平面向量及其应用经典试题(含答案)百度文库

平面向量及其应用经典试题(含答案)百度文库
平面向量及其应用经典试题(含答案)百度文库

一、多选题1.题目文件丢失!

2.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3

π

,a =7,则以下判断正确的是( )

A .△ABC 的外接圆面积是493

π

; B .b cos C +c cos B =7;

C .b +c 可能等于16;

D .作A 关于BC 的对称点A ′,则|AA ′|的最大

值是

3.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >

D .

sin sin sin +=+a b c

A B C

4.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )

A .()

a c

b

c a b c ?-?=-? B .()

()

b c a c a b ??-??与c 不垂直 C .a b a b -<-

D .(

)()

22

323294a b a b a b +?-=-

5.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且

AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )

A .1A

B CE ?=- B .0OE O

C +=

C .32

OA OB OC ++=

D .ED 在BC 方向上的投影为

76

6.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++

D .AB AC BD CD -+-

7.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )

A .2OA OD ?=-

B .2OB OH OE +=-

C .AH HO BC BO ?=?

D .AH 在AB 向量上的投影为2-

8.在ABC ?中,角A ,B ,C 所对的边分别为a ,b ,c ,且

()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )

A .sin :sin :sin 4:5:6A

B

C = B .ABC ?是钝角三角形

C .ABC ?的最大内角是最小内角的2倍

D .若6c =,则ABC ?外接圆半径为

87

7

9.在ABC 中,15a =,20b =,30A =,则cos B =( ) A .5B .

23

C .23

-

D 510.下列命题中,结论正确的有( ) A .00a ?=

B .若a b ⊥,则||||a b a b +=-

C .若//AB C

D ,则A ?B ?C ?D 四点共线;

D .在四边形ABCD 中,若0AB CD +=,0AC BD ?=,则四边形ABCD 为菱形. 11.下列命题中,正确的是( ) A .在ABC ?中,A B >,sin sin A B ∴> B .在锐角ABC ?中,不等式sin cos A B >恒成立

C .在ABC ?中,若cos cos a A b B =,则ABC ?必是等腰直角三角形

D .在ABC ?中,若060B =,2b ac =,则ABC ?必是等边三角形

12.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)-

B .(6,15)

C .(2,3)-

D .(2,3)

13.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =

B .AB B

C =

C .AB C

D AD BC -=+ D .AD CD CD CB +=-

14.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-

C .若||||||a b a b +=+,则a 在b 方向上的投影为||b

D .若存在实数λ使得a b λ=,则||||||a b a b +=-

15.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量

B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个

C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得

()11122122e e e e λμλλμ+=+

D .若存在实数,λμ使得120e e λμ+=,则0λμ==

二、平面向量及其应用选择题

16.已知圆C 的方程为2

2

(1)(1)2x y -+-=,点P 在直线3y x

上,线段AB 为圆C

的直径,则PA PB ?的最小值为() A .2

B .

52

C .3

D .

72

17.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ?=?≠,则a b =

C .若,,,A B C

D 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ?>,则a 与b 的夹角为锐角;若0a b ?<,则a 与b 的夹角为钝角 18.若点G 是ABC 的重心,,,a b c 分别是BAC ∠,ABC ∠,ACB ∠的对边,且

3

03

aGA bGB cGC ++

=.则BAC ∠等于( ) A .90°

B .60°

C .45°

D .30°

19.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,

()1OQ t OB =-,PQ 在t t =0时取得最小值,则当01

05

t <<

时,夹角θ的取值范围为( ) A .0,3π?? ???

B .,32ππ?? ???

C .2,23ππ??

??

?

D .20,

3π?? ???

20.在ABC ?中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ?的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ?的形状为( ) A .不确定 B .直角三角形 C .钝角三角形

D .等边三角形

21.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若

2a =,ABC 的面积为3(21)-,则b c +=(

A .5

B .22

C .4

D .16

22.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为

1S ,ABC 的面积为2S ,则1

2

S S =

A .310

B .38

C .

25

D .

421

23.在ABC 中,若A B >,则下列结论错误的是( ) A .sin sin A B >

B .cos cos A B <

C .sin2sin2A B >

D .cos2cos2A B <

24.在ABC ?中,已知2AB =,4AC =,若点G 、W 分别为ABC ?的重心和外心,则

()AG AW BC +?=( )

A .4

B .6

C .10

D .14

25.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若

()2

2S a b c +=+,则cos A 等于( )

A .

