超大规模集成电路发展趋势

超大规模集成电路发展趋势
超大规模集成电路发展趋势

超大规模集成电路的设计发展趋势;摘要:随着信息产品市场需求的增长,尤其通过通信、;关键字:超大规模集成电路发展趋势SOCIP复用技;1引言;集成电路是采用半导体制作工艺,在一块较小的单晶硅;2超大规模集成电路发展的概述;集成电路之所以获得如此迅速的发展,与数据处理系统;1.改进性能;在计算机中采用高密度的半导体集成电路是减少信号传;2.降低成本;用Lsl 替换

超大规模集成电路的设计发展趋势

摘要:随着信息产品市场需求的增长,尤其通过通信、计算机与互联网、电子商务、数字视听等电子产品的需求增长,世界集成电路市场在其带动下高速增长。本文主要从半导体电子学与计算技术工程方面进行进行的诸多研究成果以及国际集成电路的发展现状和发展趋势反映其在国际上的重要地位。

关键字:超大规模集成电路发展趋势 SOC IP复用技术

1 引言

集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作许多晶体管及电阻器、电容器等元器件,并按照多层布线或隧道布线的方法将元器件组合成完整的电子电路,通常用IC(Integrated Circuit)表示。近廿多年来,半导体电子学的发展速度是十分惊人的。从分离元件发展为集成电路,从小规模集成电路发展为现代的超大规模集成电路。集成电路的性能差不多提高了3个数量级,而其成本却下降了同样的数量级。

2 超大规模集成电路发展的概述

集成电路之所以获得如此迅速的发展,与数据处理系统日益增长的各种要求是分不开的,也是半导体电子学与计算技术工程方面进行了许多研究工作的结果。这些工作可以概括为:(l)改进性能一尽可能减少信号处理的传递时间。(2)降低成本一从设计、制造、组装、冷却等各方而降低成本。(3)提高可靠性一减少失效率,增加检测与诊断的手段。(4)缩短研制/生产周期一加快从确定研制产品到产品可用之间的时间,使产品保持领先地位。(5)结构上的改进一半导体存储器的进展,推动了计算机体系的发展。

1.改进性能

在计算机中采用高密度的半导体集成电路是减少信号传递时间,提高机器性能的重要环节。因为在普通采用小规模集成电路(551)或中规模集成电路(MSI)的硬件结构中,信号传输与负载引起的延迟,与插件上的门的有效组装密度的平方根成正比,如图(1.1.1)。也就是说,组装延迟与每个门所需的有效面积的平方根成正比。因此将组装延迟减少一半的话,必须提高组装密度4倍。从ssl/Msl 发展为LSI/VLsl标志着芯片上元件的集成度得到了很大的提高。目前,一个双

极随机逻辑的VLsl,每片已包含有5。。O个门电路。若芯片的最大面积为50平方毫米的话,封装密度已达每平方毫米100个门的密度。据估计,今后几年内,在继续加大芯片面积,减小尺寸的惰况下,密度可提高到每片包含门的数量达一万个以上,如图].1.2所示。

2.降低成本

用 Lsl替换551/Msl逻辑电路后,其优越性首先表现在低成本上。因为它将大大减少系统元件的用量,简化系统组装和降低系统成本。例如,当前一个包含有100。~1500个门的门阵列大约可替换60~80个74Lsl组件,这将节省原有器件费用的80%左右,并且由于组件数量的减少,使印制电路板的数量和人工装配费用以及系统维护(包括通风、冷却和备分器件)等费用也将大大减少。

3.提高可靠性

系统内部元件用量的减少,组装级数的减少,硬走线连接端点的减少都对可靠性的提高有着直接的重大影响。而且目前看来,设计者还不满足于上述的提高,他们在体系设计中还采取各种措施。例如,在芯片设计中设计了专门检测错误和校正错误的电路,以此来提高系统的可靠性,几乎没有不采用奇偶与_ECC校验的系统。

此外,随着集成度的提高,在输人输出针有限和内部信号不可直接存取的情况下,必须改变过去检测芯片或系统的方法,设法获取不可取得的芯片或系统的内部信号。目前这方而已有很多研究,例如IBM公司采用的一种叫做LsSD(Level 一sensitiveSeanDesign)的方法,不仅可检测芯片内部电路的性能,解决了测试数据生成的向题,而且已扩充到了底板和系统的检测。

4.减少周转时间

缩短研制周期是使产品具有竞争能力的重要方面。目前,除了从改进工艺和设计方法着手外,主要的解决办法是采用自动化辅助设计(cAD)。采用cAD不仅是为了解决缩短研制周期的问题,而且随着集成度的提高,vLSI/Lsl内部体系复杂性的增加,只有CAD才能解决人们手工操作所不能及的问题。譬如,一个

50~250个门的阵列尚可用人工设计,但当一个具有1000个门以上的阵列时,没有CAD,则是很困难的。采用路径软件设计一个布局可能只要花几天时间,而用人工设计同样的布局至少要花十儿周时。目前,设计自动化系统正在迅速向前发展,像IBM的工程设计系统已比较完善。使用这样的系统,逻辑设计者既可以以表格形式,通过字母终端输入计算机,也可以以逻辑图的形式,通过图形终端输入计算机。计算机可以从逻辑设计、逻辑模拟、物理布局,电气性能的检查,直至最后的生产

模式,测试数据的生成都由它自动完成。计算机基本上可以替代过去人们所进行的大量重复性的工作。并且这些数据与最终设计都可通过通信线送到工厂进行生产。显然,这一整套的自动化设计和生产过程对提生产率,减少周转时间是很有帮助的。

3 国际集成电路设计发展现状

在集成电路设计中,硅技术是主流技术,硅集成电路产品是主流产品,占集成电路设计的90%以上。正因为硅集成电路设计的重要性,各国都很重视,竞争激烈。产业链的上游被美国、日本和欧洲等国家和地区占据,设计、生产和装备等核心技术由其掌握。

