微通道换热器的结构

微通道换热器的结构
微通道换热器的结构

微通道换热器的结构

集流管与隔板

制冷剂的流动是通过集流管和隔板来控制的,能够很好地优化不同相态冷媒在MCHE管路中的流路分配。

扁管设计

扁管灵巧的设计能够提供高的传热性能,也能够使换热器更加紧凑。

翅片设计

良好的百叶窗翅片能够极大限度地增加表面积,这能够降低空气侧的风阻和提高换热效率。同理,也能够减少噪声。

端盖

由于是全铝结构,端盖与集流管不会发生电化学腐蚀,防止换热器产生泄漏,保证了其使用寿命。

边板

边板有多种形式以便于安装,比如说,可以用”L”形和”U”形铝型材

接管

形式多样的接管方案,能够满足你的产品和客户要求。我们提供多种标准接管以及块状接头以满足灵活多变的接管方案。

摘自:三花丹佛斯

https://www.360docs.net/doc/bc12062578.html,

微通道换热器研究进展

微通道换热器研究进展 更新时间:2011-06-13 13:53:26 微通道换热器研究进展 钟毅尹建成潘晟旻 (昆明理工大学) 摘要:从微通道换热器的发展历史出发,介绍其制造方式、结构和材料,重点介绍对微通道换热器发展和降低成本有重要影响的全铝微通道管材成形加工技术。对微通道传热的特征进行述评,从微电子微机械高效传热、CO2制冷减少温室气体排放和提高家用空调能效比几个方面展现微通道换热器的应用前景。 关键词:微通道;换热器;传热特性;压力降;空调;制冷 10~50mm, 3~10mm,0.6~2mm,10~600μm,这既是现代微电子机械快速发展对传热的现实需求,也是微通道具有的优良传热特性使然。微通道技术同时触发了传统工业制冷、汽车空调、家用空调等领域提高效率、降低排放的技术革新。 1 微通道换热器的发展历程 微通道换热器(见图1[1-2])的工程背景来源于上个世纪80年代高密度电子器件的冷却和90年代出现的微电子机械系统的传热问题。1981 年,Tuckerman和Pease提出了微通道散热器的概念;1985年,Swife,Migliori和Wheatley研制出了用于两流体热交换的微通道换热器。随着微制造技术的发展, 10~1 000μm通道所构成的微尺寸换热器。1986年Cross和Ramshaw研制了印刷电路微尺寸换热器,体积换热系数达到 7MW/(m3·K);1994年Friedrich和Kang研制的微尺度换热器体积换热系数达45MW/(m3·K);2001年,Jiang等提出了微热管冷却系统的概念,该微冷却系统实

际上是一个微散热系统,由电子动力泵、微冷凝器、微热管组成。如果用微压缩冷凝系统替代微冷凝器,可实现主动冷却,支持高密度热量电子器件的高速运行[3]。 在汽车空调方面,由于传统的氟利昂系列制冷剂对臭氧层具有较强的破坏作用,已被《蒙特利尔议定书》禁止。R134a作为一种过渡型替代品,由于其温室效应指数很高(约为CO2的1 300倍[4]),也被《京都议定书》所否定。CO2在蒸发潜热、比热容、动力黏度等物理性质上具有优势[5],若采用合适的制冷循环,CO2在热力特性上可与传统制冷剂相当,甚至在某些方面更具优势。但是CO2制冷循环为超临界循环,压力很高[6],在空调系统中高压工作压力要到13MPa以上,设计压力要达到42.5MPa,这对压缩机和换热器的耐压性均提出了很高的要求。在结构轻量化和小型化的前提下,微通道气体冷却器是同时满足耐压性、耐久性和系统安全性的必然选择。目前欧盟已做好准备,将于2011年全面使用CO2工质的汽车空调系统。 在家用空调方面,当流道尺寸小于3mm时,气液两相流动与相变传热规律将不同于常规较大尺寸,通道越小, 0.5~1mm时,对流换热系数可增大50%~100%。将这种强化传热技术用于空调换热器,适当改变换热器结构、工艺及空气侧的强化传热措施,预计可有效增强空调换热器的传热、提高其节能水平。 与最高效的常规换热器相比,空调器的微通道换热效率可望提高

板式换热器结构及工作原理

板式换热器结构及工作原理 要了解板式换热器,首先看一下其结构图: 板式换热器是按一定的间隔,由多层波纹形的传热板片,通过焊接或由橡胶垫片压紧构成的高效换热设备。按其加工工艺分为可拆式换热器和全焊接不可拆式换热器,办焊接式换热器是介于两者之间的结构,即两种流体作为相对独立的结构体进行组装的。板片的焊接或组装遵循两两交替排列原则组装时,两组交替排列。为增加换热板片面积和刚性,换热板片被冲压成各种波纹形状,目前多为v型沟槽,当流体在低流速状态下形成湍流,从而强化传热的效果,防止在板片上形成结垢。板上的四个角孔,设计成流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并流通过每个板片进行热量的交换。 板式换热器的特点: (1)由于采用0.6mm—0.8mm不锈钢片,传热效率得以极大的提高。 (2)体积小,是管壳式换热器体积的1/3——1/5,既节省了金属材料,又减少了占地面积。 (3)组装灵活,便于推行标准作业,从而为进一步降低生产成本带来可能。