45

B .45

-

C .

1517

D .1517

-

26.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )

A 3

B .

22

C 31

- D 21 27.在ABC 中,若 cos a b C =,则ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形

D .等腰或直角三角形

28.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在

OC 方向上的投影相同,则a =( )

A .12

-

B .

12

C .-2

D .2

29.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,

则①AD =-b -

12a ;②BE =a +12b ;③CF =-12a +1

2

b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .4

30.ABC ?中,22:tan :tan a b A B =,则ABC ?一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形

D .等腰或直角三角形

31.已知ABC ?的内角A 、B 、C 满足()()1

sin 2sin sin 2

A A

B

C C A B +-+=--+

,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +> C .612abc ≤≤

D .1224abc ≤≤

32.奔驰定理:已知O 是ABC ?内的一点,BOC ?,AOC ?,AOB ?的面积分别为A S ,

B S ,

C S ,则0A B C S OA S OB S OC ?+?+?=.“奔驰定理”是平面向量中一个非常优美的

结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ?内的一点,A ,B ,C 是ABC ?的三个内角,且点

O 满足OA OB OB OC OC OA ?=?=?,则必有( )

A .sin sin sin 0A OA

B OB

C OC ?+?+?= B .cos cos cos 0A OA B OB C OC ?+?+?= C .tan tan tan 0A OA B OB C OC ?+?+?=

D .sin 2sin 2sin 20A OA B OB C OC ?+?+?= 33.已知1a b ==,1

2

a b ?=

,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,

b ,对于任意实数m ,n ,不等式a

c b

d T -+-≥恒成立,则实数T 的取值范围为

( )

A .(

-∞ B .)

+∞

C .(

-∞ D .)

+∞

34.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( )

A .等腰直角三角形

B .等腰三角形

C .直角三角形

D .等边三角形

35.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .2

3BG BE = B .2CG GF = C .1

2

DG AG =

D .0GA GB GC ++=

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.无 2.ABD 【分析】

根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】

对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确; 对于B ,根据正弦定 解析:ABD 【分析】

根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】

对于A ,设ABC 的外接圆半径为R ,根据正弦定理

2sin a R A =,可得R =ABC 的外接圆面积是249

3

S R ππ==

,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为

2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.

对于C ,22(sin sin )2[sin sin(

)]3

b c R B C R B B π

+=+=+-

114(cos )14sin()223

B B B π=+=+

14b c ∴+≤,故C 错误.

对于D ,设A 到直线BC 的距离为d ,根据面积公式可得

11

sin 22

ad bc A =,即sin bc A

d a

=

,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.

3.ACD 【分析】

根据正弦定理的性质即可判断. 【详解】

对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角

解析:ACD 【分析】

根据正弦定理的性质即可判断. 【详解】

对于A ,在ABC ,由正弦定理得

2sin sin sin a b c

R A B C

===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;

对于B ,若sin 2sin 2A B =,则A B =或2

A B π

+=,所以a 和b 不一定相等,故B 错

误;

对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以

A B >,故C 正确;

对于D ,由正弦定理得

2sin sin sin a b c

R A B C

===,则2sin 2sin 2sin sin sin sin b c R B R C

R B C B C ++==++,故D 正确.

故选:ACD. 【点睛】

本题考查正弦定理的应用,属于基础题. 4.ACD

【分析】

A ,由平面向量数量积的运算律可判断;

B ,由平面向量垂直的条件、数量积的

运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平

解析:ACD 【分析】

A ,由平面向量数量积的运算律可判断;

B ,由平面向量垂直的条件、数量积的运算律可判断;

C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;

D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】

选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,

()()()()()()()()

0b c a c a b c b c a c c a b c b c a c b c c a ????-???=???-???=???-???=??

, ∴()()b c a c a b ??-??与c 垂直,即B 错误;

选项C ,∵a 与b 不共线,

∴若a b ≤,则a b a b -<-显然成立;

若a b >,由平面向量的减法法则可作出如下图形:

由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;

选项D ,()()

22

223232966494a b a b a a b a b b a b +?-=-?+?-=-,即D 正确. 故选:ACD 【点睛】

本小题主要考查向量运算,属于中档题.