世界集成电路大生产目前已经进入纳米时代,全球多条90纳米/12英寸生产线用于规模化生产,基于70与65纳米之间水平线宽的生产技术已经基本成形,Intel公司的CPU芯片已经采用45纳米的生产工艺。在世界最高水平的单片集成电路芯片上,所容纳的元器件数量已经达到80多亿个。

以集成电路为核心的电子信息产业目前超过了以汽车、石油和钢铁为代表的传统的工业成为第1大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。发达的国家国民经济总产值增长部分的65%目前与集成电路相关。预计在今后的10年内世界集成电路销售额将以年均15%的速度增长,于2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路日益成为经济发展的关键、社会进步的基础、国际竞争的筹码和国家安全的保障。

4 国际集成电路设计发展趋势

集成电路最重要生产过程包括:开发EDA(电子设计自动化)工具,应用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经过应用开发将其装备到整机系统上与最终的消费者见面。

1、SOC将成为集成电路设计的主流

SOC(SystemOnaChip) 的概念最早源于20世纪90年代,SOC是在集成电路向集成系统转变的过程中产生的。集成电路设计是以市场应用为导向而发展的,而在将来市场应用的推动下 SOC已经呈现出集成电路设计主流的趋势,因为其具有低能耗、小尺寸、系统功能丰富、高性能和低成本等特点。在高端或低端的产品中,SOC的应用正日益广泛。

SOC 是至今仍在发展的产品种类和设计形式。SOC发展重点主要包括:总线结构及互连技术,直接影响芯片总体性能的发挥;软、硬件的协同设计技术,主要解决硬件开发和软件开发同步进行问题;IP可复用技术,如何对其进行测试和验证;低功耗设计技术,主要研究多电压技术、功耗管理技术,以及软件低功耗应用技术等;可测性设计方法学,研究EJTAG设计技术和批量生产测试问题;超深亚微米实现技术,研究时序收敛、信号完整性和天线效应等。

SOC 首要目标始终是降低设计成本和实现高系统集成度。SOC设计目标是对现有模块或“核”的重复应用,进而实现重复利用效率的最大化。SOC也表现为各种

种类产品的融合,其实现了很多其它系统模块的整合,例如,ASIC、MPU和Memory 等,进而实现系统功能和系统集成度的大幅度提升。

由于自身的优异特点,SOC技术越来越受到市场的青睐。而集成电路工艺技术发展又极大地推动着SOC技术的进一步发展,使得SOC技术与其它(例如,MPU 和DRAM等)技术一起发展,将成为集成电路设计的主流。2006年,最引人注目的SOC产品,就是英特尔公司继奔腾Ⅳ之后新一代微处理器Coreduo 和CoreⅡduo 芯片。

2、IP复用技术将更完善

对 SOC的界定必须包括3个方面。首先SOC应该由可设计复用的IP核组成,IP 核是具有复杂系统功能的独立VLSI模块。其次IP核应该广泛采用深亚微米以下工艺技术。再次在SOC中可整合多个MPU、DSP、MCU或其复合的IP核。由此可见,在功能、工艺和应用技术上,SOC的应用起点相当高,而IP 核的可重复性设计是SOC技术实现应用的关键。

由于系统复杂性越来越高,以及对更短上市时间的追求,设计的复杂性也相应成指数性增加,提高设计生产率已经成为集成电路设计业主要目标。其中IP复用设计正在成为越来越多厂商的选择。IP复用设计是SOC实现的主要基础。把已经优化的子系统甚至系统级模块纳入到新系统设计中,实现集成电路设计能力的飞跃。基于平台的SOC设计技术和硅知识产权(SIP)的重用技术是SOC产品开发的核心技术,是将来世界集成电路技术制高点。IP复用设计是加快设计进程和降低成本的有效方法。IP复用设计目前已经在集成电路设计中被广泛应用,而且也形成了专门生产可复用IP核的产业和生产商。可复用IP核根据实现性不同可分为以HDL语言形式提交的软核、经过完全布局布线的网表形式提供且不能由系统设计者修改的硬核和结合了软核硬核两种形式的固核3种。因为有不同的厂商参与可复用IP核的生产,为了不同可复用IP核之间良好对接和加快可复用IP知识产权交易发展,而需要标准。业界成立了多个国际组织推动可复用IP核标准的建立,例如,VSIA协会、OPENMORE计划等。

3、设计线宽将逐渐降低

主流集成电路设计目前已经达到0.18~0.13?m,高端设计已经进入90nm,芯片集成度达到108~109nm数量级。根据2003ITRS公布的预测结果,将实现特征尺寸2007年的65nm、2010年的45nm、2013年的32nm、2016年的22nm量产。产品制造的实现以设计为基础,相应的设计方法同期将达到相应的水平。

4、设计可行性与可靠性将得到提高

随着集成电路设计在规模、速度和功能方面的提高,EDA业界努力寻找新设计方法。将来5~10年,伴随着软件和硬件协同设计技术、可测性设计技术、纳米级电路设计技术、

嵌入式IP核设计技术和特殊电路工艺兼容技术等出现在EDA工具中,EDA工具将得到更广泛应用。EDA工具为集成电路的短周期快速投产提供了保障,使全自动化设计成为可能,同时设计的可行性和可靠性也能得到提高。

5、可编程逻辑器件将发挥更广泛作用

可编程逻辑器件(PLD),尤其是现场可编程门阵列(FPGA),是近几年来集成电路发展最快的产品。PLD将在今后的5~10年中发挥更广泛作用。同时PLD的应用,以及集成电路设计流程将更简化,设计周期将缩短,同时设计成本和制造成本将进一步降低。

