焙烧温度对异辛醇生成异辛酸性能的影响

焙烧温度对异辛醇生成异辛酸性能的影响
焙烧温度对异辛醇生成异辛酸性能的影响

焙烧工艺学

一、焙烧的概念和机理 1 焙烧的概念:焙烧是把压型后的生制品装在焙烧炉内、保护介质(填充料)中,在隔绝空气的条件下,按规定的升温速度进行间接加热,使生制品内的黏结剂焦化,并与骨料颗粒固结成一体的热处理过程。 2 焙烧的机理: 炭素生产用的黏结剂一般为煤沥青,是一种由多种多环和杂环芳香族化合物及少量高分子物质组成的混合物。生制品中的骨料已经过1300℃左右的高温煅烧,所以焙烧的过程主要就是黏结剂煤沥青焦化形成沥青焦的过程。 二、焙烧目的 焙烧的主要目的是使黏结剂成为沥青焦,把骨料颗粒结成一个整体,获得最大的残炭量,使制品具有良好的物理化学性能。具体物理化学性能主要有以下几个方面: 1、排除挥发分 2、降低比电阻,提高导电性能 3、固定几何形状 4、黏结剂焦化 5、提高各项物理化学性能 三、焙烧过程的四个不同阶段 1、低温预热阶段 明火温度350℃时,制品温度在200℃左右,黏结剂软化,制品成塑性状态,这段的升温速度要快一些。 2、挥发分大量排除,黏结剂焦化阶段 明火温度在350℃—800℃之间,制品本身温度在200℃—700℃之间,黏结剂开始分解,挥发分大量排除。450℃—500℃时黏结剂焦化成沥青焦。此阶段必须均匀缓慢的升温。 3、高温烧结阶段 明火温度达到800℃—1200℃,制品本身温度达到700℃以上,黏结焦化过程基本结束。此阶段升温速度可以适当加快一些,当达到最高温度后保温15—20小时,这是为了缩小焙烧炉内水平和垂直方向的温差。 4、冷却阶段 冷却过程温度下降太快,会引起产品内外收缩不均产生裂纹废品,也会对焙烧炉炉体带来不利影响,因此,冷却降温速度控制在50℃/h为宜,到800℃以下可使其自然冷却,一般到400℃以下方可出炉。 四、对焙烧过程产生影响主要有以下因素 (一)、升温速度的影响 (二)、压力的影响 (三)、制品收缩的影响 (四)、焙烧炉室温度场分布的影响 (五)、黏结剂迁移的影响 (详细论述省略) 一、填充料的主要作用 1、防止制品氧化 2、固定制品几何形状 3、传导热量 4、阻碍挥发分的顺利排除,同时导出挥发分

降低焙烧温度提高经济效益

降低焙烧温度提高经济效益 新亚铝业王旭东 摘要:氢氧化铝焙烧是氧化铝生产过程中的最后一道工序,其能耗占氧化铝生产工艺能耗的10%左右,本文对气体悬浮焙烧炉降低焙烧温度进行探讨,分析了影响焙烧温度的因素,提出了解决方法,对获得高性能氧化铝,降低焙烧煤气单耗有重要意义。 关键词:气体悬浮焙烧炉焙烧温度节能降耗经济效益一、引言 氢氧化铝焙烧是在高温下脱去氢氧化铝表面的附着水和结晶水,并完成部分γ- Al2O3和α-Al2O3转变,生成物理性质和化学性质符合电解要求的氧化铝,焙烧温度一般在1000℃-1200℃。我们新亚铝业氧化铝焙烧炉是由郑州长城轻金属技术装备开发有限公司承建的GSC 气态悬浮焙烧炉,设计生产能力为360t/d,生产的产品为冶金一级氧化铝,灼碱<1.0%,α-Al2O3<5%-10%,焙烧温度1050℃-1150℃之间。 从2007年8月份投产以来,焙烧主炉温度控制在1050℃左右,灼碱<0.8%,2010年6月我们新亚铝业生产工艺由烧结法改为低温拜耳法,当年11月中旬投料试车,AH焙烧产量有较大幅度提升,特别是进入2011年以来,节能降耗、增盈增效是我们的工作重点,经过对降低焙烧温度的不断探索,现已将焙烧温度调整到980℃-1020℃左右,比原来平均降低50℃左右,灼碱指标<1%,仍可以获得高性

能的电解级氧化铝,并可减少焙烧煤气单耗,有利于提高焙烧炉产能。 二、降低焙烧温度的重要性 1、可以获得高性能的电解级氧化铝 氧化铝的焙烧温度是影响氧化铝质量的主要因素。焙烧温度一般控制在1000℃-1200℃,在焙烧过程中,随着脱水和相变的进行,氧化铝的物理性质、化学性质及其形状、粒度和表面性状等均相应发生变化,在1000-1100℃温度焙烧的氧化铝,安息角小,流动性好,同时由于α-Al2O3含量低,比表面积大,电解时在冰晶石熔体中的熔解速度快,对HF吸附能力强,当焙烧温度达到1200℃以上时,粒子形状剧烈变化,表面变得粗糙,α-Al2O3粒子间内聚力大,粘附性强,加之粒度小,因此安息角大,流动性不好,风动输送也较困难,在冰晶石中熔解速度和吸附 HF的能力低。 2、降低能量消耗 降低焙烧温度可以降低煤气消耗,在煤气供应一定的情况下可以提高焙烧炉产能,达到节能降耗的目的。当焙烧温度高时,其煤气耗用量大,氧化铝灼碱低,与此同时,废气排放温度升高,热损失相对增高,由焙烧炉出来的氧化铝物料相对温度较高,带走的显热增加,这些均增加了能量消耗,并且不利于提高焙烧炉的产能。 三、影响焙烧温度的因素 1、氢氧化铝水份的影响