(4)不易结构,清洗方便,便于日常维护。 (5)由于体积小、响应迅速,运行热损失小。 (6)焊接式板式换热器的缺点是焊接工艺要求高、带来成本的增加:可拆卸换热器运行温度受密封材料制约,一般在200摄氏度以 下,耐压能力也较差。 实际应用中,根据不同用户的要求,选择不同的换热器。一般工矿企业、社区楼宇集中供热换热站采用可拆式换热器,家庭生活用热水、室内空调等小功率用户采用全焊接式板式换热器。随着焊接技术和工艺的不断改进和提高,大功率换热器采用全焊接工艺将日益普及,结构更趋经凑合理。 发展展望:据统计,在现代石油化工企业中,换热器投资占30% ~40%。在制冷机中,蒸发器和冷凝器的重量占机组重量的30% ~40%,动力消耗占总动力消耗的20% ~30%。可见换热器对企业投资、金属耗量以及动力消耗有着重要的影响。大力发展板式换热器更替原有效率低下、材料消耗惊人的陈旧换热器是节能降耗有效途径,行业发展也将迎来新的机遇。

微通道换热器前景

微通道换热器研究进展 微通道换热器研究进展 钟毅尹建成潘晟旻 (昆明理工大学) 摘要:从微通道换热器的发展历史出发,介绍其制造方式、结构和材料,重点介绍对微通道换热器发展和降低成本有重要影响的全铝微通道管材成形加工技术。对微通道传热的特征进行述评,从微电子微机械高效传热、CO2制冷减少温室气体排放和提高家用空调能效比几个方面展现微通道换热器的应用前景。 关键词:微通道;换热器;传热特性;压力降;空调;制冷 换热器工质通过的水力学直径从管片式的 10~50mm,板式的 3~10mm,不断发展到小通道的 0.6~2mm,微通道的 10~600μm,这既是现代微电子机械快速发展对传热的现实需求,也是微通道具有的优良传热特性使然。微通道技术同时触发了传统工业制冷、汽车空调、家用空调等领域提高效率、降低排放的技术革新。 1 微通道换热器的发展历程 微通道换热器(见图1[1-2])的工程背景来源于上个世纪80年代高密度电子器件的冷却和90年代出现的微电子机械系统的传热问题。1981年,Tuckerman和Pease提出了微通道散热器的概念;1985年,Swife,Migliori和Wheatley研制出了用于两流体热交换的微通道换热器。随着微制造技术的发展,人们已经能够制造水力学直径 10~1 000μm通道所构成的微尺寸换热器。1986年Cross和Ramshaw研制了印刷电路微尺寸换热器,体积换热系数达到7MW/(m3·K);1994年Friedrich和Kang研制的微尺度换热器体积换热系数达45MW/(m3·K);2001年,Jiang等提出了微热管冷却系统的概念,该微冷却系统实际上是一个微散热系统,由电子动力泵、微冷凝器、微热管组成。如果用微压缩冷凝系统替代微冷凝器,可实现主动冷却,支持高密度热量电子器件的高速运行[3]。 在汽车空调方面,由于传统的氟利昂系列制冷剂对臭氧层具有较强的破坏作用,已被《蒙特利尔议定书》禁止。R134a 作为一种过渡型替代品,由于其温室效应指数很高(约为CO2的1 300倍[4]),也被《京都议定书》所否定。CO2在蒸发潜热、比热容、动力黏度等物理性质上具有优势[5],若采用合适的制冷循环,CO2在热力特性上可与传统制冷剂相当,甚至在某些方面更具优势。但是CO2制冷循环为超临界循环,压力很高[6],在空调系统中高压工作压力要到13MPa以上,设计压力要达到42.5MPa,这对压缩机和换热器的耐压性均提出了很高的要求。在结构轻量化和小型化的前提下,微通道气体冷却器是同时满足耐压性、耐久性和系统安全性的必然选择。目前欧盟已做好准备,将于2011年全面使用CO2工质的汽车空调系统。

