条件愈多,这个特点带来的便利越突出。(4)拉格朗日方程是以能量的观点建立起来的方程,只含有表征系统运动的动能和表征主动力作用的广义力,避开了力、速度、加速度等矢量的复杂运算。(5)拉格朗日方程不但可以建立相对惯性系的运动,还可以直接建立相对非惯性系的动力学方程,只要写出的动能是绝对运动的动能即可,至于方程所描述的运动是对什么参考系的运动,则取决于所选的广义坐标。 纵观拉格朗日方程,看出分析力学在牛顿力学的基础上,提出严密的分析方法,从描述系统的位形到建立微分方程都带有新的飞跃。我们还应看到,虽然拉格朗日方法在理论上和应用上都有重要的价值,但是,牛顿力学的价值并未降低,特别是它的几何直观性和规格化的方法使人乐于应用,由于计算机的广泛使用,牛顿一欧拉方法又有所发展。我们将会看到,用拉格朗日方程求解,在获得数量最少的运动微分方程时,其求导过程有时过于繁琐,并有较多的耦合项。 应用拉格朗日方程建立动力学方程时,应首先建立以广义坐标q 和广义速度q 表示的动能函数和广义力Q 。为此,首先讨论动能的计算和广义力的计算,在此基础上,再讨论拉格朗日方程的应用。 一、动能的计算 对于系统的动能,可以写出关于广义速度q 的齐次函数的表达式。在实际计算中,应用理论力学的有关知识就可以建立以广义坐标和广义速度所表达的动能函数。 例1-1 已知质量为m ,半径为r 的均质圆盘D ,沿OAB 直角曲杆的AB 段只滚不滑。圆盘的盘面和曲杆均放置在水平面上。已知曲杆以匀角速度ω1绕通过O 点的铅直轴转动,试求圆盘的动能。 解:取广义坐标x 和?,x 为圆盘与曲杆接触点到曲杆A 点的距离,?为曲杆OAB 的转角,? = ω1t 。 应用柯尼希定理求圆盘的动能。为此,先求圆盘质心C 的速度和相对于质心平动坐标

4.2 理想流体的运动微分方程讲解

4.2 理想流体的运动微分方程 理想流体是指无粘性的且不可压缩流体,是一种假想的,不存在的流体。实际流体有粘性,粘性流体。 1. Enler 运动微分方程 H G 图 4-3 理想流体的作用力 取微六面体如图4-3所示;中心点为),,(z y x M ,M 处的压强为 ),,,(t z y x p 。作用在六面体的力有质量力z y x X d d d ρ,z y x Y d d d ρ,z y x Z d d d ρ;流体运动时的惯性力z y x d d d ρa ;由压强产生的表面力,在x 向分别为z y x x p p d d )d 21(??- 和z y x x p p d d )2 d (??+-。按牛顿第二定律不难列出x 向的力平衡方程如下: z y x a z y x x p p x x p p z y x X d d d d d )]2 d ()2d [(d d d x ρρ=??+-??-+ 列出y 、z 向力平衡方程。整理x 、y 、z 向力平衡方程(同除m z y x d d d d =ρ)如下

??? ? ? ? ???==??-==??-==??-t u a z p Z t u a y p Y t u a x p X d d 1d d 1d d 1z z y y x x ρρρ (4.2-1a) 上式也可简记为 t u a x p X d d 1i i i i ==??- ρ 3,2,1=i (4.2-1b) 式(4.2-1a)也可写成矢量形式 t p d d 1 u a G = =?- ρ (4.2-1c) 式中 Z Y X k j i G ++=为单位质量的体积力。 式(4.2-1a)便是理想流体的运动微分方程,是Euler 1755年推导出来的,故又称Euler 运动微分方程。 4.3 理想的流体运动方程的积分-Bernoulli 方程 Bernoulli 方程在工程流体力学基本理论中占有重要地位,其形式简单、意义明确,在工程中有着广泛应用。Bernoulli 方程是Euler 方程或葛罗米柯方程的积分形式。 一 运动微分方程在流线上的积分形式 在流线上取质点,不论是否定常运动,经过时间t d ,质点沿流线的微位移z y x d d d d k j i s ++=;s d 的分量,d ,d ,d z y x 可表示为 t u z t u y t u x d d ,d d ,d d z y x === (4.3-1) 对式(4.2-1a )的三式依次乘z y x d ,d ,d ,相加则有 )d d d (1d d d z z p y y p x x p z Z y Y x X ??+??+??- ++ρz t u y t u x t u d d d z y x ??+??+??= t u t u t u t u t u t u d d d z z y y x x ??+??+??= z z y y x x d d d u u u u u u ++= (4.3-2)