金属工艺的概念特点及分类

金属工艺的概念特点及分类 1、几个概念: 生产过程:生产过程是将原材料转变为成品的全过程。 工艺过程:在生产过程中,凡是改变生产对象的形状、尺寸、位置和性质等,使其成为成品或半成品的过程称为工艺过程。 工艺过程的分类:工艺过程又可分为铸造、锻造、冲压、焊接、机械加工、装配等工艺过程,工艺就是制造产品的方法。 工艺规程:一台结构相同、要求相同的机器,或者具有相同要求的机器零件,均可以采用几种不同的工艺过程完成,但其中总有一种工艺过程在某一特定条件下是最合理的。人们把合理工艺过程的有关内容写成工艺文件的形式,用以指导生产,这些工艺文件即称为工艺规程。 2、金属材料的成型加工分类: 金属材料的成型加工按其特点分为冷加工(机械加工、冷轧、冷锻、冲压等)和热加工(铸造、热扎、锻造、焊接、热处理等)。 2.5.1 铸造 铸造是指金属受热融化并浇铸到预先制作好的铸型内,凝固后获得一定形状和性能的金属制品的成型方法。 一、铸造基本知识 1、铸造工艺的特点: (1)对铸件形状和尺寸的适应性强。它可以生产各种形状、各种尺寸的毛坯,特别适宜制造具有复杂内腔的零件。 (2)对材料的适应性强。可适应大多数金属材料的成形,对不宜锻压和焊接的材料,铸造具有独特的优点。 (3)铸件成本低。这是由于铸造原材料来源丰富,铸件的形状接近于零件,可减少切削加工量,从而降低铸造成本。 因此铸造是毛坯生产最主要的方法之一,如按重量计,机床中60%~80%、汽车中50%~60%采用铸件。但由于铸造工艺环节多,易产生多种铸造缺陷,且一般铸件的晶粒粗,力学性能不如锻件。因此铸件一般不适宜制作受力复杂和受力大的重要零件,而主要用于受力不大或受简单静载荷(特别适合于受压应力)的零件,如箱体、床身、支架、机座等。 2、铸造的分类: 砂型铸造:是以型砂为主要造型材料制备铸型的铸造工艺方法,它具有适应性广、生产准备简单、成本低廉等优点,是应用最广的铸造方法; 特种铸造:是除砂型铸造以外其它铸造方法的总称,常用的特种铸造方法有金属型铸造、压力铸造、熔模铸造、离心铸造、陶瓷型铸造等。特种铸造一般具有铸件质量好或生产率高等优点,具有很大的发展潜力。 3、金属的铸造性能 金属的铸造性能是指金属材料铸造成形的难易程度。评价指标:流动性和收缩性。 流动性:是指金属液本身的流动能力,流动性好坏影响到金属液的充型能力。流动性好的金属,浇注时金属液容易充满铸型的型腔,能获得轮廓清晰、尺寸精确、薄而形状复杂的铸件;还有利于金属液中夹杂物和气体的上浮排除。 相反,金属的流动性差,则铸件易出现冷隔、浇不到、气孔、夹渣等缺陷。

煅烧,焙烧与烧结的区别

焙烧 焙烧与煅烧是两种常用的化工单元工艺。焙烧是将矿石、精矿在空气、氯气、氢气、甲烷和氧化碳等气流中不加或配加一定的物料,加热至低于炉料的熔点,发生氧化、还原或其他化学变化的单元过程,常用于无机盐工业的原料处理中,其目的是改变物料的化学组成与物理性质,便于下一步处理或制取原料气。煅烧是在低于熔点的适当温度下,加热物料,使其分解,并除去所含结晶水、二氧化碳或三氧化硫等挥发性物质的过程。两者的共同点是都在低于炉料熔点的高温下进行,不同点前者是原料与空气、氯气等气体以及添加剂发生化学反应,后者是物料发生分解反应,失去结晶水或挥发组分。 烧结也是一种化工单元工艺。烧结与焙烧不同,焙烧在低于固相炉料的熔点下进行反应,而烧结需在高于炉内物料的熔点下进行反应。烧结也与煅烧不同,煅烧是固相物料在高温下的分解过程,而烧结是物料配加还原剂、助熔剂的化学转化过程。烧结、焙烧、煅烧虽然都是高温反应过程,但烧结是在物料熔融状态下的化学转化,这是它与焙烧、煅烧的不同之处。 焙烧 1. 焙烧的分类与工业应用 矿石、精矿在低于熔点的高温下,与空气、氯气、氢气等气体或添加剂起反应,改变其化学组成与物理性质的过程称为焙烧。在无机盐工业中它是矿石处理或产品加工的一种重要方法。 焙烧过程根据反应性质可分为以下六类,每类都有许多实际工业应用。 (1) 氧化焙烧 硫化精矿在低于其熔点的温度下氧化,使矿石中部分或全部的金属硫化物变为氧化物,同时除去易于挥发的砷、锑、硒、碲等杂质。硫酸生产中硫铁矿的焙烧是最典型的应用实例。硫化铜、硫化锌矿的火法冶炼也用氧化焙烧。 硫铁矿(FeS2)焙烧的反应式为: 4FeS2+11O2=2Fe2O3+8SO2↑ 3FeS2+8O2=Fe3O4+6SO2↑ 生成的SO2就是硫酸生产的原料,而矿渣中Fe2O3与Fe3O4都存在,到底那一个比例大,要视焙烧时空气过剩量和炉温等因素而定。一般工厂,空气过剩系数大,含Fe2O3较多;若温度高,空气过剩系数较小,渣成黑色,且残硫高,渣中Fe3O4多。焙烧过程中,矿中所含铝、镁、钙、钡的硫酸盐不分解,而砷、硒等杂质转入气相。

氧化铝焙烧炉主炉温度 df

氧化铝焙烧炉主炉温度控制回路设计 成员: 设计类型:过程控制工程课程设计

二〇一五年十二月六日

摘要 氧化铝焙烧炉主炉温度是氧化铝焙烧过程中非常重要的一个控制点,影响温度的主要因素是燃料流量,燃料流量的大小通过阀门开度进行控制,为了达到控制目的,需要设计合适的控制回路,实现焙烧炉温度的稳定控制。氧化铝焙烧的主要工艺参数 是灼烧温度.灼烧温度的高低与稳定与否直接决定着氧化铝的出厂质量,所以稳定控制氧化铝灼烧温度是保证氧化铝生产质量的主要途径。本文以氧化铝焙烧生产过程控制系统为背景,开展了氧化铝焙烧生产过程控制策略的研究和控制系统的设计以及器件的选型。 关键词:氧化铝焙烧;器件选型;串级控制系统;PID 参数整定 组员分工: 蓝冠萍:仿真与控制回路设计、论文的撰写与排版 段秀花:仿真与控制回路设计、论文排版 蔡惠菁:论文资料汇总、论文的图片文字检查