换热器工作原理

空气预热器的工作原理及其作用 空气预热器是利用烟气余热提高进入炉膛的空气温度的设备。它的工作原理是:受热面的一侧通过烟气、另一侧通过空气,进行热交热,使空气得到加热,提高温度;使烟气排烟温度下降,提高烟气余热的利用程度。 空气预热器有如下作用: 1、改善并强化燃烧当经过预热器后的热空气进入炉内后,加速了燃料的干燥、着火和燃烧过程,保证炉内稳定燃烧,起着改善、强化燃烧的作用。 2、强化传热由于炉内燃烧得到改善和强化,加上进入炉内的热风温度提高,炉内平均温度水平也有提高,从而可强化炉内辐射传热。 3、减小炉内损失,降低排烟温度,提高锅炉热效率。 由于炉内燃烧稳定,辐射热交换的强化,可以降低化学不完全燃烧损失;另一方面,空气预热器利用烟气余热,进一步降低了排烟损失,因此,提高了锅炉热效率。根据经验,当空气在预热器中温度升高1.5℃时,排烟温度可降低1℃。在锅炉烟道中安装空气预热器后,如果能把空气预热150~160℃.就可以降低排烟温度110~120℃,可将锅炉热效率提高7%~7.5%,可节约燃料11%~12%。 4、热空气可以作为燃料的干燥剂。对于层燃炉,有热空气,可以使用水分和灰分较高的燃料;对于电站锅炉,热空气是制粉系统的重要干燥剂和煤粉输送介质。 空气预热器是用于锅炉系统热交换性能提升的一种设备。空气预热器的主要作用是将锅炉排出的烟气中的热量收集起来,并传导给进入锅炉前的空气。空气预热器有三个大类,分别是板式空气预热器、回转式空气预热器和管式空气预热器。 1、板式空气预热器 板式空气预热器的主要传热部件是薄钢板,多个薄钢板一起焊接成长方形的盒子,而后数个盒子拼成一组,板式空气预热器就由2到4个钢板焊接盒子组成。板式空气预热器工作时,烟气会流经盒子的外侧,而空气流经盒子的内侧,通过钢板完成热传导。 板式空气预热器的结构松散而不紧凑,制造需要耗费大量的钢材,因此制造成本较高。板式空气预热器的盒子由焊接方式拼接,焊接工作量大且缝隙较多,容易出现泄漏。板式空气预热器目前已经很少被使用。 2、回转式空气预热器 回转式空气预热器是指内部设有旋转部件,通过旋转的作用在烟气和空气之间传导热能的一种空气预热器。回转式空气预热器还能够分为两个类别,也就是受热面旋转的转子回转式空气预热器,和风道旋转的风道回转式空气预热器。 回转式空气预热器的优点是体积小、重量轻、结构紧凑,传热元件承受磨损的余量大,因此回转式空气预热器特别适合应用于大型锅炉。回转式空气预热器的缺点是内部的机构复杂,消耗电力较大且漏风量较高。 3、管式空气预热器 管式空气预热器的主要传热部件是薄壁钢管。管式空气预热器多呈立方形,钢管彼此之间垂直交错排列,两端焊接在上下管板上。管式空气预热器在管箱内装有中间管板,烟气顺着钢管上下通过预热器,空气则横向通过预热器,完成热量传导。

换热器原理介绍

换热器基础知识 简单计算板式换热器板片面积 选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热对数温差 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 换热器的分类与结构形式 换热器作为传热设备被广泛用于耗能用量大的领域。随着节能技术的飞速发展,换热器的种类越来越多。适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: 一、换热器按传热原理可分为: 1、表面式换热器 表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器 蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器 流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。 4、直接接触式换热器 直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 二、换热器按用途分为: 1、加热器 加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。 2、预热器 预热器预先加热流体,为工序操作提供标准的工艺参数。 3、过热器 过热器用于把流体(工艺气或蒸汽)加热到过热状态。

微通道换热器-why

微通道换热器综述 1 前言 换热器工质通过的水力学直径从管片式的φ10-50mm,板式的φ3-10mm,不 μ,这既是现代微电子机械快断发展到小通道的φ0.6-2mm,微通道的φ10-600m 速发展对传热的现实需求,也是微通道具有的优良传热特性使然。微通道技术同时触发了传统工业制冷、汽车空调、家用空调等领域提高效率、降低排放的技术革新。 微通道换热器的工程背景来源于上个世纪80年代高密度电子器件的冷却和90 年代出现的微电子机械系统的传热问题。1981年,Tuckerman和Pease提出了微通道散热器的概念;1985年,Swife,Migliori和Wheatley研制出了用于两流体热交换的微通道换热器。随着微制造技术的发展,人们已经能够制造水力学μ通道所构成的微尺寸换热器。1986年,Cross和Ramshaw研直径φ10-1000m 制了印刷电路微尺寸换热器。体积换热系数达到7MW/(m3·K);1994年,Friedrich 和Kang研制的微尺度换热器体积换热系数达45MW/ ( m3·K);2001年,Jiang 等提出了微热管冷却系统的概念。该微冷却系统实际上是一个微散热系统,由电子动力泵、微冷凝器、微热管组成。如果用微压缩冷凝系统替代微冷凝器,可实现主动冷却,支持高密度热量电子器件的高速运行。在汽车空调方面,由于传统的氟利昂系列制冷剂对臭氧层具有较强的破坏作用。已被《蒙特利尔议定书》禁止。R134a作为一种过渡型替代品,由于其温室效应指数很高(约为CO2的1300倍),也被《京都议定书》所否定。CO2在蒸发潜热、比热容、动力黏度等物理性质上具有优势。若采用合适的制冷循环,CO2在热力特性上可与传统制冷剂相当,甚至在某些方面更具优势。但是CO2制冷循环为超临界循环,压力很高。在空调系统中高压工作压力要到13MPa以上,设计压力要达到42.5MPa,这对压缩机和换热器的耐压性均提出了很高的要求。在结构轻量化和小型化的前提下,微通道气体冷却器是同时满足耐压性、耐久性和系统安全性的必然选择。目前欧盟已做好准备,将于2011年全面使用CO2工质的汽车空调系统。 在家用空调方面,当流道尺寸小于3mm时,气液两相流动与相变传热规律将不同于常规较大尺寸。通道越小,这种尺寸效应越明显。当管内径小到φ0.5-1mm 时,对流换热系数可增大50%-100%。将这种强化传热技术用于空调换热器,适当改变换热器结构、工艺及空气侧的强化传热措施,预计可有效增强空调换热器

