均衡器压限器电子分频器反馈抑制器延时器激励器数字效果器功放音箱正确连接方法_技术_

均衡器压限器电子分频器反馈抑制器延时器激励器数字效果器功放音箱正确连接方法_技术_
均衡器压限器电子分频器反馈抑制器延时器激励器数字效果器功放音箱正确连接方法_技术_

均衡器、压限器、电子分频器、反馈抑制器、延时器、激励器、数字效果器、功放、音箱、正确连接方法技术_...

、均衡器、压限器的连接:

1、均衡器:众所周知均衡器的主要功能就是调整音色、

调整声场和抑制声反馈了,因此在现在音响系统中均衡器几乎是不

可缺少的设备,目前均衡的输入和输出部分都是采用

平衡插口,连接时最好可采用XLR 接头的平衡线路,当然也可以

采用TRS 接头的平衡线路。

2、压限器:压限器是处理音频信号的一种设备,可以

将音频电信号的动态进行压缩或进行限幅。实际上我们现在

在使用压限器时的主要功能就是让它压缩高电平信号,这样

可以保护其下级的音响设备。可以说在一套完整的音响设备中,除

了调音台和均衡器外,压限器算得上是最重要的周边设备了,因此

正常情况下压限器应该放在功放前面,其它周边设备的后面。连接

方面可以采用XLR 接头的平衡线路或

TRS 接头的平衡线路。

、电子分频器的连接:

电子分频器是指能将20Hz--20000Hz 频段的音频信号

分成合适的、不同的几个频率段,然后分别送给相应功放,用来推

动相应音箱的一种音响周边设备。目前的电子分频器

输入部分还较简单,但输出部分就比较复杂:有高音输出、中音输出、低音输出等。在连接时低音信号的输出和中高信号的输出一定

不要搞混了,否则高音信号给了低音音箱,低音信号给了高音音

箱,这样一来音响系统中就可能没有声音出来了,因为频率不对,搞不好还会烧坏音箱等设备!电子分频器在连接发面可以采用XLR 接头的平衡线路或TRS

接头的平衡线路。

、反馈抑制器的连接:

在设备连接方面也是采用XLR 接头的平衡线路或TRS

接头的平衡线路,连接方法大致可分为以下3 种:

1、像均衡器等周边设备那样顺序串接在音响系统中,

这样连接的优点是:连接和操作十分简单,适用于较简单的系统中。但缺点是:此连接法在抑制话筒声反馈时,也会影响到通过反馈抑制器的其它音源信号。

2、利用调音台通道里的INS 插入/插出接口,将反馈抑

制器单独串接在相应的通道里,这样连接的优点是:可以最大限度对反馈抑制器进行调整,不必顾及会影响其它音源。

缺点是:利用这种连接法,一台反馈抑制器最多只能控制调音台的2 个通道,设备利用率太低。

3、利用调音台编组里的INS 插入/插出接口,将反馈抑

制器串接在相应的编组通道里,其优点是:可对编进此编组内的话筒进行集中处理,而且不会影响到其它音源。总起来

说由于这种方法可以充分的利用反馈抑制器,因此也是目前采用最多的连接方法。

四、延时器的连接:延时器可以把音频信号进行延时处理,一

般用在一些声

场空间较大、需多组音箱分散式扩声的系统中。因为在这样的系统中声音由不同位置的音箱发出后,到达听者的耳朵时是有先后之分

的,所以为了尽量保证声像的一致性、增加声音的可读性、避免声音的浑浊感、镶边声和拖尾声,我们有必要使用延时器进行相关处理。关于延时对象的确定,就是对谁进行延时?其实很简单,只要搞清楚以下三点就好了:

1、第一就是以人为本,再多、再好的音响设备也是为

人服务的,因此在一个声场内,我们首先要以观众为基准。

2、第二就是以主发声源为准,通常也就是主音箱和主

舞台所在的位置。理想的情况下应该是主发声源所发出的声音直接传到观众耳朵里是最理想的境界。但由于音箱的能量、射程、指向性、声场声压的均匀度等原因,因此现在室内扩声系统中大部分还要增加一些离观众距离较近的辅助补声音箱。

3、第三点主要就是指这些离观众距离较近的辅助补声

音箱了,也就是可能需要进行延时处理的音箱了。

绝大多数情况下都是:确定了第一因素人,确定了第

因素主发声源,然后对第三因素的辅助补声音箱进行延时处 理。音速每秒大概 340 米,因此延时时间就根据第三因素的 辅助音箱与第一因素主音箱之间的距离进行计算。知道了延 迟对象才可以正确的连接延时器,连接上基本上是像均衡器 等周边设备那样串接在音响系统里需要延时的信号通道中, 采用 XLR 接头的平衡线路或 TRS 接头的平衡线路进行连接。

五、激励器的连接: 音频激励器实际上是一种谐波发生器,利

用人的心理声

学特性,对声音信号进行修饰和美化的音频处理设备。激励 器一般有以下三种连接使用方法:

1、可以像均衡器等周边设备那样串接在音响系统里需

声,如果要对这个编组的人声进行激励处理,可以把激励器 利用插入 /插出接口连接到调音台的 1-2 编组通道中。

2、如果要进行综合处理,那在调音台主音量输出通道

或其它编组等输出通道中串接一台激励器就可以了。

3、激励器也可以像效果器那样从 AUX 发送出来信 然后再返回到调音台,这样可以调整哪一些通道需要进行激 励处理、需要处理的力度是多大等,这样其实更灵活一些。

激励器在信号连接方面, 也是采用 XLR 接头的平衡线路

或 TRS 接头的平衡线路进行连接。

六、数字效果器的连接:

效果器是处理、制造各种声场效果的音响周边器材,

般用于对人声进行处理,在大多数音响系统中,如果人声没 有经过效果器处理就会变得没有丰满度和亮度,也就是:干 瘪没有水分。现在最新的效果器都使用了数字处理芯片,所 以我们也称其为:数要激励的信号通道中,比如在一个调音台里,

1-2 编组是人

号,

字效果器。效果器比较少像均衡器等周边设备那样串接在音响系统里,一般情况下都是从调音台的

AUX 发送信号给效果器的输入接口,然后再从效果器的输出接口返回信号到调音台里。在信号连接方面,多数是采用

TRS 接头的平衡线路进行连接,少数专业效果器也有的采用

XLR 接头的平衡线路进行连接。

七、功放与音箱的连接:这个大家应该都很熟悉了,只是要格

外注意:在信号方面

功放的信号线要尽量用平衡线,这样可以尽量减少噪音。好多音响师喜欢把一路或两路信号线供给多台功放机用,但要是超过四台功放时,还是建议用信号放大器分出数量足够多、没有衰减的信号线供给每一台功放单独使用,这样可以减少

系统噪音、减少隐患、提高信噪比。在功率传输方面,尽量选

用粗、短一些的音箱线以及采用合理的布线来缩短音箱线的距离,再一个一定注意正极和负极,避免短路。

设备连接需要注意的问题:

1、注意电源:音响设备要有专用的电源,要和灯光的

电源分离,而且灯光喜欢低一点的电压,但音响则要标准电 压。有了专用电源后,还要有稳定可靠的电源插座,可以尽 量使用“电源时序器”,虽然成本增加但提高了稳定性和易用 性。总之:正确、稳妥的连接好所有音响设备的电源是至关

重要的。 还有一点要注意: 有些进口设备电源部分会有 110V 和 220V 的选择开关,在我国,一定要确认选择在 置时

才可以连接通电。 2、注意设备的接地:正确的给所有的音响设备连接好

地线是非常重要的,良好的接地可以减少设备信号传输的干 扰,提高设备的稳定性。需要注意的是接地线要按照避雷线 的接地标准来做,就是埋在地下部分的导体要防锈、接触要 好、埋地要深,千万不能和三相电源线配置的接地线共用, 那样不但不会减少音响系统中的噪音,还容易损坏设备。

3、注意选择合适的连接信号线:一台音响设备,我们

能用 XLR 卡侬平衡线来连接的就不要用 TRS 平衡线连接;

在没有办法时才可以采用 TS 单声道非平衡线连接设备。

4、注意信号的反相及短路:信号线短路经常会造成无

声故障,检查起来却非常麻烦,除非一条条信号线拆下来用 万用表检测才行,所以焊接线时要特别小心。

5、注意信号线的长度:在连接设备时,要尽量采用较

220V 位

能用 TRS 平衡线连接的就不要用

TS 单声道非平衡线连; 实

短的信号线, 来节约成本,二来减少线阻和干扰。正常情

况下,采用平衡传输方式的信号线最长可以到300 米左右,

而非平衡线则不能做远距离传输。

6、注意设备的电平:如果设备后面板上有 4 和-10 或-20 电平开关转换时,正常情况下我们要放在4 位置,这样才是标准电平。

7 、注意直通:很多设备都有一个直通(Bypass )键,

直通时该设备一般就不起作用了,所以我们要注意检查这个按键,要不如果我们让压限器直通不起作用了,那压限器后面的设备就失去了保护的作用。

8、小心误操作:由于设备多、按键多,所以往往容易

发生误操作,比如:有一些电子分频器上有一个“X10”的按钮,

大家注意不要轻易按下它。例如我们的分频点调整在200Hz

的话,按下此按钮200 X 1(就变成2000Hz 了,因此一定要避免误操作。

有了好的设备,再加上正确、合理的把它们连接在一起,

那么这套音响系统的效果就一定会很完美!

电子分频器要注意的几点问题及故障排除

电子分频器要注意的几点问题及故障排除网络摘编 电子分频器: 电子分频器的主要功能当然就是给不同的音箱分配好不同的工作频率了,当然还有保护音箱的功能,下面说下调整电子分频器时需要注意的几点问题及故障排除: 1、分频点: 在一个2分频的音响系统中,一般情况下分频点放在130Hz附近比较合适,但很多情况下,对分频点的调整实际上不是取决于低音音箱,而是要看中高音或全频音箱。因为低音音箱在300Hz以下工作都可以,但有些中高音和全频音箱由于扬声器口径太小,动态范围不够大,必须在200Hz以上工作才能保证它们的安全,如果此时分频点分在130Hz附近,那么这些中高音音箱工作起来就很危险了,因此在效果和安全当中还是要找一个平衡点。我觉得双15寸的全频主音箱最好不要经过电子分频器;单15寸的主音箱可灵活运用;而单12寸以下的主音箱最好要通过电子分频器,至少在180Hz以上工作才安全。 2、音量控制: 不管是输入电平还是输出电平,调整的时候都要有一个度,不要开的太大。如果是电子分频器上的各个音量旋钮都开到很大了,系统的声压还不够,那就要调整电子分频器前面设备的信号电平或者调整电子分频器下面功放的电平和音量开关了。 3、×10按钮: 有一些电子分频器上有一个: ×10的按钮,大家注意不要轻易按下它。 例如我们的分频点调整在200Hz的话,按下此按钮200×10就变成2000Hz 了,因此除非是需要,否则一般不要按下此按钮。