一、氧化铝生产工艺 生产氧化铝的方法大致可分为四类:碱法、酸法、酸碱联合法与热法。目 前工业上几乎全部是采用碱法生产。碱法有拜耳法、烧结法及拜耳烧结联合法 等多种流程。 目前,我国氧化铝工业采用的生产方法有烧 结法,混联法和拜耳法三种,其中烧结法占 20.2%,混联法占 69.4%,拜耳法占 10.4% 虽然烧结法的装备水平和技术水平在今年来有所提高,但是我国的烧结技术仍 处于较低水平。而由于拜耳法和烧结混合法组成的混联法,不仅由于增加了烧结系统而使整个流程复杂,投资增大,更由于烧结法系统装备水平和技术水平 不高,使得氧化铝生产的能耗增大,成本增高,降低我国氧化铝产品在世界市场上的竞争力。拜耳法比较简单,能耗小,产品质量好,处理高品位铝土矿 石,产品成品也低。目前全世界90%的氧化铝是用拜耳法生产的。拜耳法的原理是基于氧化铝在苛性碱溶液中溶解度的变化以及过氧化钠浓度和温度的关 系。高温和高浓度的铝酸钠溶液处于比较稳定的状态,而在温度和浓度降低时则自发分解析出氢氧化铝沉淀,拜耳法便是建立在这样性质的基础上的。 下面两项主要反映是这一方法的基础: A l2 O3 xH 2 O ?2 NaOH ?(3? x) H 2 O ?2 NaAl (OH )4 NaAl (OH )4? Al (OH )3? NaOH 前一反映是在用循环的铝酸钠碱溶液溶出铝土矿时进行的。铝土矿中所含的一水和三水氧化铝在一定条件下以铝酸钠形态进入溶液。后一反映是在另一条件下 发生的析出氢氧化铝沉淀的水解反应。铝酸钠溶液在95-100度不致水解的稳 定性可以用来从其中分离赤泥,然后使溶液冷却,转变为不稳定状态,以析出 氢氧化铝。 拜耳法生产过程简介:原矿经选矿、原矿浆磨制、溶出与脱硅、赤泥分离与精 制、晶种分解、氢氧化铝焙烧成为氧化铝产品。破碎后进厂的碎高矿经均化场 均化后,用斗轮取料机取料入输送机进入铝矿仓,石灰石经煅烧后输送到石灰 仓,然后与循环母液经调配后按比例进入棒磨机、球磨机的两段磨和旋流器组 成的磨矿分级闭路循环系统。分级后的溢流经缓冲槽和泵进入原矿浆储槽,用 高压泥浆泵输送矿浆进入多级预热和溶出系统,加热介质可用溶盐也可用高压 新蒸气,各级矿浆自蒸发器排出的乏气分别用来预热各级预

球团焙烧简答题

1.>精矿颗粒形状对成球有何影响? 答案:颗粒的形状决定了生球中物料颗粒之间接触面积大小,颗粒触接面积越大,生球强度越高,越容易成球,针状和片状颗粒比立方和球形颗粒易于成球,其生球强度也高。 2.>综合水对造球的影响? 答案:在适宜的颗粒特性得到保证的前提下,造球最佳水分应根据生球的抗压强度和落下强度这两个特性来确定,水分高于或低于最佳值时,生球强度都会下降。因为水分低时,生球中矿粒之间毛细水不足,孔隙被空气填充,生球脆弱。水分过大,矿粒间毛细管的水过于饱和,这时毛细粒结力将不复存在,球就会互相粘结变型。 3.>造球室设置中间料仓的目的是什么? 答案:设置中间料仓的目的有三个: (1)缓冲作用。因为配料系统的来料不可能同时向几个造球机供料,而造球机却要求同时工作。 (2)保证配料系统在暂时停车的条件下,造球机仍能继续给焙烧机提供生球,保证造球机和焙烧机工作稳定。 (3)有利于温合料水分和成分的均匀。 4.>造球盘的工作原理是什么?(5分) 答案: (1)圆盘转动时,将物料带到顶点, (2)沿斜面滚落, (3)洒上细小水滴,形成母球, (4)母球不断滚落.压紧,并不断粘结物料得以长大, (5)合格球在滚落时发生偏折浮在上层,并在离心力的作用下,被甩出盘外。5.>造球过程可以分为哪几个阶段?(5分) 答案:(1)母球的形成、 (2)母球的长大 (3)生球压紧三个阶段。 6.>与国外竖炉相比,中国竖炉的特点是什么?(5分) 答案: (1)炉内有导风墙、干燥床(烘床); (2)采用低压风机; (3)利用低热值的高炉煤气做为燃料; (4)低温焙烧技术。 7.>我国竖炉与国外相比有什么显著特点? 答案:烘干床,导风墙。 8.>为什么带式球团干燥要设置鼓风和抽风干燥? 答案:使下层球加热到露点以上的温度,可避免向下抽风时由于水分冷凝出现过温层,同时在向上鼓风时,下层球会失去部分水分,因而也可以提高下层球的破裂温度。 9.>润磨工艺的主要作用有哪些?(5分) 答案:(1)提高精粉颗粒表面活性,降低膨润土添加量. (2)提高球团矿的品位, (3)提高了混合料的温度,提高球团矿的产量。

电极焙烧相关要点

电极 电极是电石炉的心脏,只有充分地了解电极的组件,才能更好的控制、操作及保护好电极,才能更好的完成生产任务。电极好比人的身体,电极壳是躯干、电极糊好比营养、那么电流就是精神,只有控制好这三样,才能更好的把电极保护好。 1.电极壳 电极壳是自焙电极的关键部分。电极壳的完好与否直接关系到生产能否安全、连续、稳定运行,是生产过程中必不可少的保障因素。 25500KV A密闭型电石炉自焙电极是以¢1250mm电极壳为铠装,进行电极的自焙。在电极焙烧过程中,电极壳不仅使电极成型而且还兼起导电作用。(根据有关资料介绍,由于钢质材料的导电系数大以及在导电过程中的集肤效应,电极壳中通过的电流为总电流的80%左右)因此,电极壳在电石生产中成为不可或缺的器件。电极壳的构成是有均匀的12片3mm的筋板;12片2mm的弧形板和12跟¢18mm厚的圆钢,经过裁剪、冲压、折弯、缝焊而成。 1.1电极壳的导电特性 (1)外壳有效导电截面积约1250×3.14×2=7850㎜2 (2)外筋板有效导电截面积大约30×7×12=2520㎜2 (3)内筋板有效导电截面积约185×2×12=4440㎜2 (4)圆钢有效导电截面积约81×3.14×12=3052㎜2 电极壳的有效导电截面积=17862㎜2 钢材的电流密度为2.2~2.4A/㎜2