6、设计与整机系统结合将更紧密

将来5~10年,集成电路设计将围绕应用展开,64位甚至128位CPU,以及相关产品群开发、3C多功能融合的移动终端芯片组开发、网络通信产品开发、数字信息产品开发和平面显示器配套集成电路开发等将成为集成电路设计面向的主体。

5 结论

超大规模集成电路研制成功,是微电子技术的一次飞跃,大大推动了电子技术的进步,从而带动了军事技术和民用技术的发展。超大规模集成电路已成为衡量一个国家科学技术和工业发展水平的重要标志。集成电路的集成度和产品性能每18个月有一倍的增加。随着信息产品市场需求的增长,尤其通过通信、计算机与互联网、电子商务、数字视听等电子产品的需求增长,世界集成电路市场在其带动下高速增长。

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

集成电路技术发展趋势

集成电路技术发展趋势 1 国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已日益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。 集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP 复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。 (2)制造工艺与相关设备。集成电路加工制造是一项与专用设备密切相关的技术,俗称"一代设备,一代工艺,一代产品"。在集成电路制造技术中,最关键的是薄膜生成技术和光刻技术。光刻技术的主要设备是曝光机和刻蚀机,目前在130nm的节点是以193nmDUV(Deep Ultraviolet Lithography)或是以光学延展的248nmDUV为主要技术,而在l00nm的节点上则有多种选择:157nm

集成电路封装的发展现状及趋势

集成电路封装的发展现 状及趋势 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

序号:39 集成电路封装的发展现状及趋势 姓名:张荣辰 学号: 班级:电科本1303 科目:微电子学概论 二〇一五年 12 月13 日

集成电路封装的发展现状及趋势 摘要: 随着全球集成电路行业的不断发展,集成度越来越高,芯片的尺寸不断缩小,集成电路封装技术也在不断地向前发展,封装产业也在不断更新换代。 我国集成电路行业起步较晚,国家大力促进科学技术和人才培养,重点扶持科学技术改革和创新,集成电路行业发展迅猛。而集成电路芯片的封装作为集成电路制造的重要环节,集成电路芯片封装业同样发展迅猛。得益于我国的地缘和成本优势,依靠广大市场潜力和人才发展,集成电路封装在我国拥有得天独厚的发展条件,已成为我国集成电路行业重要的组成部分,我国优先发展的就是集成电路封装。近年来国外半导体公司也向中国转移封装测试产能,我国的集成电路封装发展具有巨大的潜力。下面就集成电路封装的发展现状及未来的发展趋势进行论述。 关键词:集成电路封装、封装产业发展现状、集成电路封装发展趋势。 一、引言 晶体管的问世和集成电路芯片的出现,改写了电子工程的历史。这些半导体元器件的性能高,并且多功能、多规格。但是这些元器件也有细小易碎的缺点。为了充分发挥半导体元器件的功能,需要对其进行密封、扩大,以实现与外电路可靠的电气连接并得到有效的机械、绝缘等

方面的保护,防止外力或环境因素导致的破坏。“封装”的概念正事在此基础上出现的。 二、集成电路封装的概述 集成电路芯片封装(Packaging,PKG)是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连线,引出接线端并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。此概念称为狭义的封装。 集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。封装为芯片提供了一种保护,人们平时所看到的电子设备如计算机、家用电器、通信设备等中的集成电路芯片都是封装好的,没有封装的集成电路芯片一般是不能直接使用的。 集成电路封装的种类按照外形、尺寸、结构分类可分为引脚插入型、贴片型和高级封装。 引脚插入型有DIP、SIP、S-DIP、SK-DIP、PGA DIP:双列直插式封装;引脚在芯片两侧排列,引脚节距,有利于散热,电气性好。 SIP:单列直插式封装;引脚在芯片单侧排列,引脚节距等特征与DIP基本相同。

论集成电路发展的挑战与机遇

论集成电路发展的挑战与机遇 摘要:集成电路的发展史就是微电子技术生成史,从晶体管到微处理器和光刻技术等,集成电路技术以尺寸缩小、集成度提高为发展路径,必然受到材料、工艺和物理理论等挑战。但集成电路正面临产业调整与市场的双重机遇。 关键词:集成电路;挑战;机遇 目前,以数字化和网络化为特征的信息技术正渗透和改造着各产业和行业,深刻改变着人类生产生活方式以及经济、社会、政治、文化各领域。信息技术根源于集成电路技术的巨大发展,把人类社会在21世纪定格为信息社会。 一、集成电路与摩尔预测 集成电路就是将晶体管等有源元件和电阻、电容等无源元件,按电路”集成”,完成特定电路或功能的系统,集成电路体积不断减小,制造工艺技术日益精细,可一次加工完成。集成电路的学科基础是微电子学,微电子学脱胎于电子学和固体物理学的交叉技术学科,主要研究在半导体材料上构成微型电子电路、子系统及系统。以微电子学发展起来集成电路技术,包括半导体材料及器件物理,集成电路及系统设计原理和技术,芯片加工工艺、功能和特性测试技术等。当下,集成电路技术已成信息社会发展基石,集成电路将信息获取、传递、处理、存储、交换等功能集成于芯片,芯片可低成本大批量生产,且功耗低体积小,迅速成为各产业、国防的技术基础。摩尔于1964年总结集成电路发展历程,对未来集成电路发展趋势