4、低音模式: 有些电子分频器后面板有一个低音模式的选择,它可以把2路立体声信号混合成1路单声道信号,这样可以减少低音音箱之间的声干涉。大家可以适当利用下。 当然要是低音分频点分的较高,那么低音音箱发出的声音就会有一定的指向性了,此时还是要在2路立体声信号的状态下工作较好。 5、立体声工作模式和单声道工作模式: 目前我们使用的大多数电子分频器都是2分频的居多,考虑到灵活性和多功能性,这些电子分频器的后面板一般会有一个立体声和单声道的工作模式转换开关,如果把此开关放在单声道工作模式下,那么此时这台电子分频器就从一台双通道2分频的电子分频器变成了一台单通道3分频的电子分频器了。因此除非必要,否则不要轻易转换此工作开关,要不然电子分频器后面信号输出口所输出的频率信号就会大不一样了!轻者恶化了音质,重者还会损坏设备! 6、系统中低音信号的输出和中高音信号的输出一定不要搞混了,否则高音信号给了低音音箱,低音信号给了高音音箱,那样南辕北辙的做法音响系统中就真的没有声音出来了,因为频率不对呀!搞不好还会烧坏音箱呢! 电子分频器故障例子: 1、05年朋友在长沙做了一个大型的酒吧,音响系统中共使用了单12寸全频主音箱16只,双18寸重低音音箱22只,还有其它20多只辅助音箱。但开业几天后发现主音箱的单12寸的喇叭坏了2只,开始那里的技术人员以为是正常损坏,更换了2只新的喇叭了事,但后来一个星期内陆陆续续的又坏了6只12寸的全频喇叭,这样就很不正常了,而且除了12寸主音箱发生故障外别的音箱都没有问题。后来我去帮忙检查了下系统,发现那里的电子分频器分的频率太低,我把分频器的分频点从130Hz调高到了230Hz,这样问题就解决了,而且低音效果也比以前好了很多。其实道理很简单: 这个系统中由于要兼顾人声演出,所以采用了对人声表现较好的12寸全频主音箱,开始时电子分频器的分频点在130Hz,这是什么概念呢?就是说系统中

音箱中分频器的选择

音箱中分频器的选择 分频对音箱的重播性能至关重要,若没有最佳参数的分频网络,即使采用最好的扬声单元,也不会有好的效果。 扬声器系统中的分频,多为功率分频网络,对这种分频网络产生影响的有三大要素:1.扬声器音圈阻抗;2.分界频率( cross-over frequency,即分频点);3.分频斜率。常见的分频网络有二分频和三分频两种。

二分频分频网络由高通滤波器和低通滤波器组成,三分频分频网络则增加一个带通滤波器。分界频率对二分频取1~3kHz,三分频取400~600Hz及3~5KHz为宜。分界频率的选择应根据场声器单元的频率响应特性进行,若选择不当,会影响声功率的分配,造成总声压频率特性不平坦。分频点在1kHz以下时,要对相关扬声单元输出声波的相位关系特别注意,还要尽量避开分频点设在3~4kHz间。分频点不好的分频网络,即使将一般元件换为顶级元件,也是没有改善作用的。 分界频率的选取应在低频单元频响的高端与高频单元频响的低端相互重叠区内,并符合高频单元下限频率高一个倍频程以上及低频单元上限频率低一个倍频程以下要求。由于指向性关系,对二分频网络要求中音区的效率要比低音高1~3dB,故分界频率以选得稍低些较有利。另外,由于分频频率的频段衔接处会出现频率叠加,故选择低通波器和高通滤波的分频点时不能完全相同,以适当隔开使曲线在-6dB处相交为宜。 分频网络采用单元件的一阶分频网络衰减斜率为毎倍频程6dB,两个元件组成的两阶分颏网络斜率为12dB/oct。分频网络的分频斜率越陡峭,效果越好,但结构越复杂,由网络产生的相位转移及损耗也越大。一阶分频络可得很好的相位一致性和清晰的声像,适于中高频用,低频可用高阶分频网络,以保证低频的清晰度和控制力。

了解音箱中的分频器

了解音箱中的分频器 在扬声器中,有一个很不起眼的部件,说它不起眼,是因为在扬声器的表面上根本找不到它,一般人除了想深入了解扬声器的外,也几乎没有关注它的时候。而扬声器离开了它,又根本无法工作,它就是分频器。 在播放音乐时,由于扬声器单元自身的能力与结构限制,只用一个扬声器难以覆盖全部频段,而如果把全频段讯号不加分配地直接送入高、中、低音单元中去,在单元频响范围之外的那部分“多余讯号”会对正常频段内的讯号还原产生不利影响,甚至可能使高音、中音单元损坏。因为这个原因,设计师们必须将音讯频段划分为几段,不同频段用不同扬声器进行放声。这就是分频器的由来与作用。 分频器是音箱中的“大脑”,对音质的好坏至关重要。功放输出的音乐讯号必须经过分频器中的滤波组件处理,让各单元特定频率的讯号通过。要科学、合理、严谨地设计好音箱之分频器,才能有效地修饰喇叭单元的不同特性,优化组合,使得各单元扬长避短,淋漓尽致地发挥出各自应有的潜能,使各频段的频响变得平滑、声像相位准确,才能使高、中、低音播放出来的音乐层次分明、合拍、明朗、舒适、宽广、自然的音质效果。