故电极壳的有效导电截面积可承受的电流为39296~42869A与《埃肯手册》中所提到的:在电极焙烧初期为防止电极壳烧损,操作电流应控制在40000A以内基本相符。 1.2电极壳的物理特性 由于电极壳为钢质材料制成,故其物理特性与钢材相符,据查找相关钢材特性为:密度 7.86g/㎝3;软化点 450~550℃;熔点1535℃;沸点 2750℃ 1.3电极壳外筋板最大可输入电流 接触元件夹紧外筋片面的有效长度约为435㎜,夹电极壳外筋板厚度约为 7㎜电极壳外筋板可输入的最大电流为S=435×7×12=36540㎜2 电极壳外筋板可输入的最大电流为I=36540×(2.2~2.4 A/㎜2)=(80388~87700)A常温下。考虑到电极壳软化温度在450℃,假设,电极壳温度升高全靠电流输入提供热量,不考虑传导热,那么经过计算,电极壳外筋板可输入最大电流为84000~91312A。电极壳外壳允许通过电流为17270~18840A。电极壳外筋板输入电流即为操作电流。 1.4导致电极壳烧损的原因有一下几点: 1)当电极温度超过电极壳的耐热温度; 2)当电极还未完全焙烧好时,通过较大电流; 3)电极壳再制造和焊接过程中存在质量问题; 4)电极壳与接触元件之间的接触压力变小或元件本体上有孔隙,造成元件与电极壳打弧。

焙烧工国家职业标准概况

国家职业标准 焙烧工 (审定稿) 柳州华锡集团有限责任公司代拟二○○三年十月二十五日

焙烧工国家职业标准 1.职业概况 1.1 职业名称 焙烧工。 1.2 职业定义 操作、控制、调节焙烧炉、煅烧炉、烧结机及附属设备等,制备熔炼炉原料的人员。 1.3 职业等级 本职业共设四个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.4 职业环境 室内、外,粉尘,有毒有害,高温,噪音。 1.5 职业能力特征 有一定的观察、判断和计算能力,动作协调性较好,具有从事一定劳动强度工作的能力。 1.6 基本文化程度 初中毕业。 1.7 培训要求 1.7.1 培训期限

全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级、中级、高级均不少于120标准学时;技师、高级技师均不少于100标准学时。 1.7.2 培训教师 培训初、中级的教师应具有本职业高级及以上职业资格证书或本专业初级及以上专业技术职务任职资格,培训高级的教师应具有本职业技师以上职业资格证书或本专业中级及以上专业技术职务任职资格;培训技师的教师应具有本职业高级技师职业资格证书或相关专业高级专业技术职务任职资格;培训高级技师的教师应具有本职业高级技师职业资格证书2年以上或本专业高级专业技术职务任职资格。 1.7.3 培训场地及设备 标准教室及相应的焙烧设备。 1.8 鉴定要求 1.8.1 适用对象 从事或准备从事本职业的人员。 1.8.2 申报条件 ──初级(具备以下条件之一者) ⑴经本职业初级正规培训达规定标准学时数,并取得结业证书。 ⑵在本职业连续见习工作1年以上。 ⑶本职业学徒期满。 ──中级(具备以下条件之一者) ⑴取得本职业初级职业资格证书后,连续从事本职业工作2年以上,经本职业中级正规培训达规定标准学时数,并取得结业证书。 ⑵取得本职业初级职业资格证书后,连续从事本职业工作3年

焙烧炉燃烧不正常的原因分析及解决方法

焙烧炉燃烧不正常的原因分析及解决方法 焙烧炉燃烧不正常的原因分析及解决方法 焙烧炉燃烧不正常的原因分析及解决方法 2007-01-27 化学化工论文 摘要:分析燃气焙烧炉炉温低、火焰软而短不正常工况产生的原因,从而提出解决实际问题的办法。 汤姆逊佛山彩色显像管有限公司的焙烧炉冈长时间停产,恢复生产前委托我司对焙烧炉的燃烧系统进行检查维修。焙烧炉燃烧系统分为十个工作区、每区由炉前管道、燃烧装置和燃烧监视装置组成。每区炉前管道设置一组调压器,燃气通过调压器店、再通道炉前管道分配给本区的燃烧器。检查调试中我们发现焙烧炉燃烧系统存在以下不正常工况、十个工作区中、有三个工作区火焰软而短,炉温低。 焙烧炉生产工艺要求:炉温330℃、火焰硬、长2米、检查中发现实际炉温为280℃,火焰软而短,长小于1米、燃烧特性不能满足生产工艺要求。 由于焙烧炉以前能正常运行,可排除第(1)(2)两个因素。对燃烧器进行检查后、燃烧器是引射式低压燃烧器,结构正常.可排除第(3)(5)两个因素。因此,可集中从第(4)(6)两点对燃烧系统不正常工况产生的原因进行分析、从而找出解决问题的办法。 焙烧炉的燃烧器为低压引射式燃烧器。根据《燃气燃烧与应用》中燃气引射空气的原理及动量定理,连续性及能量守恒定律;当炉前燃气压力降低时,燃气引射的空气量Ma减少。由《燃气燃烧与应用》中火孔出口燃气流Vp为:

当炉前燃气压力下降,燃气供给量不足时,Lg减小,u减小,则气流速度Vp减小。根据燃气燃烧的’特性,Vp,值的大小直接影响火焰的长度与燃烧器的燃烧强度,燃烧强度又直接影响炉温的高低。图1为扩散式燃烧器喷赌气流速度与燃烧火焰长度工况的变化关系。 从图1可知,当V,增大时,因氧气向焰面扩散的速度基本未变,这就使焰面的收缩点离喷口越来越远、火焰长度不断增加。这时、火焰的表面积增加、单位时衙内燃气燃烧量增加,于是炉内燃烧强度增加。当气流流速度进一步增加、气体流动状态由层流变为紊流时、紊流火焰虽变短,但由于燃气与空气的混合大大加强、燃烧过程得到强化、火焰表现为硬。 通过以上分祈可知。炉前燃气压力降低,造成燃烧器出口气流速度减小,使火焰变短,变软,使燃烧热强度降低。因此、炉前燃气压力下降是造成炉温低的原因之一。 空气供给量的多少也会影响炉温的高低。由燃气燃烧反应必须具备的条件可知、燃气燃烧需供给适量的氧气。每标准立方煤气按燃烧反应计量方程式完全燃烧所需的空气量,称为理论空气需要量V0。燃气与空气混合燃烧时、由于存在不均匀性、因此燃气完全燃烧所需实际空气量为V、实际供给的空气量V与理论空气需要量V0之比称为过剩空气系数a,即a=V/V0。在燃烧过程个。的值对燃烧设备的热效率有着直接的影响。。过小,燃气燃烧时的化学热不能充 分发挥;a过大,烟气体积增大,炉膛温度降低,增加了排烟热损失,使燃烧器的热效率下降,结果使炉温降低。炉子热效率与过剩空气系数、排烟温度的关系可用图2直观表示。 综上分祈,烙烧炉火焰软而短、炉温低的原因有两个,一是炉前燃气压力低;二是燃气燃烧时空气供给量不合理。要提高炉温,可通过调节炉前燃气调压器、提

焙烧技术

焙烧技术 目录 焙烧技术-焙烧 把物料(如矿石)加热而不使熔化,以改变其化学组成或物理性质 焙烧:roasting 焙烧技术-简介 固体物料在高温不发生熔融的条件下进行的反应过程,可以有氧化、热解、还原、卤化等,通常用于无机化工和冶金工业。焙烧过程有加添加剂和不加添加剂两种类型。 不加添加剂的焙烧也称煅烧,按用途可分为:①分解矿石,如石灰石化学加工制成氧化钙,同时制得二氧化碳气体; ②活化矿石,目的在于改变矿石结构,使其易于分解,例如:将高岭土焙烧脱水,使其结构疏松多孔,易于进一步加工生产氧化铝;③脱除杂质,如脱硫、脱除有机物和吸附水等;④晶型转化,如焙烧二氧化钛使其改变晶型,改善其使用性质。 加添加剂的焙烧添加剂可以是气体或固体,固体添加剂兼有助熔剂的作用,使物料熔点降低,以加快反应速度。按添加剂的不同有多种类型: 焙烧技术-氧化焙烧 粉碎后的固体原料在氧气中焙烧,使其中的有用成分转变成氧化物,同时除去易挥发的砷、锑、硒、碲等杂质。在硫酸工业中,硫铁矿焙烧制备二氧化硫是典型的氧化焙烧。冶金工业中氧化焙烧应用广泛,例如:硫化铜矿、硫化锌矿经氧化焙烧得氧化铜、氧化锌,同时得到二氧化硫。 焙烧技术-还原焙烧 在矿石或盐类中添加还原剂进行高温处理,常用的还原剂是碳。在制取高纯度产品时,可用氢气、一氧化碳或甲烷作为焙烧还原剂。例如:贫氧化镍矿在加热下用水煤气还原,可使其中的三氧化二铁大部分还原为四氧化三铁,少量还原为氧化亚铁和金属铁;镍、钴的氧化物则还原为金属镍和钴。因为该过程中的三氧化二铁具有弱磁性,四氧化三铁具有强磁性,利用这种差别可以进行磁选,故此过程又称磁化焙烧。 焙烧技术-氯化焙烧 在矿物或盐类中添加氯化剂进行高温处理,使物料中某些组分转变为气态或凝聚态的氧化物,从而同其他组分分离。氯化剂可用氯气或氯化物(如氯化钠、氯化钙等)。例如:金红石在流化床中加氯气进行氯化焙烧,生成四氯化钛,经进一步加工可得二氧化钛。又如在铝土矿化学加工中,加炭(高质煤)粉成型后氯化焙烧可制得三氯化铝。若在加氯化剂的同时加入炭粒,使矿物中难选的有价值金属矿物经氯化焙烧后,在炭粒上转变为金属,并附着在炭粒上,随后用选矿方法富集,制成精矿,其品位和回收率均可以提高,称为氯化离析焙烧。 焙烧技术-硫酸化焙烧

铬铁矿的还原焙烧过程

铬铁矿的还原焙烧过程 1、焙烧温度对铬铁矿还原焙烧效果的影响 图1铬铁矿经不同温度下焙烧120min后所得产物的SEM图像图1为铬铁矿在不同焙烧温度下还原120min后产物表观形貌的SEM图像。从图中可以看出,当焙烧温度为950℃时,矿石颗粒表面存在明暗不同两相,但相互分离并不彻底,相界面难以辨别。温度为1050℃时,明亮物相与相对较暗物相己能够明显分辨,且较950℃时体积有所增大。当温度升至1150℃时,明亮物相由球状发展为棒条状。通过EDS检测可知,明亮物相为还原析出相,其主要成分为金属铁、金属铬和少量的碳,较暗物相为铬铁矿基体相。不考虑各析出相中的碳元素,排除相分离尚不充分的950℃还原产物,可将其他试样析出相中铁和铬的比例关系绘如图2。由图2可知,在1050℃和1100℃时,析出相中主要成分为铁元素,而当温度升至1150℃时,铬元素成为析出相的主体元素。由此可以得出在950-1100℃的范围内主要发生的是铬铁矿中铁的还原,铬仍存在于矿石基体中。当焙烧温度达到如1150℃时,大量的铬被还原为金属态进入析出相,证明在此温度下部分含铬尖晶石相参与了还原反应。实验所得结论与热力学分析结果一致。