做出预测。即:集成电路单个芯片上集成元件数,一般称为集成电路的集成度,每18个月增加一倍,即集成度每三年翻两番,尺寸缩小2倍,集成电路芯片需求量也以相同速度增加,集成电路性能提高,价格下降。几十年来,集成电路技术居然一直按摩尔定律指数增长规律发展壮大。 二、集成电路高速发展 集成电路技术伴随物理、材料和技术成果而实现各阶段的飞速发展。晶体管之前,电子管和电阻、电容等元件靠焊装构成电路系统。第一台计算机连线和焊接点很多,电路系统体积大,可靠性差。电子装备可靠性和小型化使”集成”成为需求。人们开始将电阻、电容等无源元件和有源元件制做在同一块半导体材料上。1958年9月实现第一个集成电路震荡器演示实验,标志着集成电路诞生,当时该实验在锗晶体管基础上完成。第一块集成电路发明是一个技术创新,对物理学发展产生很大影响。平面技术发明是推动集成电路产业化的关键。包括氧化、扩散、薄膜生长和光刻刻蚀等在内的平面技术,论重要性首推二氧化硅绝缘层的发现。早期晶体管基区宽度不好控制,不易做薄,频率提高受限制。1956年,科学家发现二氧化硅不仅具掩蔽作用,还是高频损耗小、击穿电场强度高的良好绝缘体。直到今天,二氧化硅仍是集成电路主要绝缘层材料。金属-氧化物-半导体场效应晶体管(mos.fet)器件是目前超大规模集成电路基本电路形式。平面工艺的光刻技术是另一关键,光刻是一种精密表面加工技术。1957年首次引入到半导体工艺技术,将光刻技术和二氧化

集成电路技术及其发展趋势

集成电路技术及其发展趋势 摘要目前,以集成电路为核心的电子产业已超过以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。作为当今世界竞争的焦点,拥有自主知识产权的集成电路已日益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 关键词集成电路系统集成晶体管数字技术

第一章绪论 1947年12月16日,基于John Bardeen提出的表面态理论、Willianm Shockley给出的放大器基本设想以及Walter Brattain设计的实验,美国贝尔实验室第一次观测到具有放大作用的晶体管。1958年12月12日,美国德州仪器公司的Jack 发明了全世界第一片集成电路。这两项发明为微电子技术奠定了重要的里程碑,使人类社会进入到一个以微电子技术为基础、以集成电路为根本的信息时代。50多年来,集成电路已经广泛地应用于军事、民用各行各业、各个领域的各种电子设备中,如计算机、手机、DVD、电视、汽车、医疗设备、办公电器、太空飞船、武器装备等。集成电路的发展水平已经成为衡量一个国家现代化水平和综合实力的重要标志[1]。 现代社会是高度电子化的社会。在日常生活中,小到电视机、计算机、手机等电子产品,大到航空航天、星际飞行、医疗卫生、交通运输等行业的大型设备,几乎都离不开电路系统的应用。构成电路系统的基本元素为电阻、电容、晶体管等元器件。早期的电路系统是将分立的元器件按照电路要求,在印刷电路板上通过导线连接实现的。由于分立元件的尺寸限制,在一块印刷电路板上可容纳的元器件数量有限。因此,由分立元器件在印刷电路板上构成的电路系统的规模受到限制。同时,这种电路还存在体积大、可靠性低及功耗高等问题。 半导体集成电路是通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路规则,互连“集成”在一块半导体单晶片上。封装在一个外壳内,执行特定的电路或系统功能。与印刷电路板上电路系统的集成不同,在半导体集成电路中,构成电路系统的所有元器件及其连线是制作在同一块半导体材料上的,材料、工艺、器件、电路、系统、算法等知识的有机“集成”,使得电路系统在规模、速度、可靠性和功耗等性能上具有不可比拟的优点,已经广泛的应用于日常生活中。半导体集成电路技术推动了电子产品的小型化、信息化和智能化进程。它彻底改变了人类的生活方式,成为支撑现代化发展的基石[2]。 1959年,英特尔(Intel)的始创人,Jean Hoerni 和Robert Noyce,在Fairchild Semiconductor开发出一种崭新的平面科技,令人们能在硅威化表面铺上不同的物料来制作晶体管,以及在连接处铺上一层氧化物作保护。这项技术上的突破取代了以往的人手焊接。而以硅取代锗使集成电路的成本大为下降,令

未来十年中国集成电路产业的发展机遇与挑战

未来十年中国集成电路产业的发展机遇与挑战 若干年之后如果再回过头来看,2010年将会成为中国集成电路产业发展史上的一个重要的里程碑年份。因为它是几个重要事件的节点,一是国发[2000]18号文即《鼓励软件产业和集成电路产业发展的若干政策》颁布十周年。同时,国家扶持和鼓励集成电路产业发展的新的优惠政策——业界称新18号文经过长期酝酿和准备,有可能在年底正式推出。二是今年是“十二五”承上启下的一年,“十二五”集成电路产业专项规划正在紧锣密鼓制定之中,产业主管部门正在动员各方力量“总结成果,破解难题,规划未来”,明年正式出台的新的规划蓝图将对未来五年我国集成电路产业发展产生重大的深远的影响;三是由于2008-2009年经济危机的影响,全球产业资源进行了一轮很猛烈的重组,2010年世界集成电路产业走出全球金融危机的阴影,站在一个新的起点上,进入新一轮增长期,产业链各个环节的企业都在重新布局调整,抢点新的竞争制高点。 这是一个回顾过去,展望未来,制定行动计划的时刻。 过去十年我国集成电路产业所取得的发展成就,有目共睹,不少业内人士进行了很好的总结和归纳,无需赘言。未来十年,我国集成电路产业面临那些大的发展机遇?如何把握机遇在国际竞争中不断发展壮大却是值得业界认真思考的问题。 在全球集成电路产业价值链创造中中国的位置 在经济全球化和区域经济一体化的进程中,集成电路产业可以说是国际化竞争最激烈,产业资源全球流动和配置最为彻底的产业之一,任何一个国家和地区在集成电路产业价值创造体系中都自觉或不自觉的被推到了“最能发挥资源禀赋,形成国际比较优势”的产业链位置,这一结果是通过国际竞争和资源流动自然形成的。通过下面的表格可以比较直观的看出中国目前在全球集成电路产业价值链创造中的位置。 表一,全球集成电路产业价值链创造中中国的位置(2007)(单位:十亿美元) 中国集成电路产业的特点是市场需求大,产业规模小,绝大部分产品依赖进口。本土设计、生产的集成电路产品只能满足国内约24%的需求,我国每年进口的集成电路产品超过1000亿美元,是排名第一的大宗进口产品,其进口额超过了石油和钢材进口额的总和。美欧日韩凭借技术领先战略,主导着产业和技术发展方向,作为后进国家我们还处在“追随”和“赶超”的位置,从产业分工和价值链来看,我们处在从价值链底端向上爬升的过程。 表二,全球半导体区域市场需求规模与产值创造比较表(2009)(单位:十亿美元) 资料来源:WSTS(2010/02);工研院IEK IT IS计划(2010、04) 从表二可以看出全球集成电路的市场和产业格局,基本上北美是供应商,亚太是消费者,欧洲和日本每年创造的产值与消耗掉的集成电路产品大体相当,其中日本在集成电路设备和技术上有一定优势,产值略大于消费。如果把区域概念浓缩一下,北美以美国为主,亚太以中国为主进行对比,可以发现两国形成非常强的互补与对接,中国每年进口超过1000亿美元的集成电路产品,约占全球市场的一半,而美国集成电路产业每年创造1000多亿美元的产值,绝大部分产品销往了中国。中国是全球集成电路的“消费中心”,美国则是“利润中心”。 从华虹NEC 909工程上马时,国家高层领导在政治局会议上表态“砸锅卖铁也要搞半导体”,到2000年国务院18号文件的出炉,再到最近提出“拥有强大的集成电路产业和技术,是迈向创新型国家的重要标志”无不彰显着国家意志与决心。但是在全球集成电路产业分工体系和密如蛛网的“协约”、“标准”、“

