光固化快速成型设备的简单介绍

光固化快速成型设备的简单介绍
光固化快速成型设备的简单介绍

光固化快速成型设备的简单介绍

作者:班级:

摘要

自从1988年3D Systems公司最早推出SLA商品化快速成型机SLA -250以来,SLA已成为目前世界上研究最深入、技术最成熟、应用最广泛的一种快速成型工艺方法。它以光敏树脂为原料,通过计算机控制紫外激光使其凝固成型。这种方法能简捷、全自动地制造出表面质量和尺寸精度较高、几何形状较复杂的原型。这里主要是在介绍光固化成形的原理和特点的基础上介绍光固化成型设备。

正文

20世纪70年代末到80年代初期,美国3M公司的Alan J. Hebert(1978)、日本的小玉秀男(1980)、美国UVP公司的Charles W. Hull(1982)和日本的丸谷洋二(1983),在不同的地点各自独立地提出了RP的概念,即利用连续层的选区固化产生三维实体的新思想。Charles Hull在UVP的继续支持下,完成了一个能自动建造零件的称之为SLA-1的完整系统。同年,Charles Hull和UVP的股东们一起建立了3D Systems公司,并于1988年首次推出SLA-250机型。目前,研究光固化成型(SLA)设备的单位有美国的3D Systems公司、Aaroflex公司,德国的EOS公司、F&S公司,法国的Laser 3D公司,日本的SONY/D-MEC公司、Teijin Seiki公司、Denken Engieering公司、Meiko公司、Unipid公司、CMET 公司,以色列的Cubital公司以及国内的西安交通大学、上海联泰科技有限公司、华中科技大学等。

在上述研究SLA设备的众多公司中,美国3D Systems公司的SLA技术在国际市场上占的比例最大。3D Systems公司在继1988年推出第一台商品化设备SLA-250以来,又于1997年推出了SLA250HR、SLA3500、SLA5000三种机型,在光固化成型设备技术方面有了长足的进步。其中,SLA3500和SLA5000使用半导体激励的固体激光器,扫描速度分别达到2.54m/sec和5m/sec,成层厚最小可达0.05mm

光固化成型的基本原理

液槽中盛满液态光敏树脂,氦-镉激光器或氩离子激光器发出的紫外激光束在控制系统的控制下按零件的各分层截面信息在光敏树脂表面进行逐点扫描,使被扫描区域的树脂薄层产生光聚合反应而固化,形成零件的一个薄层。一层固化完毕后,工作台下移一个层厚的距离,以使在原先固化好的树脂表面再敷上一层新的液态树脂,刮板将粘度较大的树脂液面刮平,然后进行下一层的扫描加工,新固化的一层牢固地粘结在前一层上,如此重复直至整个零件制造完毕,得到一个三维实体原型。

光固化成型制造过程中残留的多余树脂

因为树脂材料的高粘性,在每层固化之后,液面很难在短时间内迅速流平,这将会影响实体的精度。采用刮板刮切后,所需数量的树脂便会被十分均匀地凃敷在上一叠层上,这样经过激光固化后可以得到较好的精度,使产品表面更加光滑和平整。

吸附式涂层结构

吸附式涂层机构在刮板静止时,液态树脂在表面张力作用下,吸附槽中充满树脂。当刮板进行涂刮运动时,吸附槽中的树脂会均匀涂敷到已固化的树脂表面。此外,涂敷机构中的前刃和后刃可以很好地消除树脂表面因为工作台升降等产生

的气泡。

光固化成型技术的特点

优点:

成型过程自动化程度高:SLA系统非常稳定,加工开始后,成型过程可以完全自动化,直至原型制作完成。

尺寸精度高:SLA原型的尺寸精度可以达到±0.1mm。

优良的表面质量:虽然在每层固化时侧面及曲面可能出现台阶,但上表面仍可得到玻璃状的效果。

可以制作结构十分复杂的模型、尺寸比较精细的模型

可以直接制作面向熔模精密铸造的具有中空结构的消失型

制作的原型可以一定程度地替代塑料件

缺点:

制件易变形:成型过程中材料发生物理和化学变化

较脆,易断裂性能尚不如常用的工业塑料

设备运转及维护成本较高:液态树脂材料和激光器的价格较高

使用的材料较少:目前可用的材料主要为感光性的液态树脂材料

液态树脂有气味和毒性,并且需要避光保护,以防止提前发生聚合反应,选择时有局限性

需要二次固化:经快速成型系统光固化后的原型树脂并未完全被激光固化

光固化快速成型材料及设备

3D Systems公司的SLA-250机型

3D Systems公司的SLA-3500机型 3D Systems公司的SLA-5000机型

3D Systems公司的SLA-7000机型 3D Systems公司的Vipersi2SLA机型

3D Systems公司的Viper Pro SLA机型

SPS600成型机 LPS600成型机国内西安交通大学在光固化成型技术、设备、材料等方面进行了大量的研究工作,推出了自行研制与开发的SPS、LPS、和CPS三种机型,每种机型有不同的规格系列,其工作原理都是光固化成型原理。