5.BCD 【分析】

以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】

由题E 为AB 中点,则,

以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,

解析:BCD 【分析】

以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】

由题E 为AB 中点,则CE AB ⊥,

以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:

所以,123

(0,0),(1,0),(1,0),3),(,

)33

E A B C D -, 设123

(0,),3),(1,),(,3

O y y BO y DO y ∈==-,BO ∥DO , 所以3133y y -

=-,解得:3

2

y =

, 即O 是CE 中点,0OE OC +=,所以选项B 正确;

3

2OA OB OC OE OC OE ++=+==

,所以选项C 正确; 因为CE AB ⊥,0AB CE ?=,所以选项A 错误;

123(,33

ED =,(1,3)BC =,

ED 在BC 方向上的投影为12

7

326BC BC

ED +?==,所以选项D 正确.

故选:BCD 【点睛】

此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.

6.BD

【分析】

根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】

对于选项:,选项不正确; 对于选项: ,选项正确; 对于选项:,选项不正确; 对于选项: 选项正确. 故选:

解析:BD 【分析】

根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】

对于选项A :AB MB BO OM AB +++=,选项A 不正确; 对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确; 对于选项C :OA OC BO CO BA +++=,选项C 不正确;

对于选项D :()()

0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确. 故选:BD

【点睛】

本题主要考查了向量的线性运算,属于基础题.

7.AB 【分析】

直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】

图2中的正八边形,其中, 对于;故正确. 对于,故正确.

对于,,但对应向量的夹角不相等,所以不成立.故错误. 对于

解析:AB 【分析】

直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】

图2中的正八边形ABCDEFGH ,其中||1OA =,

对于3:11cos

4A OA OD π=??=;故正确. 对于:22B OB OH OA OE +==-,故正确.

对于:||||C AH BC =,||||HO BO =,但对应向量的夹角不相等,所以不成立.故错误. 对于:D AH 在AB 向量上的投影32

||cos ||4AH AH π=-,||1AH ≠,故错误. 故选:AB . 【点睛】

本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.

8.ACD 【分析】

先根据已知条件求得,再根据正余弦定理计算并逐一判断即可. 【详解】 因为

所以可设:(其中),解得: 所以,所以A 正确;

由上可知:边最大,所以三角形中角最大, 又 ,所以角为

解析:ACD 【分析】

先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可. 【详解】

因为()()()::9:10:11a b a c b c +++=

所以可设:91011a b x

a c x

b

c x +=??

+=??+=?

(其中0x >),解得:4,5,6a x b x c x ===

所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确; 由上可知:c 边最大,所以三角形中C 角最大,

又222222(4)(5)(6)1

cos 022458

a b c x x x C ab x x +-+-===>?? ,所以C 角为锐角,所以B 错

误;

由上可知:a 边最小,所以三角形中A 角最小,

又222222(6)(5)(4)3

cos 22654

c b a x x x A cb x x +-+-===??,

所以2

1

cos22cos 18

A A =-=

,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π??∈ ???

所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =

,又sin 8

C ==

所以

28

R =

,解得:7

R =,所以D 正确. 故选:ACD. 【点睛】

本题考查了正弦定理和与余弦定理,属于基础题.

9.AD 【分析】

利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】

由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】

本题考查利用正弦定理与同

解析:AD 【分析】

利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】

由正弦定理sin sin b a B A

=,可得1

20sin 22sin 153

b A B a ?

===, b a >,则30B A >=,所以,B 为锐角或钝角.

因此,cos 3

B ==±. 故选:AD. 【点睛】

本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.

10.BD 【分析】

根据平面向量的数量积及平行向量共线定理判断可得; 【详解】

解:对于A ,,故A 错误;

对于B ,若,则,所以,,故,即B 正确; 对于C ,,则或与共线,故C 错误; 对于D ,在四边形中,若

解析:BD 【分析】

根据平面向量的数量积及平行向量共线定理判断可得; 【详解】

解:对于A ,00a ?=,故A 错误; 对于B ,若a b ⊥,则0a b ?=,所以2222

||2a b a b a b a b +=

++?=+,

2222

||2a b a b a b a b -=+-?=+,故||||a b a b +=-,即B 正确;

对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;

对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ?=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD 【点睛】

本题考查平行向量的数量积及共线定理的应用,属于基础题.