从工作原理看,分频器就是一个由电容器和电感线圈构成的滤波网。高音信道只让高频讯号通过而阻止低频讯号;低音通道正好相反,只让低音通过而阻止高频讯号;中音通道则是一个带通滤波器,除了一低一高两个分频点之间的频率可以通过,高频成分和低频成分都将被阻止。 被动分频器的组件组成:L/C/R,即L电感、C电容、R电阻,依照各组件对频率分割的特性灵活运用在分频网络上。 L电感:其特性是阻挡较高频率,只让较低的频率通过,也就称为“低通滤波器(Low Pass Filter)”。通过较低频率的多少是由该“L电感”之电感量来决定,其感抗单位为“μH、mH”代表。电感材质常见有:空心电感、铁淦氧电感、硅钢片电感等。铁淦氧电感、硅钢片电感通常只在需要高电感值而无法由空心电感来获得低直流电阻的场合下才使用,由于铁心电感具有磁饱和而在大电流的场合造成失真的天性,所以铁心电感是一种妥协下的产物。 C电容:其特性与电感刚好相反,也就是阻挡低频率通过,让较高的频率通过,称为“高通

调音经验4、专业电子分频器的使用技巧

4专业电子分频器的使用技巧 在一套音响系统中提到分频器一般来说是指能将:20Hz--20000Hz频段的音频信号分成合适的、不同的几个频率段,然后分别送给相应功放,用来推动相应音箱的一种音响周边设备。由于它是一种用来处理、分配音频频率信号的电子设备,所以我们通常也叫它:电子分频器。电子分频器的详细功能和工作原理我就不多说了,这里我只是侧重于对一些大家比较重视或经常感到困惑的方面做一些通俗易懂的介绍,希望能对大家有所帮助! 一、我们为什么要使用电子分频器 我们音响师研究电声和现在电声设备与技术的不断发展都是为了一个目的:就是要尽量忠实的再现各种音源,当然要把自然界里千奇百怪、各种各样的声音完全利用现在的电声技术再现是不太现实几乎做不到的。大家知道,声音的频率范围是在20Hz—20000Hz之间,现在大多数前级音频处理设备的频率范围是可以达到这样宽度的,但目前的扬声器却成了一个瓶颈部分,我们奢想使用一种或简单几只扬声器就能放送出接近20Hz--20000Hz这样宽频率的声音是很难做到的,因为现在单只喇叭的有效工作频率范围都不是很宽。鉴于此电声工程师们就设计出了在不同频率段内工作的音箱,如: 1、重低音音箱:让它在大约30-200Hz的频率范围内工作。 2、低中音音箱:让它在大约200-2000Hz的频率范围内工作。 3、高音音箱:让它在大约2000-20000Hz的频率范围内工作。 如此以来我们就可以利用在不同频率段工作的不同种类的音箱配置一套能最大限度接近声音真实频率(20Hz--20000Hz)的音响系统了。当然不同音箱设备的构成和参数是不同的,我上面说的是以一个三分频的系统为例,实际使用上还有其它诸如:2分频或4分频等系统,而且不同音响系统中由于采用的音箱会有区别,因此这些音箱的工作频率也不可能是固定相同的,但大体的原理和思路是一样的。 那么有一个问题就是: 我们如何给这些在不同频率段工作的、不同种类的音箱灵活分配音频频率呢?为了解决这个问题,电子分频器就应运而生了,它可以根据不同音箱工作频率的需要提供合适的频率段,例如: 1、我们可以用电子分频器将高频信号通过功放送到高音扬声器中. 2、可以用电子分频器将中频信号通过功放送到中音扬声器中。 3、可以用电子分频器将低频信号通过功放送到低音扬声器中。 这样高、中、低频信号独立输出、互不干涉,因此可以尽可能发挥不同扬声器的工作频段优势,使音响系统中各频段声音重放显得更加均衡一些,使声音更具层次感,使音色更加完美。

分频器

L1与C1组成的低通滤波器将200-54的分频点选在1.5kHz,这里将它的分频点恰当进步,主要是单元特性好,更重要是音频的功率八成都会集在中低频,恰当进步低频单元的截止频率,能够充分发扬单元专长,给出的声响将愈加丰满有力度。若是分频点过低,不光丧失了单元优势,反而还会加剧中频单元的担负,导致振幅过载、失真增大等弊端。 尽管中频单元的有用频响宽达800Hz~10kHz,L2、L3与C2、C 3组成的带通滤波器仅取其 1.5~6kHz的一段频带,这也是它的黄金频段。L4、C4构成的高通滤波器将YDQG5-14的分频点定为6kHz,本单元的下限截止频率也获得较高,将愈加轻松自如地在高频段发扬它的专长。因为合理的挑选分频点,3个单元各自都作业在声功率最高的频带,故体系的归纳灵敏度也要比各单元的均匀特性灵敏度高出1~2dB。 分频器元件少,电路也很简单,关于分频电容器最起码的要求是高频特性好,耗费及容量差错小。当前的聚丙烯CBB无极性电容器的耗费角正切值仅为0.08%~0.1%,高频功能优良,体积小、无感、价廉,完全能担任Hi-Fi体系分频电路的需求。本音箱选用耐压为63V的CBB21、CBB22电容器,9.4 uF的用2只4.7 uF的并联即可。高耐压电容在分频器上无大含义,价钱却成倍上升。不要盲目崇拜那些进口货洋电容,这类电容并不一定能显着改进音质,价钱却高得惊人,有时1只10 uF的电容往往超越一只中低频扬声器单元的价格。 分频线圈L的内阻R0巨细直接关系到传输功率与音质,在胆机中分频器与输出变压器二次侧线圈、扬声器音圈及传输馈线呈串联回