RS-600S光固化成型机

上海联泰科技有限公司开发的光固化成型设备主要有RS-350H、RS-350S、RS-600H和RS-600S等机型。

立体光固化成型

立体光固化成型法 "Stereo lithography Appearance"的缩写,即立体光固化成型法。 用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面.这样层层叠加构成一个三维实体。 光固化快速成型制造技术不同于传统的材料去除制造方法,它的成型原理[6~8]是:SLA将所设计零件的三维计算图像数据转换成一系列很薄的模型截面数据,然后在快速成型机上,用可控制的紫外线激光束,按计算机切片软件所得到的每层薄片的二维图形轮廓轨迹,对液态光敏树脂进行扫描固化,形成连续的固化点,从而构成模型的一个薄截面轮廓。下一层以同样的方法制造。该工艺从零件的底薄层截面开始,一次一层连续进行,直到三维立体模型制成。一般每层厚度为0.076~0.381mm,最后将制品从树脂液中取出,进行最终的硬化处理,再打光、电镀、喷涂或着色即可。 要实现光固化快速成型,感光树脂的选择也很关键。它必须具有合适的粘度,固化后达到一定的强度,在固化时和固化后要有较小的收缩及扭曲变形等性能。更重要的是,为了高速、精密地制造一个零件,感光树脂必须具有合适的光敏性能,不仅要在较低的光照能量下固化,且树脂的固化深度也应合适。 成型过程及控制 光固化快速成型的过程分为前处理、分层叠加成型及后处理三个阶段。 快速成型机只能接受计算机构造的三维模型,然后才能进行切片处理。因此,应在计算机上采用计算机三维辅助设计软件,根据产品的要求设计三维模型或将已有产品的二维三视图转换成三维模型。 对样品形状及尺寸设计进行直观分析 在新产品设计阶段,虽然可以借助设计图纸和计算模拟对产品进行评价,但不直观,特别是形状复杂产品,往往因难于想象其真实形貌而不能作出正确、及时的判断。采用SLA可以快速制造样品,供设计者和用户直观测量,并可迅速反复修改和制造,可大大缩短新产品的设计周期,使设计符合预期的形状和尺寸要求。 用SLA制件进行产品性能测试与分析 在塑料制品加工企业,由于SLA制件有较好的机械性能,可用于制品的部分性能测试与光固化成型的优势。 1. 光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验。 2. 由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具。 3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具。 4. 使CAD数字模型直观化,降低错误修复的成本。 5. 为实验提供试样,可以对计算机仿真计算的结果进行验证与校核。 6. 可联机操作,可远程控制,利于生产的自动化。

材料成型设备-知识点

成形(Forming),即毛坯(一般指固态金属或非金属)在外界压力的作用下,借助于模具通过材料的塑性变形来获得模具所给予的形状、尺寸和性能的制品。 成型(Moulding),它是指液态或半固态的原材料(金属或非金属)在外界压力(或自身重力)作用下,通过流动填充模型(或模具)的型腔来获得与型腔的形状和尺寸相一致的制品。 成形设备是为各类成形工艺服务的,通过它为模具和被加工材料提供运动、能量、外力、控制等来完成成形生产。 冲压加工是在冲压设备上,通过冲压模具对毛坯施加压力,使材料产生分离或成形,得到预定制件的形状和尺寸的一种加工工艺方法。 装模高度是指:压力机滑块处于下止点时,滑块下表面到工作垫板上表面的距离。 封闭高度是指:压力机滑块处于下止点时,滑块下表面到工作台上表面的距离。 塑料是一种由聚合物和某些助剂结合而成的高分子化合物,在一定温度和压力条件下具有流动性,可以被模塑成型为一定的几何形状和尺寸,并在成型固化后保持其既得形状不发生变化。 冲压加工对冲压设备的要求 (1)设备的公称压力要大于成形工序所需的变形力。(2)保证毛坯顺利放入,制件顺利取出。(3)设备的工作行程速度要符合冲压变形速度的要求。(4)设备的装模高度要与模具的闭合高度相协调。(5)设备滑块和工作台尺寸要能满足需要。 通用压力机的组成: (1)工作机构:即曲柄滑块机构,作用是将传动系统的旋转运动变换为滑块的直线往复运动。包括曲轴、连杆、滑块、导轨等。(2)动力系统:为滑块运动提供能量。包括电机和飞轮。飞轮起能量储存作用,将空负荷时的电机能量转化为飞轮转动的动能,飞轮主要是带轮和齿轮。(3)传动系统:传递能量和变换速度。包括带轮、齿轮等。(4)操纵系统:控制工作机构的工作和停止。包括离合器和制动器。(5)支承部分:把压力机各个部分连接成一个整体。主要指机身。(6)辅助系统和装置:如润滑系统、过载保护装置以及气垫等。 电动机和飞轮的作用与关系 电动机和飞轮都属于压力机的动力系统,电动机为设备提供原始的能量和转速,飞轮则起到储存和释放能量的作用。在非工作行程时将电动机提供的能量储存起来,在冲压工作瞬间,将能量释放出去。没有飞轮电动机就没法正常工作。 在下一个工作周期开始工作之前,电动机应能使飞轮恢复到应有的转速,否则会影响下一次冲压作业;并且电动机带动飞轮启动的时间不得超过20秒,否则电流过大,缩短电动机寿命,甚至引起电动机的烧毁或跳闸。 节点偏置机构主要用于改善压力机的受力状态和运动特性,从而适应工艺要求。如负偏置机构,滑块有急回特性,其工作行程速度较小,回程速度较大,有利于冷挤压工艺,常在冷挤压机中采用;正偏置机构,滑块有急进特性,常在平锻机中采用。 压力机的精度可用以下项目来衡量: ①工作台(或垫板)上平面及滑块下平面的平面度;②滑块的上下运动轨迹线与工作台(或垫板)上平面的垂直度;③模柄安装孔与滑块下平面的垂直度;④各连接点的综合间隙。 压力机中摩擦式离合器—制动器所用摩擦材料的要求:1、有足够高的摩擦系数,特别是在一定温度范围内保持摩擦系数的热稳定性。2、有较长的使用寿命,在一定温度范围内有较高的耐磨性。3、有良好的热传导性。4、有良好的磨合性从而保证摩擦面的良好接触。5、应有良好的抗咬合性。 液压机的特点 1)易于得到较大的总压力及较大的工作空间。2)易于得到较大的工作行程,便于压制大尺寸工件,并可