11.ABD 【分析】

对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得

解析:ABD 【分析】

对于选项A 在ABC ?中,由正弦定理可得sin sin A B a b A B >?>?>,即可判断出正误;对于选项B 在锐角ABC ?中,由

02

2

A B π

π

>>

->,可得

sin sin()cos 2

A B B π

>-=,即可判断出正误;对于选项C 在ABC ?中,由

cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ?中,利用余弦定理可得:

2222cos b a c ac B =+-,代入已知可得a c =,又60B =?,即可得到ABC ?的形状,即

可判断出正误. 【详解】

对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ?中,A ,(0,

)2

B π

∈,

2

A B π

+>

,∴

02

2

A B π

π

>>

->,

sin sin()cos 2

A B B π

∴>-=,因此不等式sin cos A B >恒成立,正确;

对于C ,在ABC ?中,由cos cos a A b B =,利用正弦定理可得:

sin cos sin cos A A B B =, sin 2sin 2A B ∴=, A ,(0,)B π∈,

22A B ∴=或222A B π=-,

A B ∴=或2

A B π

+=,

ABC ?∴是等腰三角形或直角三角形,因此是假命题,C 错误.

对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,

可得2

()0a c -=,解得a c =,可得60A C B ===?,故正确.

故选:ABD . 【点睛】

本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.

12.ABC 【分析】

设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解. 【详解】 第四个顶点为, 当时,,

解得,此时第四个顶点的坐标为; 当时,, 解得

解析:ABC 【分析】

设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解.

第四个顶点为(,)D x y ,

当AD BC =时,(3,7)(3,8)x y --=--,

解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,

解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,

解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】

本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.

13.BCD 【分析】

由向量的加法减法法则及菱形的几何性质即可求解. 【详解】

菱形中向量与的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误; 因为,,且, 所以,即C 结论正确; 因为,

解析:BCD 【分析】

由向量的加法减法法则及菱形的几何性质即可求解. 【详解】

菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;

因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确; 因为AD CD BC CD BD +=+=,

||||CD CB CD BC BD -=+=,所以D 结论正确.

故选:BCD 【点睛】

本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.

14.AB

若,则反向,从而; 若,则,从而可得;

若,则同向,在方向上的投影为

若存在实数使得,则共线,但是不一定成立. 【详解】

对于选项A ,若,则反向,由共线定理可得存在实数使得; 对于选

解析:AB 【分析】

若||||||a b a b +=-,则,a b 反向,从而a b λ=; 若a b ⊥,则0a b ?=,从而可得||||a b a b +=-;

若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a

若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 【详解】

对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得

a b λ=;

对于选项B ,若a b ⊥,则0a b ?=,

222222||2,||2a b a a b b a b a a b b +=+?+-=-?+,可得||||a b a b +=-;

对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;

对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB. 【点睛】

本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.

15.AD 【分析】

根据平面向量基本定理可知,A ?D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确. 【详解】

由平面向量基本定理可知,A ?D 是正确的. 对于B,由平面向量基本

解析:AD 【分析】

根据平面向量基本定理可知,A ?D 是正确的,选项B 不正确;对于选项C ,当两个向量均为

0时,λ有无数个,故不正确. 【详解】

由平面向量基本定理可知,A ?D 是正确的.

对于B ,由平面向量基本定理可知,如果一个平面的基底确定, 那么任意一个向量在此基底下的实数对是唯一的,所以不正确; 对于C ,当两向量的系数均为零,即12120λλμμ====时, 这样的λ有无数个,所以不正确. 故选:AD . 【点睛】

本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.