第3章--振动系统的运动微分方程题解

习 题 3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。 解:系统具有一个自由度,选复摆转角?为广义坐标,原点及正方向如如题4-1图所示。 复摆在任意位置下,根据刚体绕定轴转动微分方程 O O M J =? 其中 )(22 a g P J C O += ρ 得到复摆运动微分方程为 ?? ρcos )(22 Pa a g P C =+ 或 0cos )(22 =-+?? ρga a C 3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为R ,质量为m ,对质心的回转半径为C ρ,在固定平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。 解:系统具有一个自由度,选θ为广义坐标。 半圆柱体在任意位置的动能为: 222 1 21ωC C J mv T += 用瞬心法求C v : 2222*2)cos 2()(θθθ Re R e CC v C -+== θω = 2 C C m J ρ= 故 222222 1)cos 2(21θρθθ C m Re R e m T +-+= 系统具有理想约束,重力的元功为 题3-1图 题3-2图

θθδd mge W sin -= 应用动能定理的微分形式 W dT δ= θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=?? ????+-+ θθθθθθθθθθ ρd m g e d m R e d m R e d R e m C s i n s i n c o s 2)(2222-=+-++ 等式两边同除dt , θθθθθθθθθθ ρ s i n s i n c o s 2)(2222m g e m R e m R e R e m C -=+-++ 0≠θ ,等式两边同除θ 故微分方程为 0s i n s i n )c o s 2(2222=+++-+θθθθρθ m g e m R e Re R e m C ① 若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为 0])[(22=++-θθρge r R C 要点及讨论 (1)本题也可以用平面运动微分方程求解。系统的受力图与运动分析图如图(b )所示。列写微分方程 ??? ??--=-=-=④③② θ θθρsin )cos (2Ne e R F m mg N y m F x m C C C 上述方程包含C x ,C y ,θ ,F ,N 五个未知量,必须补充运动学关系才能求解。建立质心坐标与广义坐标θ之间的关系 ?? ?-=-=θθ θcos sin e R y e R x C C , ???=-=θθθθθ sin cos e y e R x C C 所以 ?????+=+-=⑥ ⑤22cos sin sin cos θθθθθθθθθ e e y e e R x C C 运动学方程式⑤⑥与方程②③④联立,消去未知约束力N ,F ,就可以得到与式①相同的系统运动微分方程。 因为在理想约束的情况下,未知约束力在动能定理的表达式中并不出现,所以用动能定理解决已知力求运动的问题更简便、直接。 (2)本题也可用机械能守恒定律求解。 系统的动能 222222 1)c o s 2(21θρθθ C m Re R e m T +-+=

运动微分方程推导

以应力表示的黏性流体运动微分方程的推导 1. 黏性流体的内应力 黏性流体在运动时,表面力不仅有法向应力,还有切向应力,因此黏性流体的表面力不垂直于作用面。 如在任一点取一微小的正六面体,如图所示,作用在平面ABCD 上的力 有法向应力 xx p ,与切向应力xy τ和xz τ。应力符号的第一个字母表示作 用面的外法线方向,第二个脚标表示应力方向。 流体场内任一点的应力状况,即该点流体微团在任一方向的作用面上的应力,都可以用通过该点的三个相互垂直的作用面上的九个应力分量来表示。 2. 以应力表示的运动微分方程 在黏性流体中取一边长为dx,dy,dz 的长方体。各表面应力的方向如图所示。为清晰起见,其中两个面上的应力符号未标。各应力的值均为代数值,正直表示应力沿相应坐标系的正向,反之亦然。由于流体不能承受拉力,因此,

xx p yy p ,zz p 必为负值。 由牛顿第二定律,x 方向的运动微分方程为: Xdxdydz ρ+xx p dydz +[-(xx p - xx p x ??dy )dydz ]+ yx τdxdz +[-(yx τ- yx y τ??dy )dxdz ]+ zx τdxdy +[-(zx τ- zx z τ??dz )]x du dxdy dxdydz dt ρ= 等式两边分别除以 ρ,然后分别对x,y,z 求偏导,得到: 1 1 ( )zx x XX du P yx X X y z dt τρρ τ??+ + +=???? (1) 同理,在y 方向,由牛顿第三定律得:

[()][)][()] yy yy yy xy xy xy zy zy zy y Ydxdydz dxdz dy dxdz y dydz dx dydz x dxdy dz dxdy z dxdydz dt p p p du ρρττ τ ττ τ + +-- + ?+-- + ?+ +-- ?=??? 等式两边同时除以 ρ,然后分别对x,y,z 求偏导得: 1 1 ( )yy zy xy y Y y z x dt p du ρρ ττ+ ++ = ?????? (2)

深度理解阻尼振动微分方程

深度理解阻尼振动微分方程 牛顿第二定律:ma F = 物体受力为: 弹性力:kx F -= 阻力:Cv F r -= 022=++kx dt dx C dt x d m 令20ω=m k ,δ2=m C ,则有: 022022=++x dt dx dt x d ωδ 该等式为二阶常系数齐次线性微分方程 特征方程02202=++ωδr r 解为2022022 442ωδδωδδ-±-=-±-=r (1)小阻尼情况 0ωδ<,则有: i r 220δωδ-±-=,一对共轭复根,令220δωω-=。 微分方程通解为: )sin cos (21t c t c e x t ωωδ+=- 初始条件01x c =,ω δ0 02x v c += 特解为t x v t x x ωω δωsin cos 00 0++= ]sin cos [20020020020020020t x v x v t x v x x x v x x ωωδωωωδωδ??? ??+++??? ??++?? ? ??++=

若令200200cos ??? ??++=ωδ?x v x x ,200200sin ??? ??++-=ωδω?x v x v ,2 0020??? ??++=ωδx v x A 则有 ]sin sin cos [cos t t Ae x t ω?ω?δ?-?=- ()?ωδ+=-t Ae x t cos (2)大阻尼情况 0ωδ>,则有: 202ωδδ-±-=r ,两个不相等的实根。 微分方程通解为: t t e c e c x )(2)(1202202ωδδωδδ-+----+= (3)临界阻尼情况 0ωδ=,则有: δ-=r ,两个相等的实根。 微分方程通解为: )(21t c c e x t +=-δ 可见,阻尼振动其实就是解一个二阶常系数齐次线性微分方程!!

拉格朗日方程的应用及举例08讲

拉格朗日方程的应用及举例 拉格朗日方程有以下几个特点:(1)拉格朗日方程适用于完整系统,可以获得数目最少的运动微分方程,即可以建立与自由度数目相同的n个方程,是一个包含n个二阶常微分方程组,方程组的阶数为2n。求解这个方程组可得到以广义坐标描述的系统运动方程。(2)拉格朗日方程的形式具有不变性。对于任意坐标具有统一的形式,即不随坐标的选取而变化。特别是解题时有径直的程序可循,应用方便。(3)所有的理想约束的约束反力均不出现在运动微分方程中。系统的约束条件愈多,这个特点带来的便利越突出。(4)拉格朗日方程是以能量的观点建立起来的方程,只含有表征系统运动的动能和表征主动力作用的广义力,避开了力、速度、加速度等矢量的复杂运算。(5)拉格朗日方程不但可以建立相对惯性系的运动,还可以直接建立相对非惯性系的动力学方程,只要写出的动能是绝对运动的动能即可,至于方程所描述的运动是对什么参考系的运动,则取决于所选的广义坐标。 纵观拉格朗日方程,看出分析力学在牛顿力学的基础上,提出严密的分析方法,从描述系统的位形到建立微分方程都带有新的飞跃。我们还应看到,虽然拉格朗日方法在理论上和应用上都有重要的价值,但是,牛顿力学的价值并未降低,特别是它的几何直观性和规格化的方法使人乐于应用,由于计算机的广泛使用,牛顿一欧拉方法又有所发展。我们将会看到,用拉格朗日方程求解,在获得数量最少的运动微分方程时,其求导过程有时过于繁琐,并有较多的耦合项。 应用拉格朗日方程建立动力学方程时,应首先建立以广义坐标q和广义速度q 表示的动能函数和广义力Q。为此,首先讨论动能的计算和广义力的计算,在此基础上,再讨论拉格朗日方程的应用。 一、动能的计算 对于系统的动能,可以写出关于广义速度q 的齐次函数的表达式。在实际计算中,应用理论力学的有关知识就可以建立以广义坐标和广义速度所表达的动能函数。 例1-1已知质量为m,半径为r的均质圆盘D, 沿OAB直角曲杆的AB段只滚不滑。圆盘的盘面和曲 杆均放置在水平面上。已知曲杆以匀角速度 1绕通过 O点的铅直轴转动,试求圆盘的动能。 解:取广义坐标x和 ,x为圆盘与曲杆接触点到 曲杆A点的距离, 为曲杆OAB的转角, = 1t。 应用柯尼希定理求圆盘的动能。为此,先求圆盘质心C 的速度和相对于质心平动坐标标准