TS16949五大工具描述

具体是指《ISO/TS16949:2002 汽车行业生产件及相关服务业质量管理体系》的五大工具。 TS 五大工具包括:APQP、FMEA、MSA、PPAP、SPC APQP ---- 质量先期策划 PPAP――生产件批准程序 SPC——统计制程控制 MSA――测量系统分析 FMEA――潜在失效模式分析 这其中以APQP为纽带贯穿始终,其它四大工具分别在总流程的某个重要环节起作用。 TS16949 五大工具分别是:产品质量先期策划(APQP)、测量系统分析(MSA)、统计过程控制(SPC)、生产件批准(PPAP)和潜在失效模式与后果分析(FMEA) 第一:APQP产品质量先期策划 一、QFD简介-简单介绍APQP的背景和基本原则 二、APQP详解(五个阶段) 1 )项目的确定阶段 ?立项的准备资料和要求 ?立项输出的结果和记录 2)产品研发阶段 ?产品研发需要事先考虑和参考的要求和信息,以确保尽可能预防产品设计问题的产生 ?产品研发阶段输出的结果和记录 3)过程研发阶段 ?过程研发需要事先考虑和参考的要求和信息,以确保尽可能预防生产中问题的产生 ?过程研发阶段输出的结果和记录 4)设计方案的确认 ?进行试生产的要求和必须的输出结果 5)大规模量产阶段 ?寺续改进 三、控制计划 ?控制计划在质量体系中的重要地位 ?空制计划的要求 第二:MSA测量系统分析 测量系统必须处于统计控制中,这意味着测量系统中的变差只能是由于普通原因而不是由于特殊原因造成的。这可称为统计稳定性;测量系统的变 差必须比制造过程的变差小;变差应小于公差带;测量精度应高于过程变差和公差带两者中精度较高者,一般来说,测量精度是过程变差和公差带 两者中精度较高者的十分之一;测量系统统计特性可能随被测项目的改变而变化。若真的如此,则测量系统的最大的变差应小于过程变差和公差带 两者中的较小者。 一、MSA的目的、适用范围和术语 二、测量系统的统计特性 三、测量系统变差的分类 四、测量系统变差(偏倚、重复性、再现性、稳定性、线性)的定义、图示表达方式 五、测量系统研究的准备 六、偏倚的分析方法、判定准则 七、重复性、再现性的分析方法、判定准则 八、稳定性的分析方法、判定准则 九、线性的分析方法、判定准则 十、量型测量系统研究指南

3D打印技术之SLA(立体光固化成型法)

3D打印技术之SLA (立体光固化成型法) SLA (Stereo lithography Appearance,即立体光固化成型法。 SLA技术3d打印机的原理 用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。这样层层叠加构成一个三维实体。 SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。其工艺过程是: 首先,通过CAD S计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动; 其次,激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面; 然后,升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型, 最后,将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。 SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模。SLA技术成形速度较快,精度较

高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。 SLA技术的优势 1.光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验。 2.由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具。 3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具。 4.使CAD数字模型直观化,降低错误修复的成本。 5.为实验提供试样,可以对计算机仿真计算的结果进行验证与校核。 6.可联机操作,可远程控制,利于生产的自动化。 SLA技术的缺陷 1.SLA系统造价高昂,使用和维护成本过高。 2.SLA系统是要对液体进行操作的精密设备,对工作环境要求苛刻。 3.成型件多为树脂类,强度,刚度,耐热性有限,不利于长时间保存。 4.预处理软件与驱动软件运算量大,与加工效果关联性太高。 5.软件系统操作复杂,入门困难;使用的文件格式不为广大设计人员熟悉。

模具成型工艺介绍

注塑成型介绍及工艺介绍 一、注塑成型的基本原理: 注塑机利用塑胶加热到一定温度后,能熔融成液体的性质,把熔融液体用高压注射到密闭的模腔内,经过冷却定型,开模后顶出得到所需的塑体产品。 二、注塑成型的四大要素: 1.塑胶模具 2.注塑机 3.塑胶原料 4.成型条件 三、塑胶模具 大部份使用二板模、三板模,也有部份带滑块的行位模。 基本结构: 1.公模(下模)公模固定板、公模辅助板、顶针板、公模板。 2.母模(上模) 母模板、母模固定板、进胶圈、定位圈。 3.衡温系统冷却.稳(衡)定模具温度。 四、注塑机 主要由塑化、注射装置,合模装置和传动机构组成;电气带动电机,电机带动油泵,油泵产生油压,油压带动活塞,活塞带动机械,机械产生动作; 1、依注射方式可分为: 1.卧式注塑机 2.立式注塑机 3.角式注塑机 4.多色注塑机 2、依锁模方式可分为: 1.直压式注塑机 2.曲轴式注塑机 3.直压、曲轴复合式 3、依加料方式可分为: 1.柱塞式注塑机 2.单程螺杆注塑机 3.往复式螺杆注塑机 4、注塑机四大系统: 1.射出系统 a.多段化、搅拌性及耐腐蚀性。 b.射速、射出、保压、背压、螺杆转速分段控制。 c.搅拌性、寿命长的螺杆装置。 d.料管互换性,自动清洗。 e.油泵之平衡、稳定性。 2.锁模系统 a.高速度、高钢性。 b.自动调模、换模装置。 c.自动润滑系统。 d.平衡、稳定性。 3.油压系统 a.全电子式回馈控制。 b.动作平顺、高稳定性、封闭性。 c.快速、节能性。 d.液压油冷却,自滤系统。 4.电控系统 a.多段化、具记忆、扩充性之微电脑控制。 b.闭环式电路、回路。 c.SSR(比例、积分、微分 )温度控制。 d.自我诊断.警报功能。 e.自动生产品质管制、记录。 5、国内注塑机现有的品牌:

快速成型技术激光快速成型机软件的操作

第3章激光快速成型机软件的操作 3.1概述 快速成型制作流程如图3-1所示,在利用快速成型机制做原型以前,必须先将用户所需的零件设计出CAD 模型,再将CAD 模型转换成快速成型机能够使用的数据格式,最终通过控制软件控制设备的加工运行。设计可以利用现在广泛应用在设计领域的三维CAD 设计软件,如Pro/E 、UG 、CATIA 、SolidWorks 、SolidEdge 、Inventor 、CAXA 、AutoCAD 等生成,在此不再叙述。如果已有设计好的油泥模型或有零件需要仿制,可以通过反求工程扫描完成CAD 模型(见反求章节)。 图3-1快速成型的制作流程图 快速成型机可直接根据用户提供的STL 文件进行制造。用户可使用能输出STL 文件的CAD 设计系统(如Pro/E 、UG 、CATIA 、SolidWorks 、Ideas 等)进行CAD 三维实体造型,其输出的STL 面片文件可作为快速成型机软件的输入文件。从上面流程图可见,数据处理软件接受STL 文件后,进行零件制作大小、方向的确定,对STL 文件分层、支撑设计、生成SPS 系列激光快速成型机的加工数据文件,激光快速成型机控制软件根据此文件进行加工制作。本章主要讲从以有三维CAD 开始介绍如何将其转换为快速成型机能够使用的数据格式并详细的说明激光快速成型机的控制软件的造作。介绍RPdata10.0数据处理软件、由数据处理软件实现用户设计目标 CAD 三维实体造 导出STL 格式数据 加载STL 格式数据 确定造型方向或制作布局 自动生成支撑 自动分层处理 SLC/HDI 格式数据输出 选择成型机型号 对应成型机数据加载、制作 RP 原型

材料成型设备复习资料--课后习题部分

第二章 2-1、曲柄压力机由那几部分组成?各部分的功能如何? 答:曲柄压力机由以下几部分组成:1、工作机构。由曲柄、连杆、滑块组成,将旋转运动 转换成往复直线运动。2、传动系统。由带传动和齿轮传动组成,将电动机的能量传输至工作机构。3、操作机构。主要由离合器、制动器和相应电器系统组成,控制工作机构的运行状态,使其能够间歇或连续工作。4、能源部分。由电动机和飞轮组成,电动机提供能源,飞轮储存和释放能量。5、支撑部分。由机身、工作台和紧固件等组成。它把压力机所有零部件连成一个整体。6、辅助系统。包括气路系统、润滑系统、过载保护装置、气垫、快换模、打料装置、监控装置等。提高压力机的安全性和操作方便性 2-2、曲柄压力机滑块位移、速度、加速度变化规律是怎样的?它们与冲压工艺的联系如何? 答:速度的变化规律为正弦曲线,加速度的变化规律为余弦曲线,位移的变化规律为 滑块位移与曲柄转角的关系:??????-+ -=)2cos 1(4)cos 1(S αλαR 滑块速度与曲柄转角的关系:)2sin 2R(sin v αλαω+ = 滑块速度与转角的关系:)2cos (cos a 2αλαω+- =R 曲轴受转矩:)2sin 2sin (αλα+=FR M L 2-5装模高度的调节方式有哪些?各有何特点? 1. 调节连杆长度。该方法结构紧凑,可降低压力机的高度,但连杆与滑块的铰接处为球头, 且球头和支撑座加工比较困难,需专用设备。螺杆的抗弯性能亦不强。 2. 调节滑块高度。柱销式连杆采用此种结构,与球头式连杆相比,柱销式连杆的抗弯强度 提高了,铰接柱销的加工也更为方便,较大型压力机采用柱面连接结构以改善圆柱销的受力。 3. 调节工作台高度。多用于小型压力机。 2-7、开式机身和闭式机身各有何特点?应用于何种场合?P26 1. 开式机身:操作空间三面敞开,工作台面不受导轨间距的限制,安装、调整模具具有较 大的操作空间,与自动送料机构的连接也很方便。但由于床身近似C 形,在受力变形时产生角位移和垂直位移,角位移会加剧模具磨损和影响冲压力质量,严重时会折断冲头。开式机身多用于小型压力机。 2. 闭式机身:形成一个对称的封闭框形结构,受力后仅产生垂直变形,刚度比开式机身好。 但由于框形结构及其它因素,它只能前后两面操作。整体机身加工装配工作量小,需大型加工设备,运输和安装困难。但采用组合机身可以解决运输和安装方面的困难。闭式机身广泛运用于中大型压力机。 2-9、转键离合器的操作机构是怎样工作的?它是怎样保证压力机的单次操作?P28 答:单次行程:先用销子11将拉杆5与右边的打棒3连接起来,后踩下踏板使电磁铁6通 电,衔铁7上吸,拉杆向下拉打棒,离合器接合。 在曲轴旋转一周前,由于凸块2将打棒向右撞开,经齿轮带动关闭器回到工作位置挡住尾板,迫使离合器脱开,曲轴在制动器作用下停止转动,滑块完成一次行程.