板式换热器工作原理及运行工作演示

板式换热器板片的定位是以五点金属与金属接触而确定,上承杆的三点,可以防止板片上下移动,加上下承杆的两点板片就不会左右移动。这是很重要的部分,所以大家一定要有所了解。下面再给大家介绍一下,板式换热器板片的工作过程和技术特点。 板式换热器是由一组波纹金属板组成,板上有四个角孔,供传热的两种液体通过。金属板片安装在一个侧面有固定板和活动压紧板的框架内,并用夹紧螺栓夹紧。板片上装有密封垫片,将流体通道密封,并且引导流体交替地流至各自的流道内,形成热交换。流体的流量,物理性质,压力降和温度差决定了板片的数量和尺寸。波纹板不仅提高了湍流程度,并且形成许多支承点,足以承受介质间的压力差。金属板和活动板压紧板悬挂在上导杆,并由下导杆定位,而杆端则固定在支撑柱上。 板式换热器板片均匀分布流速,去除了流速死区,从而避免了因污垢堆积而产生的腐蚀,同时又提高了板片换热面积的利用率。两种流体完全逆向流动,大大提高了换热效率。同种流体进、出口平行配管,简化了工程安装。单一板片,简化了维修。 艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在最佳工作点。内旁通,双流道技术和不等流通截面积装配为两侧介质流量相差较大的工况提供了完美的解决方案。ARD艾瑞德板式换热器(江阴)有限公司板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。各种型号都有深波纹、浅波纹、大角度、小角度等,完全确保满足不同用户的需要,特殊工况可按用户需要专门设计制造。

艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在最佳工作点。内旁通,双流道技术和不等流通截面积装配为两侧介质流量相差较大的工况提供了完美的解决方案。ARD艾瑞德板式换热器(江阴)有限公司板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。各种型号都有深波纹、浅波纹、大角度、小角度等,完全确保满足不同用户的需要,特殊工况可按用户需要专门设计制造。 ARD艾瑞德板式换热器(江阴)有限公司拥有世界上最先进的设计和生产技术以及最全面的换热器专业知识,一直以来ARD艾瑞德板式换热器(江阴)有限公司致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,目前已有超过50,000台的板式换热器良好地运行于各行业,ARD艾瑞德板式换热器(江阴)有限公司已发展成为可拆式板式换热器领域的全球领导者。

微通道换热器的特性分析及应用

苏尚美,张亚男,成方园(山东大学能源与动力工程学院,山东250002) 摘要:本文分析了微通道内流体的流动及换热特性,通过换热器火用效率的分析,发现微通道具有高传热系数,高表面积—体积比,低传热温差,低流动阻力等特点.微通道换热器火用效率高,性能优于常规换热器.本文还讨论了工质的选择,微通道结构的优化及加工方法,分析了微通道换热器的应用前景. 关键词:微通道;流动及换热;火用效率;结构 引言2O 世纪5O 年代末,著名的物理学家Richard Feynman 曾预言微型化是未来科学技术的发展方向.换热器作为化工过程机械的典型产品,是工艺过程中必不可少的单元设备,广泛地应用于石油,化工,动力, 核能,冶金,船舶,交通,制冷,食品及制药等工业部门及国防工程中.其材料及动力消耗占整个工艺设备的30%左右,在化工机械生产中占有重要的地位.如何提高换热器的紧凑度,以达到在单位体积上传递更多的热量,一直是换热器研究和发展应用的目标.器件装置微型化(Miniaturization)的强大发展趋势推动了微电子技术的迅猛发展和MEMS(micro—electro—mechanical system)技术的不断进步,也推动了更加高效,更加小型化的微通道换热器(micro-channel heat exchanger)的诞生. 1 微通道发展简史 所谓微通道换热器是一种借助特殊微加工技术以固体基质制造的可用于进行热传递的三维结构单元.当前关于微通道换热器的确切定义,比较通行,直观的分类是由Mehendale.s.s 提出的按其水力当量直径的尺寸来划分.通常含有将水力当量直径小于1mm 换热器称为微通道换热器. 早在二十世纪八十年代, 美国学者Tuckerman 和Pease 报道了一种如图 1 所示的微通道(Micro-channel) 换热结构.该结构有高导热系数的材料(如硅)构成,其换热过程为在底面加上的热量经过通道壁传至通道内,其换热性能得到超过传统换热手段所能达到的水平,成功地解决了集成电路大规模和超大规模化所带来的"热障"问题. .随后Wu 和Little,Pfahler 等,Choi 等都对通道中的单相流进行了分析和研究.用于两种流体热交换的微通道换热器于1985 年由Swift 研制出来,研究表明,其微通道换热器的单位体积换热量可高达几十. 美国太平洋西北国家研究所(Pacific North—west National Lab)于9O 年代后期研制成功燃烧/气化一体化的微型装置以及微型热泵等.卡尔斯鲁研究中心( Forschungszentrum Karlsruhe GrabH) 也在利用经过成型工具超精细车削加工的器件,将其彼此连接形成错流和逆流的微换热器. 图一微通道的基本结构 2 微通道中流体的流动特性 由于微通道换热器特征尺度在微米到亚毫米尺度范围内,使它不仅涉及空间尺度的微小化,还涉及更为复杂的尺度效应. 2.1 微尺度效应 对于气体单相流动,当通道直径当小于200 时,即努森数≥0.001 时(其中为分子的平均自由程, 为水力当量直径) ,流动和传热将受到气体的稀薄效应的影响. 对于液体单相流动,当微通道直径为381 时,宏观理论公式已不适用于微通道摩阻及努塞尔数已经不能按传统宏观理论公式来计算.以矩形截面通道为例,微通道换热器的最高达到了9.20,而传统宏观矩形通道的努塞尔数最高为8.23, 说明微通道换热已具有微尺度效应(表面效应) . 对于两相流,微尺度通道内界面现象表面张力的影响显著,导致流型分布及转换准则发生变化.由于表面张力的影响,流动中不存在非球形泡沫.表面张力对微流动的影响一般表现在两相微流动的初始阶段,随着混合程度的增加以及同壁面的接触角的增加,其影响程度在逐步减