二、平面向量及其应用选择题

16.B 【分析】

将PA PB ?转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ?的最小值. 【详解】

()()()()

PA PB PC CA PC CB PC CA PC CA ?=+?+=+?-2

222||||||22

PC CA PC =-=-≥-52=.故选B. 【点睛】

本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题. 17.C 【分析】

根据平面向量的定义与性质,逐项判断,即可得到本题答案. 【详解】

因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ?=?≠,但a b ≠,故B 不正确;

,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形

ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且

||||AB DC =,所以AB DC =,故C 正确;0a b ?>时,,a b 的夹角可能为0,故D 不正

确. 故选:C

【点睛】

本题主要考查平面向量的定义、相关性质以及数量积. 18.D 【分析】

由点G 是ABC 的重心可得0GA GB GC ++=,即GA GB GC =--,代入

303aGA bGB cGC ++=中可得3()0b a GB c a GC ??-

+-= ? ???,由,GB GC 不共线可得0

03

b a a -=?-=?,即可求得,,a b

c 的关系,进而利用余弦定理求解即可 【详解】

因为点G 是ABC 的重心,所以0GA GB GC ++=, 所以GA GB GC =--,

代入30aGA bGB cGC ++=可得3()03b a GB c a GC ??-+-=

? ???, 因为,GB GC 不共线,所以0

0b a a -=?-=,

即b a c =???=??,所以222cos 22b c a BAC bc +-∠==

,故30BAC ?∠=, 故选:D 【点睛】

本题考查向量的线性运算,考查利用余弦定理求角 19.C 【解析】 【分析】

根据向量的数量积运算和向量的线性表示可得,

()()2

2

254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出

012cos 54cos t θθ

+=

+,再由01

05t <<,可求得夹角θ的取值范围.

【详解】 因为2cos OA OB θ?=,()1PQ OQ OP t OB tOA =-=--,

()()22

254cos 24cos 1PQ PQ t t θθ==+-++,

∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ

+=

+,又01

05t <<,则

12cos 1054cos 5

θθ+<

<+,得1

cos 02θ-<<,∵0θπ≤≤,

所以223ππθ<<,

故选:C. 【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题. 20.D 【分析】

先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状. 【详解】

因为cos cos b A a B =,所以sin cos sin cos =B A A B , 所以()sin 0B A -=,所以A B =, 又因为2B A C B π=+=-,所以3

B π

=,

所以3

A B π

==,所以ABC 是等边三角形.

故选:D. 【点睛】

本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 21.C 【分析】

根据正弦定理边化角以及三角函数公式可得4

A π

=,再根据面积公式可求得6(2bc =,

再代入余弦定理求解即可. 【详解】

ABC 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,

又sin sin()sin cos cos sin C A B A B A B =+=+,

∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈,

∴4

A π

=

.∵1sin 1)24

ABC

S

bc A ===-,

∴bc =6(2,∵2a =,∴由余弦定理可得2

2

()22cos a b c bc bc A =+--,

∴2()4(2b c bc +=++4(26(216=++?-=,可得4b c +=.

故选:C

【点睛】

本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题. 22.A 【解析】

∵2350OA OB OC ++=,∴()()

23OA OC OB OC +=-+. 设AC 中点为M ,BC 中点为N ,则23OM ON =-, ∵MN 为ABC 的中位线,且

32

OM ON

=

, ∴3

613

225

54

10

OAC

OMC

CMN

ABC ABC S

S

S

S S ??==?=?= ???,即12310

S S =.选A . 23.C 【分析】

由正弦定理结合三角形中的大边对大角得sin sin A B >,由余弦函数性质判断B ,然后结合二倍角公式判断CD . 【详解】

设ABC 三边,,a b c 所对的角分别为,,A B C , 由A B >,则,a b >∴sin sin 0A B >>,A 正确; 由余弦函数性质知cos cos A B <,B 正确;

sin 22sin cos A A A =,sin 22sin cos B B B =, 当A 为钝角时就有sin 2sin 2A B <,C 错误,;

2cos 212sin A A =-,2cos 212sin B B =-,∴cos2cos2A B <,D 正确. 故选:C . 【点睛】

本题考查三角形内角和定理,考查正弦定理、余弦函数性质,考查正弦、余弦的二倍角公式,考查学生的逻辑推理能力,属于中档题. 24.C 【解析】 【分析】

取BC 的中点D ,因为G 、W 分别为ABC ?的重心和外心,则0DW BC ?=, 再用AB 、AC 表示AW ,AG ,BC 再根据向量的数量积的运算律计算可得. 【详解】

解:如图,取BC 的中点D ,因为G 、W 分别为ABC ?的重心和外心 0DW BC ∴?=

()()

22113323

AG AD AB AC AB AC ∴=

=?+=+ ()