图2 不同焙烧温度下还原120min后析出相金属元素组成图3为Factsage软件计算得出的1100℃和1150℃下Cr-Fe-C-O系优势区域图。在1100℃ 时,常压线(由“+”组成)穿过了优势区域图中的灰色区域()和浅灰色区域(),意味着从热力学角度讲,当石墨增锅内气压为1 atm时Cr2O3和Fe(或Fe3C) 可以作为还原产物共存。当温度为1150℃时,常压线穿过了深灰色区域(Cr3C2+Fe),说明在此温度下铬会被大量还原为金属态,并以碳化物的形式存在。此时,选择性还原铬铁矿中铁元素的目标难以实现。另外,从图中还可得出,当体系中二氧化碳分压很低时(如反应的初始阶段Cr3C2会与Fe3C共存于析出相。所得结论进一步证实了上文所得分析与实验结果。

焙烧炉操作规程

第二章焙烧主控操作规程 焙烧炉主控操作规程 一.主要职责及任务 1.负责把氢氧化铝焙烧成合格的氧化铝。 2.作为车间生产控制中心,是班组各项工作的中心调度,负责班组内部工作的协调,负责班组各项工作的汇总、反馈,负责对外工作的联系汇报,负责外部信息的收集及传达。班长不在时行使班长的权利,负责班长的工作。 3.负责通过计算机中心远程开启设备,调整焙烧炉各参数,使之保持正常值。 4.严格执行上级下达的技术经济指标,降低消耗,提高经济效益。 5.严格执行各项规章制度,认真填写岗位交接班记录和各项操作记录。 6.负责本岗位所有设备和环境卫生的清理及各种工器具的管理工作。 二、工艺流程及原理 工业生产的湿氢氧化铝一般含有6~8%的附着水。在焙烧过程中,当氢氧化铝受热达到100℃以上时,附着水即被蒸发脱除,当温度达到225℃时,氢氧化铝先脱掉两个分子的结晶水,变成一水软铝石;继续加热到500℃~560℃时,一水软铝石又脱掉最后一个分子的结晶水,变成无水的r-AL2O3。脱水反应式如下:

225℃ AL2O3.3H2O======= AL2O3.H2O+ 2H2O 500℃~560℃ AL2O3.H2O===========r-AL2O3+ H2O 在500℃~560℃温度下焙烧得到的r-AL2O3是很分散的结晶质的氧化铝,需要进一步提高焙烧温度,才能结晶并且长大为粗颗粒。将r-AL2O3加热至900℃时,它开始转变为α-AL2O3,此时转化速度很慢,提高温度则转化速度加快。在1050℃~1200℃下维持足够的时间r-AL2O3才完全转变为α-AL2O3。 从成品过滤送来的氢氧化铝(含水率≤5%)卸入L01给料仓(Ф3000×8200mm)经棒式阀卸到电子计量给料机(DEM1480),计量后送入螺旋给料机(Ф600×3200mm).螺旋给料机将氢氧化铝送入文丘里闪速干燥器。从P02顶部排出的烟气(320℃)经烟道进入文丘里闪速干燥器的地步和氢氧化铝混合进行热交换,氢氧化铝附水在闪速干燥器内蒸发干燥。经干燥后的氢氧化铝被烟气、水蒸气带人P01(Ф3950×9736mm)进行气固分离,P01温度大约145℃。如果从P02来的烟气不足以平衡氢氧化铝附水的蒸发量,需要采用干燥热发生器T11来补充热量。 从P01顶部排出的含尘废气进入电收尘(BABW100m3)净化,由排风机(Q=252000m3/H、P=8800pa)将其送入烟囱排放。粉尘排放浓度小于30mg/Nm3,达到国际标准。电除尘器收下的粉尘由斜槽送入气体提升泵,再由气体提升泵送入冷却器C03的上升管内。尾气接入系统

球团的焙烧特性与还原行为的研究

Metallurgical Engineering 冶金工程, 2020, 7(2), 77-82 Published Online June 2020 in Hans. https://www.360docs.net/doc/bc14042505.html,/journal/meng https://https://www.360docs.net/doc/bc14042505.html,/10.12677/meng.2020.72012 Research on Roasting Characteristics and Reduction Behavior of Pellets Chuang Zhang, Xiaolei Zhou* Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming Yunnan Received: May 20th, 2020; accepted: Jun. 3rd, 2020; published: Jun. 10th, 2020 Abstract Pellet is an important man-made lump raw material. It rolls a mixture of concentrate powder and solvent into balls in a pelletizer, and then it is dried, roasted, and consolidated, becomes a ferrous raw material with good metallurgical properties. This article mainly introduces the research on roasting characteristics and reduction behavior of pellets. Keywords Hematite Pellets, Roasting, Reduction 球团的焙烧特性与还原行为的研究 张闯,周晓雷* 昆明理工大学,冶金与能源工程学院,云南昆明 收稿日期:2020年5月20日;录用日期:2020年6月3日;发布日期:2020年6月10日 摘要 球团矿是一种重要的人造块状原料,它把精矿粉、溶剂的混合物在造球机中滚动成球,然后干燥、焙烧、固结,成为具有良好冶金性质的含铁原料。本文主要介绍了球团的焙烧特性与还原行为的研究。 关键词 球团,焙烧,还原 *通讯作者。