换热器工作原理

管壳式换热器得三种分类 管壳式换热器按照应力补偿得方式不同,可以分为以下三个种类: 1、固定管板式换热器 固定管板式换热器就是结构最为简单得管壳式换热器,它得传热管束两端管板就是直接与壳体连成一体得,壳体上安装有应力补偿圈,能够在固定管板式换热器内部温差较大时减小热应力。固定管板式换热器得热应力补偿较小,不能适应温差较大得工作。 2、浮头式换热器 浮头式换热器就是管壳式换热器中使用最广泛得一种,它得应力消除原理就是将传热管束一段得管板放开,任由其在一定得空间内自由浮动而消除热应力。浮头式换热器得传热管束可以从壳体中抽出,清洗与维修都较为方便,但就是由于结构复杂,因此浮头式换热器得价格较高。 3、U型管换热器 U型管换热器得换热器传热管束就是呈U形弯曲换热器,管束得两端固定在同一块管板得上下部位,再由管箱内得隔板将其分为进口与出口两个部分,而完全消除了热应力对管束得影响.U型管换热器得结构简单、应用方便,但很难拆卸与清洗。 管壳式换热器,管壳式换热器结构原理 管壳式换热器由一个壳体与包含许多管子得管束所构成,冷、热流体之间通过管壁进行换热得换热器.管壳式换热器作为一种传统得标准换热设备,在化工、炼油、石油化工、动力、核能与其她工业装置中得到普遍采用,特别就是在高温高压与大型换热器中得应用占据绝对优势。通常得工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高得压力与温度.一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长得. 工作原理与结构图 1 [固定管板式换热器]为固定管板式换热器得构

造.A流体从接管1流入壳体内,通过管间从接管2流出.B流体从接管3流入,通过管内从接管4流出。如果A流体得温度高于B流体,热量便通过管壁由A 流体传递给B流体;反之,则通过管壁由B流体传递给A流体.壳体以内、管子与管箱以外得区域称为壳程,通过壳程得流体称为壳程流体(A流体)。管子与管箱以内得区域称为管程,通过管程得流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体与折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器得传热效能,也可采用螺纹管、翅片管等。管子得布置有等边三角形、正方形、正方形斜转45°与同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径得壳体内可排列较多得管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板与管子得总体称为管束。管子端部与管板得连接有焊接与胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板得形状有弓形、圆形与矩形等。为减小壳程与管程流体得流通截面、加快流速,以提高传热效能,可在管箱与壳体内纵向设置分程隔板,将壳程分为2程与将管程分为2程、4程、6程与8程等.管壳式换热器得传热系数,在水—水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m(℃). 特点管壳式换热器就是换热器得基本类型之一,19世纪80年代开始就已应用在工业上。这种换热器结构坚固,处理能力大、选材范围广,适应性强,易于制造,生产成本较低,清洗较方便,在高温高压下也能适用.但在传热效能、紧凑性与金属消耗量方面不及板式换热器、板翅式换热器与板壳式换热器等高效能换热器先进. 分类管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U 型管式换热器、双重管式换热器、填函式换热器与双管板换热器等.前3种应用比较普遍。

微通道换热器的探讨

微通道换热器的探讨 微通道换热器是近一两年提得比较多的新式换热器,它是指由0.05-0.1in.(1—2.5mm)厚,0.5-1 in.(12-25mm)宽,内部有许多0.5-1mm的微小通道的换热管组成的换热器。虽然这种换热器在汽车空调(单冷型)及水箱上已经使用了很多年,但是在家用和商用空调与制冷产品上的应用却不多,开利在它的风冷螺杆冷水机30XA系列上使用了微通道换热器作为冷凝器,改进如下: 1.换热量增加10%; 2.制冷剂充注减少30%; 3.风侧阻力减少50%。 现在微通道换热器的优点总结如下: 1.强化了传热,提高了传热效率; 2.缩小了换热器体积; 3.减小了制冷剂的充注; 4.空气侧阻力减小,所需风机,电机规格减小; 5.因为是全铝材料做成,成本下降(但因为没有规模效应,仅指材料成本,单个产品仍比同规格翅片管式贵) 6.有更好的抗腐蚀性; 7.管内压力损失小; 8.容易现场修补泄露点。 缺点如下: 1.对于蒸发器,分液是一个重要问题,现在还不能很好解决; 2.对于蒸发器,冷凝水的快速排出还没有很好解决,这又衍生出结霜化霜问题; 3.因为空气侧阻力减小,使气流的不均匀性更加恶化; 4.设计灵活性减小,如部分负荷,过冷管段的设计等。