模具分类及其成型方式

模具分类 模具是现代工业的重要工艺装备,是许多工业产品生产中不可缺少的组成部分。我国加入WTO以后,吸引外资能力的逐年增强,成为世界产品制造工厂地位愈加突出,各类工业品模具的进口越来越多。 模具的类型通常是按照加工对象和工艺的不同进行分类,从行业角度的区分来看主要有塑料模具、橡胶模具、金属冷冲模具、金属冷挤压模具和热挤压模具、金属拉拔模具、粉末冶金模具、金属压铸模具、金属精密铸造模具、玻璃模具、玻璃钢模具等等。 下面仅就进口最为常见的塑料制品成型加工中所用不同类型的模具如何进行归类作一介绍。 塑料最常见的成型方法一般分为熔体成型和固相成型两大类:熔体成型是把塑料加热至熔点以上,使之处于熔融态进行成型加工的方式,属于此种成型方法的模塑工艺主要有注射成型、压塑(缩)成型、挤出成型等;固相成型是指塑料在熔融温度以下保持固态下的一类成型方法,如一些塑料包装容器生产的真空成型、压缩空气成型和吹塑成型等。此外还有液态成型方式,如铸塑成型、搪塑和蘸浸成型法等。 按照上述成型方法的不同,可以划分出对应不同工艺要求的塑料加工模具类型,主要有注射成型模具、挤出成型模具、压塑成型模具、吹塑成型模具、吸塑成型模具、高发泡聚苯乙烯成型模具等。 塑料注射(塑)模具 它主要是热塑性塑料件产品生产中应用最为普遍的一种成型模具,塑料注射成型模具对应的加工设备是塑料注射成型机,塑料首先在注射机底加热料筒内受热熔融,然后在注射机的螺杆或柱塞推动下,经注射机喷嘴和模具的浇注系统进入模具型腔,塑料冷却硬化成型,脱模得到制品。其结构通常由成型部件、浇注系统、导向部件、推出机构、调温系统、排气系统、支撑部件等部分组成。制造材料通常采用塑料模具钢模块,常用的材质主要为碳素结构钢、碳素工具钢、合金工具钢、高速钢等。注射成型加工方式通常只适用于热塑性塑料品种的制品生产,用注射成型工艺生产的塑料制品十分广泛,从生活日用品到各类复杂的机械、电器、交通工具零件等都是用注射模具成型的,它是塑料制品生产中应用最广的一种加工方法。 塑料压塑模具

高分子材料成型加工原理 期末复习重点

1聚合物主要有哪几种聚集态形式? 玻璃态(结晶态)、高弹态与粘流态 2线性无定形聚合物当加工温度T处于Tb < T 材料的屈服强度,可进行薄膜或纤维拉伸;聚合物加工的最低温度: 玻璃化温度 Tg T > Tf (Tm) 粘流态(熔体,液态)比Tf略高的温度,为类橡胶流动行为,可进行压延、挤出与吹塑成型。可进行熔融纺丝、注射、挤出、吹塑与贴合等加工 3熔融指数?说明熔融指数与聚合物粘度、分子量与加工流动性的关系, 挤出与注塑成型对材料的熔融指数要求有何不同? 熔融指数(Melt Flow Index) 一定温度(T >Tf 或Tm)与压力(通常为2、160kg )下,10分钟内从出料孔(? = 2、095mm ) 挤出的聚合物重量( g∕10 min)。 a评价热塑性聚合物的挤压性; b评价熔体的流动度(流度φ= 1/η), 间接反映聚合物的分子量大小; c购买原料的重要参数。 分子量高的聚合物,易缠结,分子间作用力大,分子体积大, 流动阻力较大,熔体粘度大,流动度小,熔融指数低;加工性能较差。分子量高的聚合物的力学强度与硬度等较高。 分子量较低的聚合物,流动度小,熔体粘度低,熔融指数大,加工流动性好。分子量较低的聚合物的力学强度与硬度等较低 4成纤聚合物的一般特性,纤维成型过程,纺丝液体的制备,工业生产主要纺丝成形方法。 1)分子量较高,分子间作用力(含强极性基团或氢键)较大;可制成强度好的纤维; 2)无较长支链、交联结构与很大的取代基团,为线型结构,结晶性较好,使拉伸取向结晶后,纤维的强度与模量较高。 3)分子量分布窄:低分子级份过多,纤维强度下降;高分子级份太多,熔体粘度急剧增大,出现凝胶型颗粒,难于拉伸取向。 4) 溶解或熔融后,液体具有适度的粘度; 5) 良好的热稳定。

3D打印快速成型技术

特种加工论文 题目3D打印快速成型技术 姓名 专业 班级 学号

3D打印快速成型技术 摘要: 本文主要介绍了特种加工中3D打印快速成型技术,首先介绍它的加工原理,然后分析它的特点、加工方式,然后说明其在实际生产中的主要应用以及发展方向。 关键词:特种加工技术,3D打印快速成型,特点,应用。 Abstract: This article mainly introduced the special processing of 3 d printing rapid prototyping technology, introduces its processing principle, and analyzes its characteristics, processing methods, and then explain the main application in practical production and the development direction. Key words:Special processing technology, 3 d printing rapid prototyping, characteristics, application. 一、引言 3D打印(3D PRINTING )即3D打印技术,又3D打印制造是20世纪80年代才兴起的一门新兴的技术,是21世纪制造业最具影响的技术之一。随着计算机与网络技术的发展,信息高速公路加快了科技传播的速度,产品的生命周期越来越短,企业之间的竞争不再只是质量和成本上的竞争,而更重要的是产品上市时间的竞争。因此,通过计算机仿真和3D打印增加产品的信息量,以便更快的完成设计及其制造过程,将产品设计和制造过程的时间周期尽量缩短,防止投产后发现问题造成不可挽回的损失。 3D打印技术是由CAD模型直接驱动的快速制造复杂形状的三维实体的技术总称。简单的讲,3D打印制造技术就是快速制造新产品首版样件的技术,它可以在没有任何刀具、模具及工装夹具的情况下,快速直接的实现零件的单件生产。该技术突破了制造业的传统模式,特别适合于新产品的开发、单件或少批量产品试制等。它是机械工程、计算机CAD、电子技术、数控技术、激光技术、材料科学等多学科相互渗透与交叉的产物。它可快速,准确地将设计思想转变为具有一定功能的原型或零件,以便进行快速评估,修改及功能测试,从而大大缩短产品的研制周期,减少开发费用,加快新产品推向市场的进程。 自从美国3D公司在1987年推出世界上第一台商用快速原形制造设备以来,快速原形技术快速发展。投入的研究经费大幅增加,技术成果丰硕。原形化系统产品的销量高速增长。在这方面美国,日本一直处于领先地位,我国在这方面起步较晚,但是奋起直追,开展研究并取得一定成果,国内也有些成熟的产品问世,他们正在各种生产领域上发挥着作用。 二、打印系统的工作原理 3D打印技术是一种逐层制造技术,它采用离散/堆积成型原理,其过程是:先得到所需零件的计算机三维曲面或实体模型;然后根据工艺要求,将其按一定厚度进行分层,将原来的三维模型变成二维平面信息,即离散过程;再将分层后的数据进行一定的处理,加入加工参数,产生数控代码;在微机控制下,数控系