集成电路论文

我国集成电路发展状况 摘要 集成电路产业是知识密集、技术密集和资金密集型产业,世界集成电路产业发展异常迅速,技术进步门新月异。虽然目前中国集成电路产业无论从质还是从量来说都不算发达,但伴随着全球产业东移的大潮,中国的经济稳定增长,巨大的内需市场,以及充裕的各类人才和丰富的自然资源,可以说中国集成电路产业的发展尽得天时、地利、人和之势,将会崛起成为新的世界集成电路制造中心。 首先,本文介绍了集成电路产业的相关概念,并对集成电路产业的重要特点进行了分析。其次,在介绍世界集成电路产业发展趋势的基础上本文对我国集成电路产业发展的现状进行了分析和论述, 并给出了发展我国集成电路的策略。 集成电路产业是信息产业和现代制造业的核心战略产业,其已成为一些国家信息产业发展中的重中之重。相比于其它地区,中国是集成电路产业的后来者,但新世纪集成电路产业的变迁为中国集成电路产业的蚓起带来了机遇,如果我们能抓住这一有利时机,中国不仅能成为集成电路产业的新兴地区,更能成为世界集成电路产业强国。 关键词:集成电路产业;发展现状;发展趋势 ABSTRACT

Integrated circuit(IC) industry is of a knowledge,technology and capital concentrated nature. IC industry in the world develops extremely fast and the technology improves everyday.Although currently China’s IC industry is not fully developed,taking into consideration of either quality or quantity of the products.with the shifting of the global industry centre to the east and with the stable economic growth,enormous market demands and abundant human and nature resources available in China,the development of China’s IC industry has favourable conditions in all aspects.and it is expected that in the near future China will become tire new IC manufacturing centre in the world. Firstly, this paper introduce the concept of IC , and analysis the important points of it. Secondly, this paper introduces the developments of IC in the word especially in China. In the end, this paper gives some advices of the developments of IC in our country. The IC is the core of information industry and modern manufacturing strategic industries. IT has become some national top priority in the development of information industry. Compared with other regions, the latter of the China's integrated circuit industry, but the changes of the IC industry in the new century for China's integrated circuit industry vermis creates opportunity, if we can seize the favorable opportunity, China can not only a new region of the integrated circuit industry, more can become the integrated circuit industry in the world powers. Key words: IC current situations tendency 前言

超大规模集成电路发展趋势

超大规模集成电路的设计发展趋势;摘要:随着信息产品市场需求的增长,尤其通过通信、;关键字:超大规模集成电路发展趋势SOCIP复用技;1引言;集成电路是采用半导体制作工艺,在一块较小的单晶硅;2超大规模集成电路发展的概述;集成电路之所以获得如此迅速的发展,与数据处理系统;1.改进性能;在计算机中采用高密度的半导体集成电路是减少信号传;2.降低成本;用Lsl替换 超大规模集成电路的设计发展趋势 摘要:随着信息产品市场需求的增长,尤其通过通信、计算机与互联网、电子商务、数字视听等电子产品的需求增长,世界集成电路市场在其带动下高速增长。本文主要从半导体电子学与计算技术工程方面进行进行的诸多研究成果以及国际集成电路的发展现状和发展趋势反映其在国际上的重要地位。 关键字:超大规模集成电路发展趋势 SOC IP复用技术 1 引言 集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作许多晶体管及电阻器、电容器等元器件,并按照多层布线或隧道布线的方法将元器件组合成完整的电子电路,通常用IC(Integrated Circuit)表示。近廿多年来,半导体电子学的发展速度是十分惊人的。从分离元件发展为集成电路,从小规模集成电路发展为现代的超大规模集成电路。集成电路的性能差不多提高了3个数量级,而其成本却下降了同样的数量级。 2 超大规模集成电路发展的概述 集成电路之所以获得如此迅速的发展,与数据处理系统日益增长的各种要求是分不开的,也是半导体电子学与计算技术工程方面进行了许多研究工作的结果。这些工作可以概括为:(l)改进性能一尽可能减少信号处理的传递时间。(2)降低成本一从设计、制造、组装、冷却等各方而降低成本。(3)提高可靠性一减少失效率,增加检测与诊断的手段。(4)缩短研制/生产周期一加快从确定研制产品到产品可用之间的时间,使产品保持领先地位。(5)结构上的改进一半导体存储器的进展,推动了计算机体系的发展。 1.改进性能 在计算机中采用高密度的半导体集成电路是减少信号传递时间,提高机器性能的重要环节。因为在普通采用小规模集成电路(551)或中规模集成电路(MSI)的硬件结构中,信号传输与负载引起的延迟,与插件上的门的有效组装密度的平方根成正比,如图(1.1.1)。也就是说,组装延迟与每个门所需的有效面积的平方根成正比。因此将组装延迟减少一半的话,必须提高组装密度4倍。从 ssl/Msl发展为LSI/VLsl标志着芯片上元件的集成度得到了很大的提高。目