微通道换热器作为冷凝器时,经过 实验研究: 1.体积可以缩小约25%; 2.制冷剂充注可以减小约 20%-40%; 3.换热效率提高约10% 对比测试: 原型机规格: KFR-72LW:制冷量:7200W;制冷剂:R22 充注量:2.3kg 制热量:8200W(10300W)电源:220C/50Hz 功率:2630W/2600W(电加热4700W)毛细管:OD2.5x630x3 从表1可以看出,整体结构比原来小了,因为测试是借用原型机结构,所以微通道换热器的设计是主要是从安装方面考虑大小,所以迎风面减速小并不多,但从换热面积减小可以看出结构比原来小了。从表2可以看出,因为对蒸发器的设计和应用还有一些问题,所以对于蒸发器使用微通道换热器效果并不比原来好,但对只使用微通道冷凝器的机组,性能有所改善,特别是制冷剂充注。 以下是另一组只更换冷凝器的测,:

微通道市场格局

家用空调领域微通道换热器的发展之路 2014/2/11 16:31:50 来源:产业在线ChinaIOL作者:孙静 微通道换热器应用广泛,除应用于家用空调和商用空调外,还应用于精密空调、大巴车、冷藏冷冻等领域。在家用空调方面,其换热器产品一直相对比较单一,以翅片式换热器为主。随着本世纪初,美国和韩国的一些人员和企业尝试微通道换热器在住宅空调器上的应用,逐渐引起国内外行业的重视,作为一个新产品,国外美国的Delph和York公司最早合作推出采用微通道换热器的住宅空调器产品;在国内,格力和三花丹佛斯公司合作在20 08年也推出了采用微通道换热器的新产品。 市场发展蜿蜒曲折 如今,在我国高效节能相关政策的推动下,高效、节能、环保已经成为空调整机市场的主流趋势,与整机发展关系比较密切的空调部件产品之一——换热器也不断发展升级,微通道换热器的发展也越来越受到业内关注,主要体现为其在空调系统中更高的换热效率,以及体积小、换热效率高、节省空间、节约冷媒、耐压等优势,被认为是一种技术发展趋势,并有望替代传统的翅片式换热器。然而,家用空调领域,微通道换热器的发展之路并非容易,仍面临许多困难需要逐步解决。 根据产业在线预计,2013年,微通道换热器在空调领域内销量130万套左右,同比2012年增长约8.6%。相对于快速增长的微通道出口市场来看,内销增幅并不明显,微通道内销市场没有迅速扩张,主要是受国内特定因素的制约。 图1 2012年-2013年国内微通道换热器销售规模 数据来源:产业在线单位:万套 制约因素一:制热技术尚待解决

目前微通道换热器在国内的发展仍处于起步阶段,在空调制热方面仍有问题,因此主要还是用在单冷式空调机上,在冷暖型空调上基本还没涉及,市场占比较小,成为制约其在空调市场发展的一大原因。因此,微通道在空调企业中的需求不大,分析其原因,国内单冷机一般用在广东等南方地区,随着经济条件不断好转,单冷机占比不断下滑,加上微通道在制热方面的技术问题还有待解决,因此微通道换热器目前主要应用在单冷空调出口机中,出口向以美洲、拉美、中东、印度等为主,尤其美国市场的单冷机越来越多。 从整机需求来看,除三星、LG两家外资企业需求量相对偏高外,目前,大部分国内企业的需求量还不大。不过,国内微通道换热器整体需求量虽然不大,每年都有增加,国内市场需求小幅增长,除了个别企业近两年相对谨慎保守,需求量有所下滑。另外,大部分整机企业多采用专业微通道厂家供货,尽管一些大的整机厂也都建了自己的微通道生产线,但多是技术储备为主,未来,随着微通道技术以及市场需求不断成熟,整机自供比例将快速提升,而现有的市场供给格局或将随之颠覆。 因此,微通道换热器国内销售市场发展并不容易,规模无法迅速扩张,主要困难之一便是应用市场需求空间有限,而其市场需求有限又主要是受制热技术限制,随着三花、康盛等企业都在对微通道换热器技术升级方面做出积极的探索,相信随着微通道换热器在制热技术上的突破,其在家用空调和中央空调市场的应用空间将更为广阔。 制约因素二:价格优势不明显 传统翅片式换热器先入为主,占据市场,新产品推广起来并不容易。微通道换热器虽然是未来发展趋势,但是国内市场短期来看,或将不会出现大幅增长,其发展一方面要看技术发展情况;另一方面要看铜价走势,如果铜价一直居高不下,那么必将刺激微通道换热器进一步发展。 从价格数据可以看出,一方面,铜价从2011年9月份开始持续偏低(详见:铜价走势图);另一方面,虽然铝价相对偏低(详见:铝价走势图),微通道换热器采用铝制材料,但其自身设计及对制造工艺较高的要求,使得微通道加工成本偏高,其与传统铜质换热器相比成本优势并不明显,市场售价甚至还高,一定程度上也制约了市场的推广。 铜价走势图:2008年至今铜现货期货月度均价走势对比