浅谈对材料成型(模具)专业的认识

浅谈对材控专业的认识 摘要:材料成型及控制工程专业研究通过热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。本学科是国民经济发展的支柱产业。 材料成型及控制工程专业培养具备机械热加工基础知识与应用能力,能在工业生产第一线从事热加工领域内的设计制造、试验研究、运行管理和经营销售等方面工作的高级工程技术人才。 该专业设两个专业方向,分别为金属成型及模具专业方向和塑料成型及模具专业方向 关键词:专业相关介绍·模具工业的应用及发展·塑料成型工艺·塑料制品·就业方向及技能 参考文献:《模具工程》第二版·朱元吉等译《塑料成型工艺与模具设计》·齐晓杰主编

关于专业 材料成型及控制工程专业说白了就是研究通过热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。在我们重大,材料成形及控制工程专业历史悠久,它始于1960年,其中铸造、锻压、焊接是专业的主要学科。最开始材控专业属于机械学院,后被编入材料学院。 专业未来前景 从中国现在的国情来看,我们的学科完全可以说是国民经济发展的支柱产业。中国的材料加工、制造技术目前还处于一个未成熟阶段,我们学习的这个专业在未来的发展还是很有前途的。从专业的学习内容来看,这个专业是一个具有典型材料学科特征的机械类学科,机械学科和材料学科的基础知识构成了学科的基本知识体系,因此我们以后会走向厚基础、宽专业的模式。而且,从开设材料成形及控制工程专业的高校数量来看,专业在未来很长的一段时间内也是一个热门专业。 专业课程 在学习高等数学、大学物理、大学英语、计算机技术基础等基础课程的基础上,我们主要学习机械制图、工程力学、机械设计基础、金属学与热处理原理、材料分析测试技术、材料性能