(一)、分频器作用和特点 1、基本分频任务:由于现在音箱的种类很多,系统中要采用什么功病能的、几分频的电子分频器还是要灵活配置的,现在通常用的电子频器有2分频、3分频、4分频等区分,超过4分频就显得太复杂和无实际意义了。当然现在的电声技术日新月异,目前还有一些分频器在分频的同时还可以对音频信号进行一些其它方面的处理,但不管什么类型电子分频器的主要功能和任务当然还是分频 2、保护音箱设备:我们知道不同扬声器的工作频率是不一样的,一般来说口径越大的扬声器其低频特性也越好,频率下潜也越低。就好像在相同情况下,18寸扬声器的低音效果一般会比15寸扬声器的低音效果好些;相反中音部分就要采用较小口径的扬声器了,因为通常情况下现在的纸盆振动式扬声器口径越小发出的声音频率也就越高;以此类推高音部分的振动膜片也应该很小才能发出很高频率的声音来。既然扬声器这么复杂,种类又如此繁多,那么如何保障它们能够安全有效的工作就显得很重要了。电子分频器可以提供不同扬声器各自需要的最佳工作频率,让各种扬声器更合理、更安全的工作。设想一下:假如系统中中高音音箱没有经过电子分频器分频,而是直接使用了全频段的音频信号,那么这些中高音音箱在低频信号的冲击下就会很容易损坏,因此,电子分频器除了分频任务外,正常的使用它更重要的功能还有:保护音箱设备。 3、增加声音的层次感:假如一个音响系统中有很多只不同种类的音箱,的确没有使用电子分频器,不同种类的音箱都使用未经分频的全频信号,那不同音箱之间就会有很多频率叠加、重复的部分,声干涉也会变得很严重,声音就会变得模糊不清,声场也会很差而且话筒还会容易产生声反馈。如果使用了电子分频器进行了合理的分频,让不同音箱处在最佳工作状态下,这样不同音箱之间发出的声音频率范围几乎不会重复了,这样就减少了声波互相干涉的现象,声音就会变得格外清晰,音色也会更好、更具有层次感了! (二)、缺点和不足 1、太多分频选择会导致思想混乱:俗话说有利就有弊,和其它专业音响的周边设备一样,电子分频器也不是十全十美的,有些时候系统中需要分频的音箱多了就会显得很复杂,因为不同的音箱就需要有不同的分频点、不同的工作频率段,对于水平一般的音响师来说,在这样的情况下使用电子分频器分频时会让他们觉得无从下手。因此细心仔细的调整是很重要的,同时我们还可以尽量少用4分频,采用2分频或3分频的方法,这样可以简单些,也会让我们的调整思路变得更加清晰些。 2、使用电子分频器后会导致声效下降:虽然使用电子分频器的优点很多,但由于它硬性的规定了不同音箱的工作频率范围,因此也使得这些音箱的效能受到了限制,没有完全发挥出来,浪费了很大一部分资源。例如:一只双15寸的全频音箱不经过电子分频器时可以发出很正常、较大的声音来,但如果经过了电子分频器分频后在200Hz以上频率工作的话,那这只音箱的丰满度和震撼力就会全没有了,因为此时音箱的低音给电子分频器切掉了。同样情况下我们利用电子分频器也切掉了大部分低音音箱的高音部分,虽然这样音色可能会好听了,但不可否认的是低音音箱也浪费掉了大量的能量。这对于音箱数量较多又注重音色的音响系统来说还无所谓,但如果一套音响系统中音箱数量不多又不注重音色只是要大声些,那此时还是不使用电子分频器现实一些。

分频器的设计

分频器的设计 一、课程设计目的 1.学会使用电路设计与仿真软件工具Hspice,熟练地用网表文件来描述模拟电路,并熟悉应用Hspice内部元件库。通过该实验,掌握Hspice的设计方法,加深对课程知识的感性认识,增强电路设计与综合分析能力。 2.分频器大多选用市售成品,但市场上出售的分频器良莠不齐,质量上乘者多在百元以上,非普通用户所能接受。价格在几十元以下的分频器质量难以保证,实际使用表现平庸。自制分频器可以较少的投入换取较大的收获。 二.内容 分频器-概述 分频器是指使输出信号频率为输入信号频率整数分之一的电子电路。在许多电子设备中如电子钟、频率合成器等,需要各种不同频率的信号协同工作,常用的方法是以稳定度高的晶体振荡器为主振源,通过变换得到所需要的各种频率成分,分频器是一种主要变换手段。早期的分频器多为正弦分频器,随着数字集成电路的发展,脉冲分频器(又称数字分频器)逐渐取代了正弦分频器,即使在输入输出信号均为正弦波时也往往采用模数转换-数字分频-数模转换的方法来实现分频。正弦分频器除在输入信噪比低和频率极高的场合已很少使用。

分频器-作用 分频器是音箱中的“大脑”,对音质的好坏至关重要。功放输出的音乐讯号必须经过分频器中的各滤波元件处理,让各单元特定频率的讯号通过。要科学、合理、严谨地设计好音箱之分频器,才能有效地修饰喇叭单元的不同特性,优化组合,使得各单元扬长避短,淋漓尽致地发挥出各自应有的潜能,使各频段的频响变得平滑、声像相位准确,才能使高、中、低音播放出来的音乐层次分明、合拍,明朗、舒适、宽广、自然的音质效果。 在一个扬声器系统里,人们把箱体、分频电路、扬声器单元称为扬声器系统的三大件,而分频电路对扬声器系统能否高质量地还原电声信号起着极其重要的作用。尤其在中、高频部分,分频电路所起到的作用就更为明显。其作用如下: 合理地分割各单元的工作频段; 合理地进行各单元功率分配; 使各单元之间具有恰当的相位关系以减少各单元在工作中出现的声干涉失真; 利用分频电路的特性以弥补单元在某频段里的声缺陷; 将各频段圆滑平顺地对接起来。 分频器-分类 1)功率分频器:位于功率放大器之后,设置在音箱内,通过LC滤波网络,将功率放大器输出的功率音频信号分为低音,中音和高音,分别送至各自扬声器。连接简单,使用方便,但消耗功率,出现音频谷