微通道换热器的优势

微通道换热器的优势 MCHE:micro channel heat exchange(微通道换热器) 基于一系列的原因,我们确信未来属于MCHEs,在未来的五年,MCHEs的市场份额将会从3 % 上升到40%。 重量减轻68% 相比于F&T,MCHEs的重量要轻68%,差距如此大,是由于MCHEs的高传热系数性能,在同等的换热量下,能够设计成更小,更轻的机组,重量轻也就意味着更便于运输。 29%的价格优势 由于MCHEs能够做得更加紧凑,所以与F&T相比,MCHEs包含更少的金属。金属成份的减少也就意味着MCHEs能够更好地应对原材料的价格波动。 减少77%的内容积 微通道的扁管设计能够大幅增加传热性能,并且减少制冷剂充注。相比于F&T换热器,其内容积减少约77%。 减少的35%尺寸 轻巧的MCHEs设计意味着更少的换热器能够提供等效的换热性能。这种优势能够减少底盘尺寸及便于物流运输,相比于F&T,MCHEs能够减少35%体积。 减少50%的噪声 由于风阻的降低,MCHEs能降低50%的噪声—在家用空调应用中非常具有竞争优势。同样能节省风机的能耗。

100%的灵活设计度 客户能得到最大的灵活度设计方案,其能满足换热器尺寸和安装的要求。目前MCHEs的最大的尺寸达到1.5m x 4m,并且我们能提供一系列的安装附件来满足各种不同的安装要求。 更高的传热效率 MCHEs比F&Ts更能成功地解决换热性能与风侧换热效率的难题。它们提供更多的管路面积,紧密接触的扁管与翅片、同样紧密接触金属表面与环境空气的结构方式使换热器具有更高的传热效率。 钎焊式的扁管与翅片提高传热性能 翅片与管路存在间隙,传热效率会减弱。但在微通道换热器中,所有的部件都是钎焊在一起的,因此,翅片与扁管之间没有间隙,也意味着高传热效率。 容易清洗 对于F&T换热器,其灰尘和污垢非常难与清除;但是相于MCHEs来说,这是一种非常容易的事。 100%全铝结构 MCHES全铝结构,轻质金属,全铝结构能够防止发生F&T换热器翅片与铜管之间的之类的电腐蚀。由于是同一种金属,产品也易于回收。 低压阻性能 MCHE具有低压阻的性能,所以可以让你选择较小或较慢的风机,也能够减少能耗。或者你能使用同样的风机风量来提高换热能力。 引自:三花丹佛斯 https://www.360docs.net/doc/bc12062578.html,

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构 随着科技高速发展的今天,换热器已广泛应用国内各个生产领域,换热器跟人们生活息息相关。换热器顾名思义就是用来热交换的机械设备。换热器是一种非常重要的换热设备,能够把热量从一种介质传递给另一种介质,在各种工业领域中有很广泛的应用。尤其在化工、能源、交通、机械、制冷、空调等领域应用更广泛。换热器能够充分利用工业的二次能源,并且能够实现余热回收和节能。换热器分为很多类型,管壳式换热器是很普遍的一种。管壳式换热器的传热强化技术主要包括管程和壳程的传热强化研究。本文对管壳式换热器的原理进行简单介绍。 一、管壳式换热器的工作原理 管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。A 流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体(A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m (℃)。 二、管壳式换热器的形式与结构 管壳式换热器是把管子与管板连接,再用壳体固定。它的形式大致分为固