集成电路技术十年发展报告【精编版】

集成电路技术十年发展报告【精编版】

集成电路技术十年发展2012-11-27 17:06:17

清华大学教授、微电子学研究所所长魏少军 一、总体情况 集成电路产业是关系国民经济和社会发展全局的基础性、先导性和战略性产业,是电子信息产业的核心,是关系到国家经济社会安全、国防建设极其重要的基础产业。集成电路产业的竞争力已经成为衡量国家间经济和信息产业可持续发展水平的重要标志,是世界各先进技术国抢占经济科技制高点、提升综合国力的重要领域。 新世纪以来,我国的集成电路科技与产业在国务院国发2000(18号)文件和各级地方政府的持续支持下,获得了长足进步,取得了一系列重要成果: (一)集成电路产业链格局日渐完善 中国集成电路产业结构逐步由小而全的综合制造模式逐步走向设计、制造、封装测试三业并举,各自相对独立发展的格局。目前,中国集成电路产业已经形成了集成电路设计、芯片制造、封装测试及支撑配套业共同发展的较为完善的产业链格局。 (二)集成电路设计产业群聚效应日益凸现 以上海为中心的长江三角洲地区、以北京为中心的环渤海地区以及以深圳为中心的珠江三角洲地区已经成为国内集成电路产业集中分布的区域。全国集成电路设计、制造和封装产业90%以上的销售收入集中于以上三个地区。其中,包括上海、江苏和浙江的长江三角洲地区是国内最主要的集成电路制造基地,在国内集成电路产业中占有重要地位 (三)集成电路设计技术水平显著提高

国内集成电路设计企业的技术开发实力也有显著的提高,已经取得多项掌握核心技术的研发成果。2000年以来,“申威”高性能CPU、“龙芯”和“众志”桌面计算机用CPU、苏州国芯C*Core和杭州中天CK-Core嵌入式CPUIP核、智能卡集成电路芯片、第二代居民身份证专用芯片、自主高清电视(HDTV)标准和自主音视频标准AVS芯片、华为网络通讯交换装备核心系统芯片、大唐电信COMIPTM和展讯移动通信终端SoC、超大规模集成电路制造工艺、智能卡芯片专用工艺及高压特色工艺等技术和产品都取得了重要成果,大部分成果取得了产品化和产业化的重大进展,并获得国家科技进步奖励。 (四)人才培养和引进开始显现成果 集成电路是知识密集型的高技术产业,其持续、快速、健康的发展需要大量高水平的人才。但是,人才匮乏,人员流失严重却一直是困扰我国集成电路科技和产业发展的主要问题之一。为扭转这一局面,加大集成电路专业人才的培养力度,2003年国务院科教领导小组批准实施国家科技重大专项——集成电路与软件重大专项,并实施了“国家集成电路人才培养基地”计划。随后教育部、科技部批准建设国家集成电路人才培养基地。 二、集成电路设计 集成电路设计业是包括中国在内的全球整个集成电路产业中最为活跃的部分。集成电路设计企业在新兴产品的开发上扮演着关键作用。在中央处理器(CPU)、数字信号处理器(DSP)、半导体存储器、可编程逻辑阵列(FPGA)、专用集成电路(ASIC)和系统芯片(SoC)等主流产品领域,都可以发现集成电路设计企业的身影。在过去的十年间,我国集成电路设计业在

集成电路产业现状及发展趋势

集成电路产业现状及发展趋势 付靖国家无线电监测中心监测中心 关键词:集成电路集成电路产业发展与现状 摘要:1958年美国德克萨斯仪器公司发明全球第一块集成电路后,随着硅平面技术的发展,20世纪60年代先后发明双极型和MOS型两种重要电路,创造了一个前所未有的具有极强渗透力和旺盛生命力的新兴产业——集成电路产业。 一、什么是集成电路产业 1、集成电路 集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作许多晶体管及电阻器、电容器等元器件,并按照多层布线或隧道布线的方法将元器件组合成完整的电子电路,通常用“IC”(Integrated Circuit)。 与集成电路相关的几个概念: 晶圆:多指单晶硅圆片,由普通硅沙拉制提炼而成,是最常用的半导体材料,按其直径分为4英寸、5英寸、6英寸、8英寸等规格,近来发展出12英寸甚至更大规格。晶圆越大,同一圆片上可生产的IC就多,可降低成本,但要求材料技术和生产技术更高。 光刻:IC生产的主要工艺手段,指用光技术在晶圆上刻蚀电

路。 前、后工序:IC制造过程中,晶圆光刻的工艺(即所谓流片),被称为前工序,这是IC制造的最要害技术;晶圆流片后,其切割、封装等工序被称为后工序。 线宽:4微米/1微米/0.6微米/0.35微米/90纳米等,是指IC 生产工艺可达到的最小导线宽度,是IC工艺先进水平的主要指标。线宽越小,集成度就高,在同一面积上就集成更多电路单元。 封装:指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接。 2、集成电路产品分类 集成电路产品一般是以内含晶体管等电子组件的数量即集成度来分类,即分成:①小型集成电路(SSI),晶体管数10~100;②中型集成电路(MSI),晶体管数100~1000;③大规模集成电路(LSI),晶体管数1000~10,0000;④超大规模集成电路(VLSI),晶体管数10,0000以上。 3、集成电路产业链 一条完整的集成电路产业链除了包括设计、芯片制造和封装测试三个分支产业外,还包括集成电路设备制造、关键材料生产等相关支撑产业。如果按照集成电路产业链上下游产业划分,可简单的划分为集成电路设计业和制造业,其中制造业又衍生出代工业。目前美国仍是集成电路产品设计和