一文看懂汽车音响分频器接线方法图解

一文看懂汽车音响分频器接线方法图解 分频器原理从电路结构来看,分频器本质上是由电容器和电感线圈构成的LC 滤波网络,高音通道是高通滤波器,它只让高频信号通过而阻止低频信号;低音通道正好相反,它只让低音通过而阻止高频信号;中音通道则是一个带通滤波器,除了一低一高两个分频点之间的频率可以通过,高频成份和低频成份都将被阻止。在实际的分频器中,有时为了平衡高、低音单元之间的灵敏度差异,还要加入衰减电阻;另外,有些分频器中还加入了由电阻、电容构成的阻抗补偿网络,其目的是使音箱的阻抗曲线心理平坦一些,以便于功放驱动。 位于功率放大器之后,设置在音箱内,通过LC滤波网络,将功率放大器输出的功率音频信号分为低音,中音和高音,分别送至各自扬声器。连接简单,使用方便,但消耗功率,出现音频谷点,产生交叉失真,它的参数与扬声器阻抗有的直接关系,而扬声器的阻抗又是频率的函数,与标称值偏离较大,因此误差也较大,不利于调整。 将音频弱信号进行分频的设备,位于功率放大器前,分频后再用各自独立的功率放大器,把每一个音频频段信号给予放大,然后分别送到相应的扬声器单元。因电流较小故可用较小功率的电子有源滤波器实现,调整较容易,减少功率损耗,及扬声器单元之间的干扰。使得信号损失小,音质好。但此方式每路要用独立的功率放大器,成本高,电路结构复杂,运用于专业扩声系统。 分频器技术参数第一个,就是分频器的分频点,这个应该不用多说。 第二个,就是所谓分频器的“路”,也就是分频器可以将输入的原始信号分成几个不同频段的信号,我们通常说的二分频、三分频,就是分频器的“路”。 第三个,就是分频器的“阶”,也称“类”。 一个无源分频器,本质上就是几个高通和低通滤波电路的复合体,而这些滤波电路的数量,就是上面所说的“路”。但是在每一个滤波电路中,还有更精细的设计,换句话说,在每一个滤波电路中,都可以分别经过多次滤波,这个滤波的次数,就是分频器的“阶”。

分频扬声器系统分频器电感的精确设计

三分频扬声器系统分频器电感的精确设计 1 引言 扬声器系统的分频器分为前级分频和功率分频2类。前级分频是前级电路中由电子元件产生的分频,再由各自的功放分别驱动高﹑中﹑低音扬声器系统,如图(1a)所示,属于小信号有源分频。而功率分频则是由电感、电容、电阻元件构成的位于功放与扬声器之间的无源分频电路,如图(1b)所示。 采用功率分频的扬声器系统结构简单、成本低,而且又能获得很高的放音质量,因而在现代高保真放音系统中应用最为普遍。其性能的好坏与扬声器的各项指标以及分频电路、电感元件的性能、精度有密不可分的关系,精确计算电感参数便是成功的关键。 2 对分频器电路、元件的要求 (1)电路中电感元件直流电阻、电感值误差越小越好。而且为使频响曲线平坦最好使用空心电感。(2)电路中电容元件损耗尽可能小。最好使用音频专用金属化聚丙烯电容。 (3)使各扬声器单元分配到较平坦的信号功率,且起到保护高频扬声器的作用。 (4)各频道分频组合传输功率特性应满足图2所示特性曲线的要求(P0为最大值,P1为对应分频点f1、f2的值)。分频点处的功率与功率最大值之间幅度应满足P1(=0.3~0.5)P0的范围。 (5)整个频段内损耗平坦,基本不出现“高峰”和“深谷”。 3 分频电感电容参数值的计算

下面以三分频分频器为例说明其参数的计算,如图3所示。

1)计算分频电感L1,L2,L3,L4和分频电容C1,C2,C3,C4。 为了得到理想的频谱特性曲线,理论计算时可取:C1=C4,C3=C2,L1=L3,L4=L2,分频点频率为f1,(f2见图2),则分频点ω1=2πf0,ω2=2πf2。并设想高、中、低扬声器阻抗均相同为RL。每倍频程衰减12 dB。 2)实验修正C1,C2,C3,C4,L1,L2,L3,L4的值 为精确起见,可用实验方法稍微调整C1,C2,C3,C4,L1,L2,L3,L4的值,以满足设计曲线﹙见图2﹚的要求。即通过实验描绘频响曲线,从而得到C1,C2,C3,C4,L1,L2,L3,L4的最佳值。如果没有实验条件,这一步也可不做。求出电容电感的值后就可计算电感值了。 4 最佳结构电感的作用 4.1最佳结构电感的提出 空心分频电感(简称电感)的基本参数是电感量和直流电阻。一般来说,电感量不准会导致分频点偏离设计要求并可能影响扬声器系统的频响,大家都比较重视。然而其直流电阻不宜过大,否则会对音质产生影响。通常人们对此电阻在电路中的影响及其定量要求不甚了解,因此未引起足够重视,对此特作以下简要分析。 以图3的分频网络为例,由于低音单元的分频电感L2与负载R(L低音单元额定阻抗)相串联,因此若L2的阻抗过大,功放输出功率在其上的损耗将增大。同时,功放内阻对低音单元的阻尼作用也将大大减弱。前者影响功放的有效输出功率,后者对音质的影响却无可挽回。由于分频网络中L2的电感量最大,且随分频点的降低而增大,所以L2的直流电阻的影响相当突出。 至于高音单元的分频电感L1,因它未与负载串联,就不存在L2那样的功耗和阻尼问题。但是仍希望其阻抗尽可能小些。因为它与负载并联,起着旁路来自C1的残余低音频成分的作用。若阻值过大,就会影响高音分频网络对低音频的衰减陡度。