微通道换热器的特性分析及应用

微通道换热器的特性分析及应用 苏尚美,张亚男,成方园 (山东大学能源与动力工程学院,山东 250002) 摘要:本文分析了微通道内流体的流动及换热特性,通过换热器火用效率的分析,发现微通道具有高传热系数、高表面积—体积比、低传热温差、低流动阻力等特点。微通道换热器火用效率高,性能优于常规换热器。本文还讨论了工质的选择、微通道结构的优化及加工方法,分析了微通道换热器的应用前景。 关键词:微通道;流动及换热;火用效率;结构 引言 2O世纪5O年代末,著名的物理学家Richard Feynman曾预言微型化是未来科学技术的发展方向。换热器作为化工过程机械的典型产品,是工艺过程中必不可少的单元设备,广泛地应用于石油、化工、动力、核能、冶金、船舶、交通、制冷、食品及制药等工业部门及国防工程中。其材料及动力消耗占整个工艺设备的30%左右,在化工机械生产中占有重要的地位。如何提高换热器的紧凑度,以达到在单位体积上传递更多的热量,一直是换热器研究和发展应用的目标。器件装置微型化(Miniaturization)的强大发展趋势推动了微电子技术的迅猛发展和MEMS(micro—electro—mechanical system)技术的不断进步,也推动了更加高效、更加小型化的微通道换热器(micro-channel heat exchanger)的诞生。 1 微通道发展简史 所谓微通道换热器是一种借助特殊微加工技术以固体基质制造的可用于进行热传递的三维结构单元。当前关于微通道换热器的确切定义,比较通行、直观的分类是由Mehendale.s.s提出的按其水力当量直径的尺寸来划分。通常含有将水力当量直径小于1mm换热器称为微通道换热器。 早在二十世纪八十年代,美国学者Tuckerman和Pease报道了一种如图1所示的微通道(Micro-channel)换热结构。该结构有高导热系数的材料(如硅)构成,其换热过程为在底面加上的热量经过通道壁传至通道内,其换热性能得到超过传统换热手段所能达到的水平,成功地解决了集成电路大规模和超大规模化所带来的“热障”问题。。随后Wu和Little、Pfahler等、Choi等都对通道中的单相流进行了分析和研究。用于两种流体热交换的微通道换热器于1985年由Swift研制出来,研究表明,其微通道换热器的单位体积换热量可高达几十。美国太平洋西北国家研究所(Pacific North—west National Lab)于9O年代后期研制成功燃烧/气化一体化的微型装置以及微型热泵等。卡尔斯鲁研究中心( Forschungszentrum Karlsruhe GrabH)也在利用经过成型工具超精细车削加工的器件,将其彼此连接形成错流和逆流的微换热器。 图一微通道的基本结构 2 微通道中流体的流动特性 由于微通道换热器特征尺度在微米到亚毫米尺度范围内,使它不仅涉及空间尺度的微小化,还涉及更为复杂的尺度效应。 2.1微尺度效应 对于气体单相流动,当通道直径当小于200 时,即努森数≥0.001时(其中为分子的平均自由程,为水力当量直径),流动和传热将受到气体的稀薄效应的影响。 对于液体单相流动,当微通道直径为381 时,宏观理论公式已不适用于微通道摩阻及努塞尔数已经不能按传统宏观理论公式来计算。以矩形截面通道为例,微通道换热器的最高达到了9.20,而传统宏观矩形通道的努塞尔数最高为8.23, 说明微通道换热已具有微尺度效应(表面效应)。 对于两相流,微尺度通道内界面现象表面张力的影响显著,导致流型分布及转换准则发生变化。由于表面张力的影响,流动中不存在非球形泡沫。表面张力对微流动的影响一般表现在两相微流动的初始阶段,随

换热器工作原理

管壳式换热器的三种分类 管壳式换热器按照应力补偿的方式不同,可以分为以下三个种类: 1、固定管板式换热器 固定管板式换热器是结构最为简单的管壳式换热器,它的传热管束两端管板是直接与壳体连成一体的,壳体上安装有应力补偿圈,能够在固定管板式换热器内部温差较大时减小热应力。固定管板式换热器的热应力补偿较小,不能适应温差较大的工作。 2、浮头式换热器 浮头式换热器是管壳式换热器中使用最广泛的一种,它的应力消除原理是将传热管束一段的管板放开,任由其在一定的空间内自由浮动而消除热应力。浮头式换热器的传热管束可以从壳体中抽出,清洗和维修都较为方便,但是由于结构复杂,因此浮头式换热器的价格较高。 3、U型管换热器 U型管换热器的换热器传热管束是呈U形弯曲换热器,管束的两端固定在同一块管板的上下部位,再由管箱内的隔板将其分为进口和出口两个部分,而完全消除了热应力对管束的影响。U型管换热器的结构简单、应用方便,但很难拆卸和清洗。 管壳式换热器,管壳式换热器结构原理 管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。A 流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m(℃)。 特点管壳式换热器是换热器的基本类型之一,19世纪80年代开始就已应用在工业上。这种换热器结构坚固,处理能力大、选材范围广,适应性强,易于

换热器工作原理

换热器工作原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

管壳式换热器的三种分类 管壳式换热器按照应力补偿的方式不同,可以分为以下三个种类: 1、固定管板式换热器 固定管板式换热器是结构最为简单的管壳式换热器,它的传热管束两端管板是直接与壳体连成一体的,壳体上安装有应力补偿圈,能够在固定管板式换热器内部温差较大时减小热应力。固定管板式换热器的热应力补偿较小,不能适应温差较大的工作。 2、浮头式换热器 浮头式换热器是管壳式换热器中使用最广泛的一种,它的应力消除原理是将传热管束一段的管板放开,任由其在一定的空间内自由浮动而消除热应力。浮头式换热器的传热管束可以从壳体中抽出,清洗和维修都较为方便,但是由于结构复杂,因此浮头式换热器的价格较高。 3、U型管换热器 U型管换热器的换热器传热管束是呈U形弯曲换热器,管束的两端固定在同一块管板的上下部位,再由管箱内的隔板将其分为进口和出口两个部分,而完全消除了热应力对管束的影响。U型管换热器的结构简单、应用方便,但很难拆卸和清洗。 管壳式换热器,管壳式换热器结构原理 管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆

帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图1 [固定管板式换热器]为固定管板式换热器的构造。A 流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度 〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m(℃)。

相关文档
最新文档