1

2

AW AD DW AB AC DW =+=

++

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

(完整版)平面向量经典测试题

平面向量测试题 新泰一中 闫辉 一.选择题(5分×10=50分) 1.下列命题中正确的是( ) A.单位向量都相等 B.长度相等且方向相反的两个向量不一定是共线向量 C.若a ,b 满足|a |>|b |且a 与b 同向,则a >b D.对于任意向量a 、b ,必有|a +b |≤|a |+|b | 2.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,21 ( 3.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( ) ①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅②

4.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3) 若点C (x , y )满足OC u u u r =αOA u u u r +βOB u u u r ,其中α,β∈R 且α+β=1, 则x , y 所满足的关系式为 ( ) A .3x +2y -11=0 B .(x -1)2+(y -2)2=5 C .2x -y =0 D .x +2y -5=0 5.已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 6.若三点P (1,1),A (2,-4),B (x,-9)共线,则( ) A.x=-1 B.x=3 C.x=2 9 D.x=51 7.设四边形ABCD 中,有=21 ,且||=||,则这个 四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 8.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0), 则它的第4个顶点D 的坐标是( ) A .(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 9.三角形ABC ,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →等于( )

平面向量经典习题_提高篇

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,- 2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与 c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116

C.6 11D. 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ =6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、 b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B.

(理)向量a ,b 满足|a |=1,|a -b |=3 2,a 与b 的夹角为60°, 则|b |=( ) A.12 B.1 3 C.1 4 D.15 [答案] A [解析] ∵|a -b |=32,∴|a |2+|b |2 -2a ·b =34, ∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2 -x =34,∵x >0,∴x =1 2 . 4. 若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示 c 为( ) A .-a +3b B .a -3b

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高考数学专题复习第二轮第18讲 平面向量与解析几何

第18讲 平面向量与解析几何 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 一、知识整合 平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。 二、例题解析 例1、(2000年全国高考题)椭圆 14 9 2 2 =+ y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠ 为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?=- -?- ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:5 5cos 5 5< <- θ ∴点P 横坐标的取值范围是(5 5 3,553- ) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为 向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2 =4上的一动点,求22 PA PB +的最 大值和最小值。 分析:因为O 为AB 的中点,所以2,P A P B P O += 故可利用向量把问题转化为求向量O P 的最值。 解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}O A O B =-=

平面向量及其应用试题及答案百度文库

一、多选题1.题目文件丢失! 2.若a →,b →,c → 是任意的非零向量,则下列叙述正确的是( ) A .若a b →→ =,则a b →→ = B .若a c b c →→→→?=?,则a b →→ = C .若//a b →→,//b c →→,则//a c →→ D .若a b a b → → → → +=-,则a b →→ ⊥ 3.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知 cos cos 2B b C a c =-, ABC S = △b = ) A .1cos 2 B = B .cos 2 B = C .a c += D .a c +=4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列 ABC 有关的结论,正确的是( ) A .cos cos 0A B +> B .若a b >,则cos2cos2A B < C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径 D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 5.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=, 2QA QB =,记APQ 的面积为S ,则下列说法正确的是( ) A .//P B CQ B .2133 BP BA BC = + C .0PA PC ?< D .2S = 6.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 7.已知点()4,6A ,33,2B ??- ??? ,与向量AB 平行的向量的坐标可以是( ) A .14,33?? ??? B .97,2?? ??? C .14,33??-- ??? D .(7,9)