分频器数字音频处理器功放音响

精心整理 在一套音响系统中提到分频器一般来说是指能将:20Hz--20000Hz 频段的音频信号分成合适的、不同的几个频率段,然后分别送给相应功放,用来推动相应音箱的一种音响周边设备。由于它是一种用来处理、分配音频频率信号的电子设备,所以我们通常也叫它:电子分频器。电子分频器的详细功能和工作原理我就不多说了,这里我只是侧重于对一些大家比较重视或经常感到困惑的方面做一些通俗易懂的介绍,希望能对大家有所帮助! 一、我们为什么要使用电子分频器 我们音响师研究电声和现在电声设备与技术的不断发展都是为了一个目的:就是要尽量忠实的再123频率( 1、我们可以用电子分频器将高频信号通过功放送到高音扬声器中. 2、可以用电子分频器将中频信号通过功放送到中音扬声器中。 3、可以用电子分频器将低频信号通过功放送到低音扬声器中。 这样高、中、低频信号独立输出、互不干涉,因此可以尽可能发挥不同扬声器的工作频段优势,使音响系统中各频段声音重放显得更加均衡一些,使声音更具层次感,使音色更加完美。这也就

是我们为什么使用电子分频器的原因了。 二、电子分频器的作用和特点 通过以上的介绍大家应该对电子分频器有一个大体认识了吧,那么使用分频器还有哪些作用和特点,甚至是缺点呢?根据多年的工作经验我总结了下面几点: (一)、作用和特点 1、基本分频任务:由于现在音箱的种类很多,系统中要采用什么功能的、几分频的电子分频器还是要灵活配置的,现在通常用的电子频器有2分频、3分频、4分频等区分,超过4分频就显得太复杂和无实际意义了。当然现在的电声技术日新月异,目前还有一些分频器在分频的同时还可以对音频信号进行一些其它方面的处理,但不管什么类型电子分频器的主要功能和任务当然还是分频了。 2、 15寸3、 (二) 1 2、 声音来,但如果经过了电子分频器分频后在200Hz以上频率工作的话,那这只音箱的丰满度和震撼力就会全没有了,因为此时音箱的低音给电子分频器切掉了。同样情况下我们利用电子分频器也切掉了大部分低音音箱的高音部分,虽然这样音色可能会好听了,但不可否认的是低音音箱也浪费掉了大量的能量。这对于音箱数量较多又注重音色的音响系统来说还无所谓,但如果一套音响系统中音箱数量不多又不注重音色只是要大声些,那此时还是不使用电子分频器现实一些。 3、分配频率不合理会导致设备损坏:上面说了合理使用电子分频器可以保护设备,同样电子分频器还是一把双刃剑,使用不当的话反而会损害设备:例如我们把从电子分频器里分出的高音信号送给了低音音箱,由于低音喇叭发不出这么高频率的声音来,所以此时的现象就是:高音音箱和低音音箱都不会有声音。如果有些音响师不看原因,只是一味的增加前级信号和后级功放的音量,那结果就是增加再大的音量也没有用。此时还会很容易损害功放,而且要是电平信号大到失真还容易烧坏扬声器,别以为低音音箱没有声音就没有事了,毕竟此时已经有很大的电流在通过

最新三分频扬声器系统分频器电感的精确设计

三分频扬声器系统分频器电感的精确设计

三分频扬声器系统分频器电感的精确设计 1 引言 扬声器系统的分频器分为前级分频和功率分频2类。前级分频是前级电路中由电子元件产生的分频,再由各自的功放分别驱动高﹑中﹑低音扬声器系统,如图(1a)所示,属于小信号有源分频。而功率分频则是由电感、电容、电阻元件构成的位于功放与扬声器之间的无源分频电路,如图(1b)所示。 采用功率分频的扬声器系统结构简单、成本低,而且又能获得很高的放音质量,因而在现代高保真放音系统中应用最为普遍。其性能的好坏与扬声器的各项指标以及分频电路、电感元件的性能、精度有密不可分的关系,精确计算电感参数便是成功的关键。 2 对分频器电路、元件的要求 (1)电路中电感元件直流电阻、电感值误差越小越好。而且为使频响曲线平坦最好使用空心电感。 (2)电路中电容元件损耗尽可能小。最好使用音频专用金属化聚丙烯电容。 (3)使各扬声器单元分配到较平坦的信号功率,且起到保护高频扬声器的作用。

(4)各频道分频组合传输功率特性应满足图2所示特性曲线的要求(P0为最大值,P1为对应分频点f1、f2的值)。分频点处的功率与功率最大值之间幅度应满足P1(=0.3~0.5)P0的范围。 (5)整个频段内损耗平坦,基本不出现“高峰”和“深谷”。 3 分频电感电容参数值的计算 下面以三分频分频器为例说明其参数的计算,如图3所示。 1)计算分频电感L1,L2,L3,L4和分频电容C1,C2,C3,C4。