集成电路设计的发展现状及趋势

集成电路设计的发展现状及趋势 摘要:集成电路设计展现状及趋势是全世界微电子技术发展的重中之重,同时也是我国面临的有利机会和严峻挑战。只有认清了现状和找对了趋势,我国的集成电路发展才会越来越强。下面将简要介绍SoC 设计技术、低功耗设计技术、软硬件协同设计技术,以及集成电路设计技术优势、发展现状和趋势。 关键词:集成电路设计、SoC设计、发展现状、趋势 一、引言 集成电路设计是集成电路研制中的一个重要环节。集成电路的发展经历了一个比较漫长的过程,下面将以时间为顺序,简述一下集成电路的发展过程。1906年,人类历史上第一个电子管诞生;1912年前后,电子管的制作日趋成熟引发了人类无线电技术的进一步发展;1918年前后,人类逐步发现了半导体材料;1920年,又继续发现了半导体材料所具有的光敏特性;1932年前后,科学家运用量子学说建立了能带理论研究半导体现象的规律;1956年,硅台面晶体管在社会上问世;1960年12月,人类第一块硅集成电路制造成功,引起了社会的轰动;1966年,美国贝尔实验室又使用了比较完善的硅外延平面工艺技术制造成了世界第一块公认的大规模集成电路。 1988年:16M DRAM问世,集成电路中1平方厘米大小的硅片上集成有3500万个晶体管,这项成果的问世标志着世界进入了超大规模集成电路阶段的更高阶段。1997年:300MHz奔腾Ⅱ问世,技术采用

了0.25μm工艺,300MHz奔腾Ⅱ的推出让计算机的发展更加如虎添翼,300MHz奔腾Ⅱ的发展速度确实让人惊叹。2009年:intel 酷睿i系列技术的全新推出,这项技术创纪录采用了世界上领先的32纳米工艺技术,并且下一代22纳米工艺正在紧张就绪的研发。随着社会竞争的不断加剧,集成电路制作工艺也在不断的日益成熟和各集成电路厂商的不断竞争和完善。在这种大环境下,集成电路将会继续发挥了它的更大功能,更好的为人类和社会服务。随着集成度技术的日益提高,集成电路设计成本和设计周期已经成为了集成电路技术,特别是超大规模集成电路产品研制成本和产品周期的主要部分。众所周知,集成电路设计社会发展的先导性产业,决定着国家信息的安全,其战略地位将越来越明显。而最新研制成果利用电子设计自动化EDA工具,将会根据集成电路的不同设计采用不同的设计方法,这样就可以在保证设计正确的情况下,更好的缩短设计周期和更高效的节省设计成本,在市场更好的提高产品的市场竞争力。下面将简要介绍SoC设计技术、低功耗设计技术、软硬件协同设计技术。 1:SoC设计技术顾名思义,就是IP技术的集成。目前SoC设计集成了多种功能,在工艺上可以被不断扩大而被广泛需要,例如模拟以及混合信号、射频、MEMS、光电、生物电以及其他非传统部件在一个芯片上的集成,SoC基本的概念以及特点目前已经被趋于一致,顾名思义的来讲,就是系统芯片将一个系统的多个部分而集中在一个芯片上,能够高效完成某种完整电子系统功能

集成电路对计算机技术的发展有什么影响

集成电路对计算机技术发展的影响 集成电路对计算机技术的发展起决定性的作用。计算机性能的提高、功耗的降低、计算方法的进步,都是集成电路发展的结果。 因为超大规模集成电路出现,才导致 计算机的体积逐渐缩小,性能得到飞跃, 随后才是网络的普及,多媒体的需求,人 工智能方面。超大规模集成电路 (VLSI) 在芯片上容纳了几十万个元件,后来的甚 大规模集成电路(ULSI)上将数量扩充到 百万级。计算机的逻辑元件和主存储器都 采用了大规模集成电路(LSI),因而可以 在硬币大小的芯片上容纳如此数量的元 件使得计算机的体积和价格不断下降。。 这使得计算机发展到了微型化、耗电极少、 可靠性很高的阶段。大规模集成电路使军事工业、空间技术、原子能技术得到发展,这些领域的蓬勃发展对计算机提出了更高的要求,有力地促进了计算机工业的空前大发展。 随着大规模集成电路技术的迅速发展,计算机除了向巨型机方向发展外,还朝着超小型机和微型机方向飞越前进。1971年末,世界上第一台微处理器和微型计算机在美国旧金山南部的硅谷应运而生,它开创了微型计算机的新时代。此后各种各样的微处理器和微型计算机如雨后春笋般地研制出来,潮水般地涌向市场,成为当时首屈一指的畅销品。这种势头直至今天仍然方兴未艾。特别是IBM-PC系列机诞生以后,几乎一统世 界微型机市场,各种各样的兼容机也 相继问世。第四代计算机的另一个重 要分支是以大规模、超大规模集成电 路为基础发展起来的微处理器和微型 计算机。 20世纪70年代以后,计算机用集 成电路的集成度迅速从中小规模发展 到大规模、超大规模的水平,微处理 器和微型计算机应运而生,各类计算 机的性能迅速提高。随着字长4位、8 位、16位、32位和64位的微型计算 机相继问世和广泛应用,对小型计算机、通用计算机和专用计算机的需求量也相应增长了。 总而言之,集成电路是计算机技术发展的基石、助推器,正是在硬件上的改进使得计算机技术发展的越来越好。