平面向量典型题型大全

平面向量 题型1.基本概念判断正误: 例2 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ___;②AB AD DC --=u u u r u u u r u u u r ____;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r _____ (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则||a b c ++r r r =_____ (3)若O 是ABC V 所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r ,则ABC V 的形状为_ 9.与向量a =(12,5)平行的单位向量为 ( ) A .125,1313??- ??? B .12 5,1313??-- ??? C .125125,,13131313????-- ? ?????或 D .125125,,13131313???? -- ? ????? 或 10.如图,D 、E 、F 分别是?ABC 边AB 、BC 、CA 上的 中点,则下列等式中成立的有_________: ①+-=u u u r u u u r u u u r FD DA AF 0 ②+-=u u u r u u u r u u u r FD DE EF 0 ③+-=u u u r u u u r u u u r DE DA BE 0 ④+-=u u u r u u u r u u u r AD BE AF 0 11.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r ,则( ) A.0PA PB +=u u u r u u u r r B.0PC PA +=u u u r u u u r r C.0PB PC +=u u u r u u u r r D.0PA PB PC ++=u u u r u u u r u u u r r 12.已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=u u u r u u u r ,其中λ等于 ( ) A.2 B. 1 2 C.-3 D.-13 13.设向量a=(1, -3),b=(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形, 则向量d 为 ( ) A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6) 14.如图2,两块斜边长相等的直角三角板拼在一起,若AD xAB yAC =+u u u r u u u r u u u r ,则 x = ,y = . 图2 15、已知O 是ABC △所在平面内一点D 为BC 边中点且20OA OB OC ++=u u u r u u u r u u u r r 那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 题型3平面向量基本定理 F E C B A

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

平面向量典型例题67629

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k , 3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =( 3,1)+(0,2)=( 3,3), ∵a +2b 与c 垂直,∴(a +2b )·c = 3k +3 3=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .- 611 B .-116 C.611 D.11 6 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611 . 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,

平面向量经典习题-提高篇61861

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-1 3 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( ) A .-1 B .-3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116 C.611 D.116 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ),

∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B. (理)向量a,b满足|a|=1,|a-b|= 3 2 ,a与b的夹角为60°,则|b|=( ) A.1 2 B. 1 3 C.1 4 D. 1 5 [答案] A [解析] ∵|a-b|= 3 2 ,∴|a|2+|b|2-2a·b= 3 4 ,

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

平面向量易错题解析

平面向量易错题解析 1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗? 2.你通常是如何处理有关向量的模(长度)的问题?(利用2 2 ||→→ =a a ;22||y x a +=) 3.你知道解决向量问题有哪两种途径? (①向量运算;②向量的坐标运算) 4.你弄清“02121=+?⊥→ → y y x x b a ”与“0//1221=-?→ → y x y x b a ”了吗? [问题]:两个向量的数量积与两个实数的乘积有什么区别? (1) 在实数中:若0≠a ,且ab=0,则b=0,但在向量的数量积中,若→→≠0a ,且0=?→ →b a ,不能推 出→ →=0b . (2) 已知实数)(,,,o b c b a ≠,且bc ab =,则a=c,但在向量的数量积中没有→ →→→→→=??=?c a c b b a . (3) 在实数中有)()(c b a c b a ??=??,但是在向量的数量积中)()(→ → → → → → ??≠??c b a c b a ,这是因为 左边是与→ c 共线的向量,而右边是与→ a 共线的向量. 5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点? 1.向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直 线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线? AB AC 、 共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。 如下列命题:(1)若a b =,则a b =。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若AB DC =,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则AB DC =。(5)若,a b b c ==,则a c =。(6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5)) 2.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,j 为基底,则平面内的任一向量可表示为 (),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。如果向量的起点在 原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

平面向量测试题,高考经典试题,附详细答案

平面向量高考经典试题 一、选择题 1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与 b A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与 b 垂直,则=a ( ) A .1 B C .2 D .4 3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ?+?=______; 答案:3 2 ; 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(, sin ),2 m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 5、(山东理11)在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2 AC AC AB =? (B ) 2 BC BA BC =? (C )2AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???=

6、(全国2 理5)在?ABC 中,已知D 是AB 边上一点,若AD =2DB , CD =CB CA λ+3 1 ,则λ= (A) 3 2 (B) 3 1 (C) - 3 1 (D) - 3 2 7、(全国2理12)设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FC FB FA ++=0,则|FA|+|FB|+|FC|= (A)9 (B) 6 (C) 4 (D) 3 8、(全国2文6)在ABC △中,已知D 是AB 边上一点,若 1 23 AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .1 3 - D .2 3 - 9(全国2文9)把函数e x y =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x + B .e 2x - C .2 e x - D .2 e x + 10、(北京理4)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 11、(上海理14)在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有 A 、1个 B 、2个 C 、3个 D 、4个 12、(福建理4文8)对于向量,a 、b 、c 和实数,下列命题中真命题是 A 若 ,则a =0或b =0 B 若 ,则λ=0或a =0 C 若=,则a =b 或a =-b D 若 ,则b =c 13、(湖南理4)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条

平面向量典型例题

平面向量典型例题

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116 C.611 D.116 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11. 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,∴〈a ,b 〉=120°,故选B. (理)向量a ,b 满足|a |=1,|a -b |=3 2 ,a 与b 的夹角为60°,则|b |=( ) A.12 B.13 C.14 D.15 [答案] A [解析] ∵|a -b |= 32,∴|a |2+|b |2-2a ·b =34 ,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =1 2 .