质点运动微分方程

第3篇 动力学 第10章 质点运动微分方程 一、目的要求 1.对质点动力学的基本概念(如惯性、质量等)和动力学基本定律要在物理课程的基础上进一步理解其实质。 2.深刻理解力和加速度的关系,能正确地建立质点的运动微分方程,掌握质点动力学第一类基本问题的解法。 3.掌握质点动力学第二类基本问题的解法,特别是当作用力分别为常力、时间函数、位置函数和速度函数时,质点直线运动微分方程的积分求解方法。对运动的初始条件的力学意义及其在确定质点运动中的作用有清晰的认识,并会根据题目的已知条件正确提出运动的初始条件。 二、基本内容 1.基本概念: 动力学的基本定律,质点的运动微分方程;质点动力学的两类基本问题。 2.主要公式: (1)牛顿第二定律:a m F =(式中,质点的质量为m ,所受合力为F ,其加速度为a 。) (2)质点运动微分方程 1)矢径形式:22dt r d m F =或F r m =,∑=i F F 2)直角坐标形式:∑=x F dt x d m 22,∑=y F dt y d m 22,∑=z F dt z d m 22 3)自然坐标形式:2n m F υρ=∑,d m F dt τυ =∑,∑ = b F 0 强调:动力学基本定律仅在惯性参考系中成立,因此,公式中的速度、加速度指的是绝对速度和绝对加速度。 三、重点和难点 1.重点: (1)建立质点运动微分方程。 (2)求解质点动力学的两类基本问题。 2.难点: 在质点动力学第二类问题中,根据题目所要求的问题对质点运动微分方程进行变量交换后再积分的方法。 四、教学提示 1.建议 (1)在复习物理课程有关内容的基础上,进一步理解动力学各定律的实质,了解古典力学的适用范围。 (2)复习和运用静力学中的合力投影定理与点的运动学知识,学习如何建立不同形式的质点运动微分方程。 (3)注意区分质点动力学的两类基本问题及其解题特点,归纳动力学问题的解题步骤。 2.建议学时 课内(2学时)课外(3学时) 3.作业 10-5,10-12,10-14

结构动力学拉格朗日方程

二、拉格朗日方程及其应用 虽然可以直接用牛顿第二定律或达朗贝尔原理建立多自由度系统的运动微分方程,但是在许多情况下应用拉格朗日方程法更为方便。这里用最简单的方式推导拉格朗日方程,以便更好地理解这个被广泛应用的方程的意义。我们知道,对于一能量守恒的系统,系统的动能和势能的总和是不变的,因此,它们的总和对时间的导数等于零,即: 式中:是系统的动能,它是系统广义速度的函数;是系统的势能,它是系统广义坐标 的函数。下面将说明,这两者分别可以用广义坐标和广义速度的二次型表示。 单自由度系统的动能和势能公式如下: 这个结论可以推广到多自由度系统。如下图4-6,使系统各质点产生位移 ,则在处的力为 (a) 设系统有个力作用,则系统总势能为: (b) 把公式(a)代入(b)中,得: (c) 若用矩阵符号,上式可写成: 若把改为更一般的广义坐标符号,上式变为: (d) 上式就是用广义坐标和刚度矩阵的二次型表示的系统势能表达式。

若以表示质量的速度,可以仿照单自由度系统动能的方法表示多自由度系统的动能: 或写成矩阵形式: 我们假设系统的动能只与广义速度有关而与广义坐标无关,对微振动这是成立的。下面来推导拉格朗日方程。为此,对进行全微分: (e) 将对求导,有: 将上式乘以并对从到求和,有: (f) 比较(a),(f)两式可知: (g) 对(g)进行一次微分,得 (h) (h),(e)两式相减可得: 根据守恒系统的原理,有 (i)

因为个广义坐标是独立的,不可能都等于零,因此要上式成立必须使 (j)当系统还作用有除有势力之外的附加力时, 外力在上所作的功将是 令,则可得: (4-8)式中是除有势力之外的所有外力,其中包括阻尼力,阻尼力可表示为: (4-9)