矿物原料焙烧原理及方法

https://www.360docs.net/doc/bc14042505.html, 矿物原料焙烧原理及方法 矿物原料焙烧是化学选矿的预处理作业或独立的化学选矿作业。即在适当的焙烧气氛和低于矿物原料熔点温度等相应条件下,通过加热升温焙烧使矿物原料中的目的矿物发生物理和化学变化的工艺过程。通过焙烧可使目的矿物转变为易于通过浸出或易于用物理选矿分选分离的矿物形态。焙烧使矿物发生化学变化的同时,也使物料(焙砂)的物理形态变得疏松、多孔,为后续作业处理创造了必要条件。焙烧还可除去(回收)易挥发的组分(杂质)。 根据矿物焙烧发生化学反应的条件和工艺参数,焙烧可以分为氧化焙烧、还原焙烧、氯化焙烧、钠化焙烧合硫化焙烧等。 在选矿中采用焙烧法处理的物料常为难选原矿以及物理选矿所得粗精矿和难选的中矿等。焙烧产品有焙砂、干烟尘剂湿法收尘集气产品等。并可相应使用适宜的方法分别处理,回收其中的有用组分。影响焙烧的主要因素有焙烧温度、反应氛围和时间、反应气氛的浓度、气流运动的絮流度以及物料的物理、化学性质,如物料粒度、孔隙率、化学组成及矿物组成等。焙烧法的不利因素是能耗较高,操作控制条件严格,环境污染与治理务必采取相应措施。 矿物热分解是将矿石或人造化合物加热到一定物度,使之分解为组成较为简单的化合物(含气体),或者是使原矿物晶型发生转变的工艺过程。矿物热分解液称款物的煅烧。碳酸盐的热分解有称为焙解,名称不同,实质一样。不论是金属矿还是非金属矿采用煅烧分解矿物都非常普遍。像碳酸盐、磷酸盐、硫酸盐、氢氧化物、硅铝酸盐等矿物往往都少不了通过煅烧分解矿物、改变晶型、构造与形态。高岭土等黏土矿物的煅烧生加工,在近20年来发展迅速。 化合物热分解的平衡常数等于该化合物的热分解压,此分解压可作为该化合物热稳定性的度量。化合物热分解压愈大,热稳定性愈小;反之,热分解压愈小,热稳定性愈大,愈难发生热分解。有些化合物加热至一定温度时,虽其组成未发生变化,但其晶型已产生了变化,物理化学性质液产生了相应的变化,氧化矿物、硫化矿物、硫酸盐、氢氧化物和各种含氧酸盐等各种不同化合物(矿物)的分解压不同,通过控制煅烧温度、气相组成,可选择性地使某些化合物产生热分解,或发生晶型转变,继而采用不同方法进行分选。 通过控制焙解温度和气相组成,即可选择性地分解、改变碳酸盐组成,然后用化学或物理方法选别,达到富集有价组分和去除杂质的目的。

焙烧温度对催化剂性能的影响

焙烧温度对催化剂性能的影响 一.焙烧温度对催化剂Cu-Ni-Ce / S iO2 性能的影响 图2 和表1 是总负载量为10% 的Cu-N i-Ce /SiO2分别在600、700、800℃温度焙烧8h得到的催化剂的XRD 图及半定量分析结果. 当焙烧温度为600℃时, CuO 衍射峰的峰形较宽, 峰强较弱, 说 明此时CuO晶粒细小, 晶体发育不完整, 并且可能含有一定的非 晶成分. 随着焙温度的提高, CuO 衍射峰的峰形由宽变窄, 峰 强由弱变强, 这说明CuO 晶粒尺寸逐渐长大, 结晶逐渐趋于完好. 这和比表面积的测试结果一致(见表1). 此外, 由表1可知, 作为活性成分的CuO 和( Cu0. 2N i0. 8 )O随焙烧温度的升高而较少,CeO2量增大; 可见, 焙烧减小, 活性可能降低, 稳定性增 加。

图3是各催化剂表面Cu元素的XPS谱图. 由图可知, 不同焙烧温度下制备的Cu-N i-Ce /SiO2表面Cu2p峰均比较尖锐, 峰位对应的结合能没有发生明显的变化, Cu2p3 /2峰位所对应的结合能大约在934℃0eV, 对应于CuO的Cu2p3 /2 XPS 谱图,说明Cu元素主要是以CuO 形式存在于催化剂表面的. 各焙烧温度下催化剂的峰形均不对称, 说明催化剂表面Cu还有其它价态出现, 可能就是固溶体的存在, 这与XRD结果一致. 600 ℃焙烧得到的催化剂峰形的不对称性较大。 图3不同焙烧温度的Cu-N i-C e/SiO2催化剂表面上Cu2p的XPS图

图4是各催化剂表面N i元素的XPS谱图. 由图可以看出, 不同焙 烧温度下制备的催化剂, Ni2p3/2峰位所对应的结合能在854.8 -855. 2eV; 与标准XPS图相对照可知, N i元素是以N i2+形式存在于催化剂表面的. 随着焙烧温度的升高, Cu-N i-C e /S iO2 表面N i2p峰变得尖锐, 同时N i2p3 /2峰向高结合能方向移动, 结合能变化0. 4eV. 600 焙制得到的催化剂峰形的不对称性较大, 峰宽而强度弱, 说明催化剂表面N i还有其它价态出℃现, 可能 是固溶体的存在, 这与XRD分析结果一致. 与XRD结果不同的是XPS分析得到催化剂表面有N iO存在。 图4不同焙烧温度的Cu-N i-C e/SiO2催化剂表面上N i2p的XPS图图5分别为不同焙烧温度的催化剂表面O 元素的XPS图. 由图可 以看出, 不同焙烧温度下制备的Cu-N i-Ce /SiO2催化剂表面上 O1s的峰均比较宽且不对称, 说明催化剂表面上存在不同化学状