材料成型设备期末复习

第一章连续铸造设备: 1. 连续铸造:将液态金属通过连铸机浇铸、凝固成形、切割而直接得到铸坯的新工艺、新技术。 2. 连铸机的分类: (1)按台、机、流分:?台钢包;?铸机驱动系统(机);?流。 (2)按结晶器类型分:固定式、随动式。 (3)按连铸机型分:立式连铸、立弯式连铸、直结晶器立弯式、结晶器弧形、全弧形连铸、多半径椭圆形连铸、水平连铸、轮带式连铸、履带式连铸等。 (4)按铸坯弯曲矫直方式分:单点矫直连铸机、多点弯矫连铸、连续弯矫连铸(又分固定辊和浮动辊两类)、渐进矫直连铸(又称固定辊连续矫直连铸)等。 (5)按铸造材料:连续铸钢、连续铸铝、连续铸镁、特殊钢连铸、不锈钢板坯(方坯)连铸、合金钢板坯(方坯)连铸等。 (6)按所浇铸的断面形状分:板坯连铸、带坯连铸、小方坯连铸、大方坯连铸、圆坯连铸、异型(如,工字形、八角形)断面坯连铸、板方坯兼容连铸(板方坯复合连铸)。 (7)按照铸坯厚度分: 常规板坯连铸<150mm中厚度板坯连铸90~150mm薄板坯连铸40~70(90)mm; 带坯连铸~25mm 薄带连铸~10mm极薄带连铸<3mm,最薄可达0.15~0.3mm (8)按是否接近最终产品形状分:传统连铸、近终形连铸。 3. 传统连铸设备的组成:钢包、中间包、结晶器(一次冷却)、结晶器振动装置、二次冷却和铸坯导向装置、拉坯矫直装置、切割装置、出坯装置等组成。 4. 传统连铸过程:钢水→钢包(二次精炼)→中间包→打开塞棒或滑动水口(或定径水口)→水冷结晶器(引锭杆头封堵)→凝成钢壳→启动拉坯机和结晶器振动装置→带液芯铸坯进入弧形导向段→喷水强制冷却→矫直→切割→出坯。 5. 立式、弧形、水平连铸机的特点。 立式连铸机的特点: (1)钢水在结晶器内,四周冷却条件相同,易于调节控制,钢水中各种非金属夹杂物易于上浮,铸坯内夹杂物少,横断面结晶组织对称。 (2)连铸机主体设备结构简单、不需矫直装置。 (3)铸坯在结晶凝固过程中,不受机械外力作用,有利于获得更好质量。 (4)由于机身很高,钢水静压力大,极易产生鼓肚变形,设备维修不方便,投资较多。 (5)铸坯定尺长度受到限制,随着生产率的提高,需增大铸坯尺寸,提高拉速,这就需要提高立式连铸机的高度,使其缺点更加突出,从而使立式连铸机的发展受到限制。 弧形连铸机的特点: (1)机身高度低,为立式连铸机的1/3,克服了立式连铸机的部分缺点。 (2)水平出坯,定尺长度不受限制,有利于高速浇铸。 (3)钢水在圆弧中进行凝固,夹杂物上浮受到阻碍,并容易向内弧富集,造成夹杂物偏析,占地面积比立式连铸机大。 (4)铸机中与弧形有关设备的制造、安装、对弧等均比较麻烦。 水平连铸机的特点: (1)连铸机各单体设备完全在地面上水平布置,机身高度很低(高度小于或等于3m)。钢水静压力小,利于结晶凝固,特别是从钢水到成坯的全过程不受弯曲和矫直等机械外力作用,裂纹明显减少。 (2)连铸机结构简单,重量轻(比普通弧形连铸机约轻43%-45%),投资和维护成本大幅降低,一次投资省50%以上。 (3)由于中间包和结晶器直接相连,钢水完全在封闭系统内流动和凝固,易于实现无氧化浇铸,铸坯质量好。 (4)目前只能浇铸较小断面的铸坯,只适宜生产小批量的钢坯,特别是特殊钢铸坯。 6. 连铸机的组成、各组成部分的构造、功能、类型。 (1)连铸机的组成:钢包、中间包、结晶器(一次冷却)、结晶器振动装置、二次冷却和铸坯导向装置、拉坯矫直装置、切割装置、出坯装置等组成。 (2)以结晶器为例,说明其构造、功能、类型。 结晶器的构造:内外结构,内部为导热性好的铜模,外部为钢质外壳。 结晶器的功能:是一个水冷的铜模,是连铸机中的“心脏“部件,钢水在结晶器内冷却,初步凝固成型,并具有一定厚度的坯壳。 对结晶器性能的要求:良好的导热性和刚性,不易变形,重量轻,内表面耐磨性要好。 结晶器的分类:按内断面分:直形结晶器和弧形结晶器;按结构分:管式、组合式。 8. 连铸连轧:由连铸机生产出来的高温无缺陷坯,无需清理和再加热(但需经短时均热和保温处理)而直接轧制成材,这样把“铸”和“轧”直接连成一条生产线的工艺流程。 9. CSP、ISP、FTSC或FTSRQ、CONROLL等典型连铸连轧工艺及特点。 (1)CSP称为紧凑式热带生产工艺。特点:采用漏斗形结晶器以便浸入式水口容易插入结晶器;可浇铸50mm厚的板坯;流程短、生产简便稳定、产品质量好、市场竞争力强等。(2)ISP称为在线热带生产工艺。特点:采用平行结晶器和液芯压下技术。 (3)FTSC或FTSRQ称为生产高质量产品的灵活性薄板坯轧制工艺。特点:可提供表面和内部质量、力学性能、化学成分均优的汽车工业用热轧带卷。 (4)CONROLL与CSP工艺相似,奥钢联工程技术公司开发,用以生产不同钢种高质量的热轧带卷。特点:具有生产率高、产品价格便宜的优势。 10. 连续铸轧:将熔融金属由高温陶瓷喷嘴导入内部通有冷却水的旋转两轧辊的辊缝间,直接轧辊做结晶器,一边凝固一边轧制,直接获得20mm以下至几毫米厚的薄带坯。。 第二章轧制机械设备概论: 1. 轧机机械设备分类:主要设备-轧机和辅助设备-除轧机以外的其它设备。 2. 轧机定义:以实现金属在旋转的轧辊之间依靠轧制压力作用而发生塑性变形的机械设备。 3. 轧机的分类:有按用途、结构、布置三种分类方法。按用途:型材轧机、板带轧机、管材轧机、特殊用途轧机;按布置形式:水平配置、垂直配置、倾斜配置;按工作机座中轧辊数目:二辊、三辊、四辊和多辊轧机。 4. 轧机机械设备的辅助设备:切断设备、矫直设备、控制轧件尺寸与形状的设备、表面加工设备、改善组织性能设备、输送设备、包装设备。 5. 轧机的工作机座:轧辊、轧辊轴承、轧辊调整装置、机架及有关的附件(导卫装置、轨座)的全部装配体。 6. 工作机座各部分的作用: (1)轧辊:以轧制方式直接完成金属塑性变形的核心零部件。 (2)轧辊轴承:支持、固定轧辊,与轧辊构成辊系。 (3)轧辊调整装置:调整轧辊间位置并在调整后固定,以保证所要求的变形,包括轴向、径向、水平调整装置、轧辊平衡装置等。 (4)机架:安装和固定轧辊、轧辊轴承、轧辊调整装置、轧辊平衡装置、导卫装置等。 (5)轧辊导卫装置:用以正确、顺利地引导轧件进出轧辊。 (6)轨座(地脚板):将机架固定于基础上。 7. 轧机的标称 (1)型材轧机:主要性能参数是轧辊名义直径,(2)板带轧机:主要性能参数是轧辊辊身长度,。 (3)钢管轧机:以能够轧制管材的最大外径来标称;热轧机组以该机组品种规格和轧管机类型表示;焊管机组以其产品规格、成型方法、焊接方式来表示;冷轧机和冷旋压机规格用其产品规格和轧机形式表示;冷拔机用其允许的额定拔制力表示。 第三章轧辊与轧辊轴承 1. 轧辊所受载荷 (1)机械载荷:弯曲应力、辊面间接触应力、传动辊上的扭转应力;咬入瞬间及轧制速度变化时,引起动载荷,导致辊上应力变化。 (2)摩擦:变形区中的前、后滑,咬入打滑、卡钢等造成辊身表面与轧件间相对运动,导致辊身表面受到剧烈摩擦。 (3)热负荷:热轧时,轧件高温和冷却水交替作用,产生热循环应力;冷轧时,轧件变形热效应,轧辊表层也产生热循环应力。 2. 轧辊的主要失效形式 (1)磨损:辊身磨损达到允许的总车削量后,因表层硬度丧失、强度削弱而报废。 (2)辊面剥落:轧辊受循环接触应力作用,表面产生掉块形成凹坑而报废。 (3)折断:过大轧制压力产生的机械应力是断辊的主要原因。 3. 轧制生产对轧辊的要求 (1)工艺要求:有合理的结构、尺寸、材质,以保证轧件尺寸、表面质量、产量。 (2)寿命要求:不致过早、或不正常破坏、失效。 (3)性能要求:要有一定的强韧性、耐磨性、耐热性、耐剥落性等,其材质特性则以机械性能和硬度为主。 (4)总体要求:轧制生产对轧辊的基本要求可归纳为对轧辊的结构、尺寸的确定,对轧辊材质、制造方法的选择,对轧辊强度、刚度的校核。 4. 轧辊的结构 (1)辊身:是轧辊的工作部分;对于型材轧辊,辊身有各种形状轧槽,即孔型;对于板材轧辊,辊身基本呈圆柱形,为补偿弯曲、不均匀热膨胀、不均匀磨损对辊缝的影响,可将辊身加工成较复杂的曲线形状,即辊型。 (2)辊头:是轧辊与连接轴相接的部分;起连接传动或吊装作用,其形状由连接轴形式而异,主要有梅花型、键槽型、万向节型三种。 (3)辊颈:是轧辊的支承部分;辊颈的形状由轴承形式及装卸要求确定,主要有圆柱形和圆锥形两种形式。 注意:辊颈与辊身交界处为应力集中的部位,属于轧辊强度的薄弱环节,因而该处应用适当的过渡圆弧连接。 5. 轧辊的参数 轧辊的尺寸参数包括:辊身直径D、辊身长度L、辊颈直径d、辊颈长度l和辊头尺寸。其中辊身直径、辊身长度是表征轧辊尺寸的基本参数。