第1章 单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 m g k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k =3 24E J h 设静平衡位置水平向右为正方向,则有 " m x k x =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2 a θ=h α 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 82 2 cos sin 1212 2 -=-≈?-=== =αθ αθ 题1-1图 题1-2图 θ F sin α 2 θ α h mg θ

其中 12 c o s s i n ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2 30 412 1==?+θθ g h a l ga h l p T n 3π23π 2π22 2 = == 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 2 1211k k k k k += ',212132 k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212 k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 22 2/l GJ k = (2) 33 3/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(233211322133212 2312 l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

变质量物体的运动微分方程研讨(doc 6页)

变质量物体的运动微分方程研讨 (doc 6页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

变质量物体的运动微分方程及火箭运动 专业:物理学 学号: 0840******** 姓名: 秦瑞锋

变质量物体的运动微分方程及火箭运动 秦瑞锋 (物理与电气工程系09级物理学专业,0840********) 摘要:我们已经了解了一定质量的系统的运动学方程和动力学方程,但在实际问题中,系统的质量往往是变化(按一定规律减少或增加)的,我们所学的一定质量的物体的运动学或动力学方程却不适用于变质量系统,下面我们将研究变质量系统的运动学和动力学的若干方程,以及变质量物体的运动规律. 关键字: 变质量系统 运动微分方程 火箭 动能定理 动量定理 一、变质量物体的基本运动微分方程 在以前的学习中,我们接触到的质点或者质点组系统运动过程中,本身的质量不会发生变化。但在实际生活和自然现象中,在某时刻有一部分质量进入或者离开我么们所要研究的对象,经常有变质量系统的运动情况,例如,地球的质量由于陨石的降落而增加,飞行中的喷气飞机和火箭随着燃料的减少质量减少,浮冰由于溶化而减少质量,运动着的传送带在某时可添加或取走货物,下降的陨石由于空气的作用发生破碎或者燃烧使质量减少……这些质点系在运动过程中,不断发生系统外的质点并入,或系统内的质点分离,以致系统的总质量随时间不断改变,我们称这些系统为变质量系统。那么该用怎样的方法研究变质量系统的运动情况呢? 我们可以假设在任何时刻,系统的分离或并入的质量是小量,两次发生分离或并入的时间间隔是小量,在这些理想的假设下,离开质点系的质量 )(m 2 t 和进入质点系的质量 )(1 t m 是时间的连续可微函数,如果系统的质量m t 在t=0时刻为m 0 ,则它随着时间的 变化规律为)()()(2 1 t t t m m m m +-= ,那对应的关于质量的一些物理量也是对时间的 可微函数,得到微分方程后,进行积分,问题可解决。 设变质量质点的质量m 是时间t 的函数,即m =m (t )。在瞬时t ,质点的质量为 m (t ),质点对于定坐标系Oxyz 的速度为v (图1),即将与之合并的微粒的质量为d m (t ),其对Oxyz 的速度为u 。在瞬时t +d t ,微粒与质点合并。于是质点的质量变为(m +d m ),其对Oxyz 的速度成为v +d v 。对于质量分出的情况则d m <0,即 dt dm 为负。 m 和d m 所组成的质点系在瞬时t 的动量为m v +u d m ;在瞬时t +d t 的动量为 (m +d m )(v +d v )。在d t 时间内,动量的增加t F p d ??=ρ ρ为: p d ρ=(m +d m ))(v d v ρρ+-(m v ρ+u ρ d m )。

拉格朗日方程

拉格朗日方程 拉格朗日方程:对于完整系统用广义坐标表示的动力方程,通常系指第二类拉格朗日方程,是法国数学家J.-L.拉格朗日首先导出的。 通常可写成: 式中T为系统用各广义坐标qj和各广义速度q'j所表示的动能;Qj为对应于qj的广义力;N(=3n-k)为这完整系统的自由度;n 为系统的质点数;k为完整约束方程个数。 从虚位移原理可以得到受理想约束的质点系不含约束力的平衡方程,而动静法(达朗贝尔原理)则将列写平衡方程的静力学方法应用于建立质点系的动力学方程,将这两者结合起来,便可得到不含约束力的质点系动力学方程,这就是动力学普遍方程。而拉格朗日方程则是动力学普遍方程在广义坐标下的具体表现形式。 拉格朗日方程可以用来建立不含约束力的动力学方程,也可以用来在给定系统运动规律的情况下求解作用在系统上的主动力。如果要想求约束力,可以将拉格朗日方程与动静法或动量定理(或质心运动定理)联用。 通常,我们将牛顿定律及建立在此基础上的力学理论称为牛顿力学(也称矢量力学),将拉格朗日方程及建立在此基础上的理论称为拉格朗日力学。拉格朗日力学通过位形空间描述力学系统的运