不同焙烧条件对载体性质的影响

不同焙烧条件对载体性质的影响 向绍基李亚昆方维平 (中石化抚顺石油化工研究院,辽宁省抚顺市,113001) 一、前言 l本文主要考察了挤条成型之后的载体经不同干燥,焙烧方式对其性质的影响,以揭示其中的规律.供工业生产之借鉴和利用:t 有关氧化铝载体的性质受制备条件影响的工作主要集中在氢氧化铝中和成胶过程诸多因素对其性质的影响“、2、3];中国发明专利CNl087289cn中提出一种大孔Y—Al:0。载体的制各方法:将Y—Al:0。前身物的含水颗粒物料,瞬问升温至500—650℃,并在高温下维持数小时,能制得的Y—Al:0。载体平均孔径大、孔分布集中、强度好、堆积密度适中.Jaworska等嘲发现不同的焙烧方式和气氛可形成不同的氧化铝晶相。而有关挤压成型的过程及其随后的干燥、焙烧过程对氧化铝载体的孔结构、强度等的影响往往没有得到重视.早期的工作中,人们的观点认为载体的强度越大越好,其实不然。 近来通过实验工作发现,要获得较好的载体强度往往以牺牲载体的孔结构性质为代价。对于细小的条,若强度过好,还会带来切条的困难,由于目前工业上切条技术不过关,当小条的强度过高时,在切条过程中收率降低、损失大、不经济,因此提出一些新的观点:挤条成型过程中,仔细地考查每一个环节的影响因素.控制载体的强度,在满足工业使用要求的前提下,降低强度,改若载体的孔结构性质,挤条成型之后的条,经过传输、干燥、浸渍等生产过程之后,在自然力的作用下,自动断条成符合要求的长度范围.这样可以去掉切条的生产步骤,有利于降低整个载体韵生产成本,但对挤条成型的技术提出了挑战,有必要仔细的考查挤条成型前后各细节对载体强度、孔结丰目性质的影响。 二、实验部分 采用工业上最常用的成型方法: ①硝酸、田菁粉、氢氧化铝干胶粉挤条制得的氧化铝载体;②醋酸、田菁粉、硅溶胶和氢氧化铝于胶橙制得的硅铝载体。 焙烧方式: l、挤出条凉干、干燥、升温至550"C、恒温4小时; 2、挤出条直接干燥、升温至550℃、恒温4小时; 3、挤出条升温至550℃、恒温4小时; 4、挤出条直接放入550℃焙烧炉中恒温4小时。 表I载体的性质 —磊磊——1蕊r——面F——芤j至—面表面强度孔容孔径比表面方式N/ramm垤Ⅱmm‘,gN/mmml,gn”竺:!! r18.70.5688.9825318.30.6008.80273 219.10.5839.42247一一一一 314.20.6099.5925415.50.6399.6l266 111::坐壑!!:塑2塾!!:!!:§墅!:;!!墼.载体低温氮吸附曲线和孔分布数据略。 43

化学选矿之影响还原焙烧的因素

书山有路勤为径,学海无涯苦作舟 化学选矿之影响还原焙烧的因素 影响还原焙烧的因素较多,归纳起来主要包括以下几个方面的因素: (1)矿石性质。矿石性质主要是指矿物种类、脉石成分及结构状态。这些性质决定了矿石被还原的难易程度。一般而言,具有层状结构的矿石要比致密状、绍状及结核状易于还原。脉石成分以石英为主的矿石,因受热后石英产生晶型转变,体积膨胀而导致矿石的爆裂,增大了矿石的有效反应面积,从而有利于还原反应进行。 (2)矿石的粒度及粒度组成。矿石粒度的大小及其分布对还原过程的主要影响是矿石还原的均匀性。当其他条件不变时,小块矿石比大块矿石先完成还原过程;对于大块矿石来说,表层比中心部位先完成还原过程。因此,为了改善矿石在还原过程中的均匀性,必须降低人炉矿石粒度上限,提高粒度下限。据我国生产实践的经验,认为粒度在20 一75 mm 比较合适。 (3)焙烧温度和气相成分的影响。矿石只有在一定的焙烧温度和气相成分的条件下才能完成还原反应,下面以弱磁性贫铁矿石的磁化焙烧为例进行说明。在实践中贫赤铁矿磁化焙烧温库下限是450`C,上限700 一800%。炉内还原气体的成分应选定P(C02)/V(CO)比值不小于1. 温度过高时,会导致弱磁性的富氏体(FeO 溶于Fe3O,中的低熔点熔体)和硅酸铁(Fee SiO4 )的生成。因为无论是高温造成的炉料软化或是过还原生成的硅酸铁熔体,都会钻附在炉壁或附属装丑上,影响炉料正常运行。若温度过低时,如在250 一300℃以下,虽然赤铁矿也可以被还原成磁铁矿,且不会产生过还原现象。但是,还原反应的速度很慢,而且低温生成的Fe3O4 磁性较弱,所以生产上是不能采用低温磁化焙烧的。各种矿石的适宜还原温度及气相成分,由于矿石性质、加热方式及还原剂的种类不同而有较大变化,应通过试验最后确

题库第九章焙烧

第九章焙烧 填空 1、焙烧是在烧烧炉内用(保护介质),在(隔绝空气)的情况下,以(重油)作为燃料,按一定的升温速度进行间接加热的过程。 2、成型后的生制品由(焦炭颗粒)及(粘结剂)两部分组成。 3、焙烧生坯由两部分组成,一部分是经过高温煅烧的(骨料颗粒),另一部分是粘结剂(煤沥青)。 4、当生制品从室温加热到200~250℃时,制品的粘结剂软化,制品处于(塑性状态),体积(膨胀),质量(不减少)。 5、挥发分的排除,产品温度在(200℃)以前不明显,随着温度的升高,继续增加,温度在(350—500℃)之间最激烈,(500℃)以上排除较慢,大约在(1100℃)以后才基本结束。 6、焙烧温度曲线包括(焙烧过程持续的时间)、(温度上升速度)、(温度的最高值)及在最高温度下的(保温时间)。 7、焙烧曲线制定时,不同的燃料要选用不同的曲线。这要视燃料的(种类)、(性 质)、(热值)、(压力)而定。 8、温度对焙烧过程有至关重要的影响。升温速度的(快慢),温度的(最高值)及在最高温度下的(保温时间)、(冷却速度)及时间都对焙烧过程有重要的影响。 9、焙烧中填充料的吸附性(越强)和分散性(越大),则对焙烧炉内气体吸收得(越多),而且焙烧时制品重量损失也就(越大)。 10、焙烧炉炉温主要依靠(控制燃料供给量)和(空气量)及(负压)等进行调节。 11、焙烧工序出现的废品种类较多,如(裂纹)、(弯曲)、(空头)、(变形)、(氧化)、(分层)、(内裂)、(杂质)、(碰损)等。 12、沥青烟气的净化一般采用电收尘。电收尘器的结构是由(电晕电极)、(收尘电极)、(气流分布装置)、(清灰装置)、(外壳)和(供电设备)等组成。 13、焙烧填充料的焦结是由于焙烧炉燃气中生成(热解炭)的结果,填充料越细,焦结程度越(差)。 14、焙烧填充料具有一定的(粒度)和(孔度),因此挥发分可以从颗粒间的(空隙)中排出。 15、压力直接影响炉室内的焙烧气氛。压力大,即负压(大),抽力(大),分解气体排出的速度就(快),炉室内分解气体的浓度就(低)。 16、升温速度对粘结剂的(析焦量)有很大影响。在升温速度较慢的情况下,粘结剂的析焦量(增大),提高了制品的(密度)和物理机械性能。

相关文档
最新文档