集成电路技术十年发展

集成电路技术十年发展 2012-11-27 17:06:17 清华大学教授、微电子学研究所所长魏少军 一、总体情况 集成电路产业是关系国民经济和社会发展全局的基础性、先导性和战略性产业,是电子信息产业的核心,是关系到国家经济社会安全、国防建设极其重要的基础产业。 集成电路产业的竞争力已经成为衡量国家间经济和信息产业可持续发展水平的重要标志,是世界各先进技术国抢占经济科技制高点、提升综合国力的重要领域。 新世纪以来,我国的集成电路科技与产业在国务院国发2000(18号)文件和各级地方政府的持续支持下,获得了长足进步,取得了一系列重要成果: (一)集成电路产业链格局日渐完善 中国集成电路产业结构逐步由小而全的综合制造模式逐步走向设计、制造、封装测试三业并举,各自相对独立发展的格局。目前,中国集成电路产业已经形成了集 成电路设计、芯片制造、封装测试及支撑配套业共同发展的较为完善的产业链格局。 (二)集成电路设计产业群聚效应日益凸现 以上海为中心的长江三角洲地区、以北京为中心的环渤海地区以及以深圳为中 心的珠江三角洲地区已经成为国内集成电路产业集中分布的区域。全国集成电路设计、 制造和封装产业90%以上的销售收入集中于以上三个地区。其中,包括上海、江苏和浙江的长江三角洲地区是国内最主要的集成电路制造基地,在国内集成电路产业中占有重要 地位 (三)集成电路设计技术水平显着提高

国内集成电路设计企业的技术开发实力也有显着的提高,已经取得多项掌握核心技术的研发成果。2000年以来,“申威”高性能CPU、“龙芯”和“众志”桌面计算机用CPU、苏州国芯C*Core和杭州中天CK-Core嵌入式CPUIP核、智能卡集成电路芯片、第二代居民身份证专用芯片、自主高清电视(HDTV)标准和自主音视频标准AVS芯片、华为网络通讯交换装备核心系统芯片、大唐电信COMIPTM和展讯移动通信终端SoC、超大规模集成电路制造工艺、智能卡芯片专用工艺及高压特色工艺等技术和产品都取得了重要成果,大部分成果取得了产品化和产业化的重大进展,并获得国家科技进步奖励。 (四)人才培养和引进开始显现成果 集成电路是知识密集型的高技术产业,其持续、快速、健康的发展需要大量高水平的人才。但是,人才匮乏,人员流失严重却一直是困扰我国集成电路科技和产业发展的主要问题之一。为扭转这一局面,加大集成电路专业人才的培养力度,2003年国务院科教领导小组批准实施国家科技重大专项——集成电路与软件重大专项,并实施了“国家集成电路人才培养基地”计划。随后教育部、科技部批准建设国家集成电路人才培养基地。 二、集成电路设计 集成电路设计业是包括中国在内的全球整个集成电路产业中最为活跃的部分。集成电路设计企业在新兴产品的开发上扮演着关键作用。在中央处理器(CPU)、数字信号处理器(DSP)、半导体存储器、可编程逻辑阵列(FPGA)、专用集成电路(ASIC)和系统芯片(SoC)等主流产品领域,都可以发现集成电路设计企业的身影。在过去的十年间,我国集成电路设计业在CPU、智能卡专用芯片、3G通信芯片、数字电视芯片、第二代居民身份证芯片等领域取得了令人瞩目的成果。 (一)自主知识产权CPU CPU被誉为电子信息产品的心脏,是集成电路产品的制高点。十年间,我国在超级计算机用高性能CPU、桌面计算机/服务器CPU和嵌入式CPU领域取得了一系列重要突破,部分产品达到国际领先水平,极大地提高了我国在CPU领域的科技水平和支撑电子信息产业发展的能力。

集成电路基础知识

集成电路技术发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已日益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。 集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA 工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor 等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一

集成电路发展现状及发展趋势

经过30年的发展,我国已初步形成了设计、芯片制造和封测 三业并举、较为协调的发展格局,产业链基本形成。2001年我国 设计业、芯片制造业、封测业的销售额分别为11亿元、27.2亿元、161.1亿元,分别占全年总销售额的5.6%、13.6%、80.8%,产业结

构不尽合理。最近5年来,在产业规模不断扩大的同时,IC产业 结构逐步趋于合理,设计业和芯片制造业在产业中的比重显著提高。到2007年我国IC设计业、芯片制造业、封测业的销售额分别为225.5亿元、396.9亿元、627.7亿元,分别占全年总销售额的18.0%、31.7%、50.2%。 半导体设备材料的研发和生产能力不断增强。在设备方面,100纳米等离子刻蚀机和大角度等离子注入机等设备研发成功,并投入生产线使用。随着国产太阳能电池制造设备的大量应用,近几年国产半导体设备销售额大幅增长。在材料方面,已研发出8英寸和12英寸硅单晶,硅晶圆和光刻胶的国内生产和供应能力不断增强。 技术创新能力不断提高,与国外先进水平差距不断缩小。从改革开放之初的3英寸生产线,发展到目前的12英寸生产线,IC制造工艺向深亚微米挺进,研发了不少工艺模块,先进加工工艺已达到 80nm。封装测试水平从低端迈向中高端,在S OP、PGA、BGA、FC和CSP以及SiP等先进封装形式的开发和生产方面取得了显著成绩。IC设计水平大大提升,设计能力小于等于0.5微米企业比例已超过60%,其中设计能力在0.18微米以下企业占相当比例,部分企业设计水平已经达到90nm的先进水平。设计能力在百万门规模以上的国内IC设计企业比例已上升到20%以上,最大设计规模已经超过5000万门级。

相关文档
最新文档