动,它适合于研究受约束质点系的运动。拉格朗日力学在解决微幅振动问题和刚体动力学的一些问题的过程中起了重要的作用。 用拉格朗日方程解题的优点是:①广义坐标个数通常比x坐标少,即N<3n,故拉氏方程个数比直角坐标的牛顿方程个数少,即运动微分方程组的阶数较低,问题易于求解;②广义坐标可根据约束条件作适当的选择,使力学问题的运算简化,并且不必考虑约束力;③T和L都是标量,比力的矢量关系式更易表达,因此较易列出动力方程。

振动线性微分方程模型

振动线性微分方程模型 数学科学学院 数学与应用数学 10 汉本 *** 摘要:振动是日常生活和工程技术中常见的一种运动形式。例如,单摆,弹簧 的振动,RLC 电路的电磁振荡等。在一定条件下振动问题可归结为二阶线性常系数微分方程的问题来讨论。这篇文章中以弹簧振动为具体的微分方程模型,利用常系数线性微分方程的理论讨论有关振动的问题并通过对其解的分析,阐明有关的物理现象。 关键词: 线性 临界值 特征方程 共振 线性振动的弹簧振动模型 质量为m 的指点固定在弹簧上沿水平轴振动,平衡位置0x =。由受力分析可知水平方向上质点受弹簧弹力与介质阻力(例如与水平面及空气的摩擦力)。 由胡克定律F kx =-知质点所受弹力为kx -,其中k 为弹簧系数。又由介质阻力 与质点运动速度dx dt 成正比,阻力为 dx a dt -,由牛顿第二定律有 22()d x dx m kx a f t dt dt =--+ (1) 其中()f t 为外力。(1)即为线性振动的数学模型。 l.简谐(无阻尼运动) 当外力()0f t =,阻力 0dx a dt -=,则(1)写为220 d x m kx dt += , 即 0mx kx += 这时的振动称之为简谐振动,(1)化为2+w 0x x = ,其中2k w m =, 解特征方程220w λ+= 解得 wi λ=±可知(1)的通解为 12()cos sin sin()x t C wt C wt A wt ?=+=+ A = 1 2 a r c t a n C C θ= ⅰ) 对于给定的弹簧,k 为常数 w = 为一固定常数,则余弦函数的周

两自由度系统的振动

第5章 两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以由质心C 偏离其平衡位置的铅直位移z 及平板的转角θ 来确定。这样,车辆在铅直面内的振动问题就被简化为一个两自由度的系统。 5.1 双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩擦力及其它阻尼,以它们各自的静平衡位置为坐标x 1、x 2的原点,物体离开其平衡位置的位移用x 1、x 2表示。两物体在水平方向的受力图如图5-2(b)所示,由牛顿第二定律得 ? ? ?=+-=-++00)(2212222212111x k x k x m x k x k k x m &&&& (5-1) 这就是两自由度系统的自由振动微分方程。习惯上写成下列形式 ??? =+-=-+00212211dx cx x bx ax x &&&& (5-2) 显然此时 2 2 1 2 1 2 1,,m k d c m k b m k k a = == += 但对不同的系统, 式(5-2)中各系数的意义并不相同。 图5-2两自由度的弹簧质量系统

5.1.2 固有频率和主振型 根据微分方程的理论,设方程(5-2)的解,即两自由度无阻尼自由振动系统的解为 ?? ? ??+=+=)sin()sin(2211ααpt A x pt A x (5-3) 或写成以下的矩阵形式 )sin(2121α+?? ? ???????=??????????pt A A x x (5-4) 将式(5-4)代入式(5-2),可得代数齐次方程组 ? ?? ???=????????????----002122 A A p d c b p a (5-5) 保证式(5-5)具有非零解的充分必要条件是式(5-5)的系数行列式等于零,即 0)(2 2 2 =----= ?p d c b p a p 展开后为 0)(24=-++-bc ad p d a p (5-6) 式(5-6)唯一确定了频率p 满足的条件,通常称为频率分程或特征方程。它是2p 的二次代数方程,它的两个特征根为 )(222 22 ,1bc ad d a d a p --??? ??++=μ bc d a d a +?? ? ??-+=2 22μ (5-7) 由于式(5-7)确定的2p 的两个正实根仅取决于系统本身的物理性质,与运动的初始条件无关,因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率p 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的振幅比