平面向量测试题_高考经典试题_附详细答案

平面向量高考经典试题 海口一中高中部黄兴吉同学辅导内部资料 一、选择题 1.(全国1文理)已知向量(5,6)a =-r ,(6,5)b =r ,则a r 与b r A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 解.已知向量(5,6)a =-r ,(6,5)b =r ,30300a b ?=-+=r r ,则a r 与b r 垂直,选A 。 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1 B .2 C .2 D .4 【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得: 2(3,)(1,)303n n n n ?-=-+=?=±, 2=a 。 3、(广东文4理10)若向量,a b r r 满足||||1a b ==r r ,,a b r r 的夹角为60°,则a a a b ?+?r r r r =______; 答案:3 2 ; 解析:1311122 a a a b ?+?=+??=r r r r , 4、(天津理10) 设两个向量22 (2,cos )a λλα=+-r 和(,sin ),2 m b m α=+r 其中,,m λα为 实数.若2,a b =r r 则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 【答案】A 【分析】由22 (2,cos )a λλα=+-r ,(,sin ),2 m b m α=+r 2,a b =r r 可得 2222cos 2sin m m λλαα+=??-=+?,设k m λ =代入方程组可得222 22cos 2sin km m k m m αα+=??-=+?消去m 化简得2 2 22cos 2sin 22k k k αα??-=+ ? --?? ,再化简得

平面向量典型例题

平面向量经典例题: 1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于( ) A.-2 B.-1 3 C.-1 D.-2 3 [答案] C [解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1、 2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=( ) A.-1 B.- 3 C.-3 D.1 [答案] C [解析] a+2b=(3,1)+(0,2)=(3,3), ∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3、 (理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为( ) A.-6 11 B.- 11 6 C、6 11 D、 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11、 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,∴

〈a ,b 〉=120°,故选B 、 (理)向量a ,b 满足|a |=1,|a -b |=32 ,a 与b 的夹角为60°,则|b |=( ) A 、1 2 B 、1 3 C 、14 D 、15 [答案] A [解析] ∵|a -b |= 32 ,∴|a |2+|b |2-2a ·b = 34 ,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =1 2、 4. 若AB →·BC →+AB →2 =0,则△ABC 必定就是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. 若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( ) A.-a +3b B.a -3b C.3a -b D.-3a +b [答案] B [解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ), ∴?? ? λ+μ=-2λ-μ=4 ,∴?? ? λ=1μ=-3 ,∴c =a -3b ,故选B 、 在平行四边形ABCD 中,AC 与BD 交于O ,E 就是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC → = a ,BD →= b ,则AF → 等于( ) A 、1 4a +1 2b B 、2 3a +1 3b C 、12a +14 b D 、13a +23 b

湖南省湘潭凤凰中学平面向量及其应用经典试题(含答案)百度文库

一、多选题 1.若a →,b →,c → 是任意的非零向量,则下列叙述正确的是( ) A .若a b →→ =,则a b →→ = B .若a c b c →→→→?=?,则a b →→ = C .若//a b →→,//b c →→,则//a c →→ D .若a b a b → → → → +=-,则a b →→ ⊥ 2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ?≤ B .若a b c b ?=?且0b ≠,则a c = C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向 D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是 5,3??-+∞ ??? 3.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=, 2QA QB =,记APQ 的面积为S ,则下列说法正确的是( ) A .//P B CQ B .21 33 BP BA BC = + C .0PA PC ?< D .2S = 4.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B > D . sin sin sin +=+a b c A B C 5.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .0PA PB += B .0PB PC += C .PA AB PB += D .0PA PB PC ++= 6.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两 解的是( ) A .10,45,70b A C ==?=? B .45,48,60b c B ===? C .14,16,45a b A ===? D .7,5,80a b A ===? 7.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C

相关文档
最新文档