3D打印技术之SLA(立体光固化成型法)

3D打印技术之SLA(立体光固化成型法) SLA(Stereo lithography Appearance),即立体光固化成型法。 SLA技术3d打印机的原理 用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。这样层层叠加构成一个三维实体。 SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。其工艺过程是: 首先,通过CAD设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动; 其次,激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面; 然后,升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型, 最后,将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。 SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模。SLA技术成形速度较快,精度较

高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。 SLA 技术的优势 1.光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验。 2.由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具。 3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具。 4.使CAD数字模型直观化,降低错误修复的成本。 5.为实验提供试样,可以对计算机仿真计算的结果进行验证与校核。 6.可联机操作,可远程控制,利于生产的自动化。 SLA 技术的缺陷 1.SLA系统造价高昂,使用和维护成本过高。 2.SLA系统是要对液体进行操作的精密设备,对工作环境要求苛刻。 3.成型件多为树脂类,强度,刚度,耐热性有限,不利于长时间保存。 4.预处理软件与驱动软件运算量大,与加工效果关联性太高。 5.软件系统操作复杂,入门困难;使用的文件格式不为广大设计人员熟悉。

熔融沉积快速成型设备操作与原型制作

实训项目三熔融沉积快速成型设备操作与原型制作专业:数控技术班级: 09数控一班姓名:万美伶学号: 095305106 工作小组: 1 日期:2011.11.1 成绩: 一、工作任务 使用熔融沉积快速成型设备完成原型的制作 二、工作方法 将模型的数据文件*.STL(二进制)导入Aurora软件,进行成型工艺、形状阶段的的处理,得到理想的曲面模型。 三、工作所需的设备、仪器、工具或材料 1. MEM-300-II 快速成型机 2. Aurora分层软件 3. 电脑 4. ABS丝材、铲子、锉子、砂纸等 四、工作步骤及要求 (一)三维模型的分层处理。 1)打开Aurora数据处理软件,将成型模型的*.STL文件导入。 2)对模型进行工艺处理。根据模型的具体情况,进行模型的分割、定向、排样合并等处理。

4)设置分层参数,模型的分层,并输出分层数据文件*.CLI

(二)分层制造,堆积成型。造型步骤如下: 1)启动计算机 2)接通MEM-300-II FDM快速成型机总电源按钮,按下照明,温控、数控、散热等按钮3)启动控制软件Cark,打开要成型的*.CLI 文件 4)初始化系统,启动温度控制系统, 5)待成型材料到达指定的温度(270℃)后,打开喷头按钮,选择菜单“造型→控制面板”,弹出控制面板对话框后,在喷头区域按下“喷丝”按钮,观察喷头出丝的情况。 6)工作台清理,调整工作台和喷头相对位置。用普通纸不断测量喷头和台面的距离,当纸可以插入喷头和台面之间,并有一定的阻力时,标明高度比较合适,间隙大约为0.1 毫米。7)造型。设定造型的工艺参数,待成型室温度达到指定的温度(55℃)后,选择菜单“造型→造型……”,单击“Start” (三)后处理。 将设备降温、原型用从工作台上取出,去除支撑,打磨表面。

快速成型技术及其发展综述

计算机集成制造技术与系统——读书报告 题目名称: 专业班级: 学号: 学生姓名: 指导老师

快速成型技术及其发展 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 1 快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。 1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。 3快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

相关文档
最新文档