常微分方程在有阻尼自由振动中的应用

常微分方程在有阻尼自由振动中的应用 羊士林 (数学科学学院,2008(4)班,08211439号) 1 引言 在数学的应用中微分方程是一个活跃的分支.这不是偶然的,因为许多自然科学的定律可以通过微分方程得到精确的表达.实际上,微分方程的应用已深入到许多学科之中.比如物理学科中的许多公式的推导以及一些题目的计算,就需用到微分方程的有关知识.微分方程来源于生活实际,研究微分方程的目的就在于掌握他所反应的客观规律,能动的解释所出现的现象并预测未来可能发生的情况.下面我们将简单的介绍常微分方程的几种解法及其在物理学中的应用. 2 二阶常系数常微分方程的几种解法 2.1特征方程法 例1 求微分方程220d x dx p qx dt dt ++=的通解. 解 特征方程02=++q p λλ的根21,λλ, (1)若这是两个不等实根,则该方程有两个实值解12,t t e e λλ,故通解为 1212t t x c e c e λλ=+(21,c c 为任意常数). (2)若这两个根相等,则该方程有二重根,因此方程的通解具有形状 1112t t x c e c te λλ=+(21,c c 为任意常数). (3)若这两个根为共轭复根z a bi =±,则该方程的通解具有形状 12(sin cos )at x e c bt c bt =+(21,c c 为任意常数). 数学的许多公式与定理都需要证明,下面本文给出上面前两个解答的理论依据. 1 特征根是两个实根的情形 设12,λλ是上面特征方程的两个不相等的实根,从而相应的方程有如下两个解 12,t t e e λλ, 我们指出这两个解在a t b ≤≤上线性无关,从而它们能够组成方程的基本解组.事实 上,这时 121212()121211()t t t t t e e w t e e e λλλλλλλλλλ+==, 而最后一个行列式是著名的范德蒙德(Vandermonde )行列式,它等于21()λλ-.由于

第二章用拉格朗日方程建立系统数学模型

第二章 用拉格朗日方程建立系统的数学模型 §2.1概述 拉格朗日方程——属于能量法,推导中使用标量,直接对整个系统建模 特点:列式简洁、考虑全面、建模容易、过程规范 适合于线性系统也适合于非线性系统,适合于保守系统,也适合于非保守系统。 §2.2拉格朗日方程 1. 哈密尔顿原理 系统总动能 ),,,,,,,(321321N n q q q q q q q q T T = (2-1) 系统总势能 ),,,,(321t q q q q U U N = (2-2) 非保守力的虚功 N N nc q Q q Q q Q W δδδδ ++=2211 (2-3) 哈密尔顿原理的数学描述: 0)(2 1 21 =+-??t t nc t t dt W dt U T δδ (2-4) 2. 拉格朗日方程: 拉格朗日方程的表达式: ),3,2,1()(N i Q q U q T q T dt d i i i i ==??+??-?? (2-5) (推导:) 将系统总动能、总势能和非保守力的虚功的表达式代入哈密尔顿原理式中(变分驻值原理),有 0)( 22112211221122112 1 =+++??-??-??-??++??+??+??+??+??? dt q Q q Q q Q q q T q q U q q U q q T q q T q q T q q T q q T q q T N N N N N N N N t t δδδδδδδδδδδδ (2-6) 利用分步积分

dt q q T dt d q q T dt q q T i t t i t t i i i t t i δδδ?? ??-??=??21212 1 )(][ (2-7) 并注意到端点不变分(端点变分为零) 0)()(21==t q t q i i δδ (2-8) 故 dt q q T dt d dt q q T i i t t i t t i δδ)(212 1 ??-=???? (2-9) 从而有 0)])([2 1 1 =+??-??+??- ?∑=dt q Q q U q T q T dt d i i i t t i i N i δ ( (2-10) 由变分学原理的基本引理: (设 n 维向量函数M(t),在区间],[0f t t 内处处连续,在],[0f t t 内具有二阶连续导 数,在f t t ,0处为零,并对任意选取的n 维向量函数)(t η,有 ? =f t t T dt t M t 0 0)()(η 则在整个区间],[0f t t 内,有 0)(≡t M ) 我们可以得到: 0)(=+??-??+??- i i i i Q q U q T q T dt d (2-11) 即 i i i i Q q U q T q T dt d =??+??-??)( (2-12) 对非保守系统,阻尼力是一种典型的非保守力,如果采用线性粘性阻尼模型, 则阻尼力与广义速度}{q 成正比,在这种情况下,可引入瑞利耗散(耗能)函数D , }]{[}{2 1q C q D T ≡ (2-13) 阻尼力产生的广义非保守力为:

拉格朗日方程

学年论文 题目:光电效应的应用 学生:张韩佩 学号: 201212020104 院(系):理学院 专业:应用物理学 指导教师:罗道斌 2014 年 11月15日

目录 摘要......................................................... 关键字..................................................... Abstract (1) Key Words..................................................................1. 1引言 (1) 2 光电效应的概念 (1) 3光电效应的实验规律 (2) 4光电效应和经典理论的矛盾处 (5) 5光电效应的科学释 (7) 6光电效应在近代技术中的应用.......................... 6.1常用的光学器件............ 6.2常用光学器件的检测 7结束语 参考文献 (7)

光电效应的应用 物理121:指导教师:罗道斌 (陕西科技大学理学院陕西西安 710021) 摘要 本文介绍了光电效应的发现及其发展,简要叙述了爱因斯坦的光量子假说对光电子效益的解释及其通过实验来验证了爱因斯坦的光量子假说对光电效应解释的正确性,并介绍了光电效应在现代科学技术中的应用。 关键字:光电效应;光量子;频率;相对论 The Use Of The Lagrange Equation To Balance Abstract: By Lagrange's equations pushed to this article, and can cause the ap -plication of t he balanced system set out to illustrate the Lagrangian of the feasibility and ease of applicatio n of the balanced system, and illustrates a more typical issues and ways to solve the problem. Key Word s: Lagrange; balance; binding; generalized coordinates 1引言 牛顿运动力学[1]作为描述物体运动的重要方程大家都有了解,但本文介绍的拉格朗日方程,在力学体系特别是动力学体系有着举足轻重的地位,同时在平衡问题上也发挥了一定的作用,本文将带领大家了解并熟悉这一方程,和它在平衡问题上的运用. 2拉格朗日简介 拉格朗日方程 Lagrange equation 从虚位移原理可以得到受理想约束的质点系不含约束力的平衡方程,而动静法(达朗贝尔原理)则将列写平衡方程的静力学方法应用于建立质点系的动力学方程,

拉格朗日方程

论文提要 拉格朗日方程是拉格朗日力学的主要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。 拉格朗日推导出两种形式的拉式方程,即第一类拉格朗日方程和第二类拉格朗日方程。第一类方程使用直角坐标及约束方程(用待定乘子法),因而方程组中的方程很多;第二类方程使用广义坐标、广义力及动能的概念,使方程组中的方程数大大减少(为广义做表数或自由度数)。 拉式方程由动力学普遍方程导出,他秉承了动力学普遍方程不需考虑约束力的优点。因而,对受完整约束的多自由度多刚体系统,比其它动力学方法简单(特别是保守系统,毋需求广义力)。

摘 要:拉格朗日方程是拉格朗日力学的主要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。 拉式方程由动力学普遍方程导出,他秉承了动力学普遍方程不需考虑约束力的优点。因而,对受完整约束的多自由度多刚体系统,比其它动力学方法简单(特别是保守系统,毋需求广义力)。 关键词:拉格朗日方程 约束力 广义力 拉式方程是从能量的角度来描述动力学规律的,能量是整个物理学的基本物理量而且是标量,因此拉式方程为把力学规律推广到其它物理学领域开辟了可能性,成为力学与其它物理学分支相联系的桥梁。 一、 基本形式的拉格朗日方程 设体系由n 个质点组成,受k 个理想完整约束,其自由度为s=3n-k ,即需要s 个独立坐标即广义坐标,则 i r =i r ()12,,,,s q q q t ()5.3.1 i r δ =11i r q q δ?? +22i r q q δ?? +...,+i s s r q q δ?? =1s i s s r q q αδ=??∑ , 1,2,...,s α= ()2.3.5 在理想约束下,有 ()0=?-∑r r m F i i i i i δ ()3.3.5 将()2.3.5式代入()3.3.5式, ()() 011 1 1 =???? ? ??? ????-=????-∑∑∑∑====q q r r m F q q r r m F s n i i i i i s i n i i i i α ααα αα

相关文档
最新文档