为了得到理想的频谱特性曲线,理论计算时可取:C1=C4,C3=C2,L1=L3,L4=L2,分频点频率为f1,(f2见图2),则分频点ω1=2πf0,ω2=2πf2。并设想高、中、低扬声器阻抗均相同为RL。每倍频程衰减12 dB。 2)实验修正C1,C2,C3,C4,L1,L2,L3,L4的值 为精确起见,可用实验方法稍微调整C1,C2,C3,C4,L1,L2,L3,L4的值,以满足设计曲线﹙见图2﹚的要求。即通过实验描绘频响曲线,从而得到C1,C2,C3,C4, L1,L2,L3,L4的最佳值。如果没有实验条件,这一步也可不做。求出电容电感的值后就可计算电感值了。 4 最佳结构电感的作用 4.1最佳结构电感的提出 空心分频电感(简称电感)的基本参数是电感量和直流电阻。一般来说,电感量不准会导致分频点偏离设计要求并可能影响扬声器系统的频响,大家都比较重视。然而其直流电阻不宜过大,否则会对音质产生影响。通常人们对此电阻在电路中的影响及其定量要求不甚了解,因此未引起足够重视,对此特作以下简要分析。 以图3的分频网络为例,由于低音单元的分频电感L2与负载R(L低音单元额定阻抗)相串联,因此若L2的阻抗过大,功放输出功率在其上的损耗将增大。同时,功放内阻对低音单元的阻尼作用也将大大减弱。前者影响功放的有效输出功率,后者对音质的影响却无可挽回。由于分频网络中L2的电感量最大,且随分频点的降低而增大,所以L2的直流电阻的影响相当突出。

分频器的结构及接线方法

分频器的结构及接线方法 分频器是指将不同频段的声音信号区分开来,分别给于放大,然后送到相应频段的扬声器中再进行重放。在高质量声音重放时,需要进行电子分频处理。 分频器是音箱内的一种电路装置,用以将输入的模拟音频信号分离成高音、中音、低音等不同部分,然后分别送入相应的高、中、低音喇叭单元中重放。之所以这样做,是因为任何单一的喇叭都不可能完美的将声音的各个频段完整的重放出来。 分频器是音箱中的大脑,对音质的好坏至关重要。功放输出的音乐讯号必须经过分频器中的过滤波元件处理,让各单元特定频率的讯号通过。要科学、合理、严谨地设计好音箱之分频器,才能有效地修饰喇叭单元的不同特性,优化组合,使得各单元扬长避短,淋漓尽致地发挥出各自应有的潜能,使各频段的频响变得平滑、声像相位准确,才能使高、中、低音播放出来的音乐层次分明、合拍、明朗、舒适、宽广、自然的音质效果。 在一个扬声器系统里,人们把箱体、分频电路、扬声器单元称为扬声器系统的三大件,而分频器是音箱中的大脑,分频电路对扬声器系统能否高质量地还原电声信号起着极其重要的作用。尤其在中、高频部分,分频电路所起到的作用就更为明显。 分频器的结构连接高音喇叭的电路:让电流先流过电容器,阻止低频,让高频通过,并且喇叭与一个线圈并联,让线圈产生负电压,那么这个电压对于高音喇叭来说正好是一个电压补偿,于是可以近似地逼真还原声音电流。 连接低音喇叭电路:电流先流过线圈,这样高频部分被阻止,而低频段由于线圈基本没有阻碍作用而顺利通过,同样,低音喇叭并联了一个电容器,就是利用电容器在高频的时候产生一个电压来补偿损失的电压,道理和高音喇叭端是一样的。 可以看出,分频器充分利用的电容器和线圈的特性达到分频。但是,线圈和电容器在各自阻碍的频率段内终究还是消耗了电压的,所以电路分频器会损失一定的声音,其补偿措施也有很多。而电子分频就解决了这个问题,当声音输入到功放之前就先分频,然后对不同的频段使用专门的放大电路进行放大,这样的话声音失真小,还原逼真。但是电路复杂,

音箱分频器的作用

音箱分频器的作用 在音箱中,有一个很不起眼的部件,说它不起眼,是因为在音箱的表面上根本找不到它,一般人除了想深入了解音箱的人外,也几乎没有关注它的时候。而音箱离了它,又根本无法工作。它就是分频器。 在播放音乐时,由于扬声器单元自身的能力与结构限制,只用一个扬声器难以覆盖全部频段,而如果把全频段信号不加分配地直接送入高、中、低音单元中去,在单元频响范围之外的那部分“多余信号”会对正常频段内的信号还原产生不利影响,甚至可能使高音、中音单元损坏。因为这个原因,设计师们必须将音频频段划分为几段,不同频段用不同扬声器进行放声。这就是分频器的由来与作用。 从工作原理看,分频器就是一个由电容器和电感线圈构成的滤波网。高音通道只让高频信号通过而阻止低频信号;低音通道正好相反,只让低音通过而阻止高频信号;中音通道则是一个带通滤波器,除了一低一高两个分频点之间的频率可以通过,高频成分和低频成分都将被阻止。 看似简单,但在实际使用的分频器中,为了平衡高低音单元之间的灵敏度差异,厂家们需要根据不同情况加入大小不一的衰减电阻或是由电阻、电容构成的阻抗补偿网络,不同的设计和生产工艺自然使分频器这个看似不起眼的元件在音箱中产生了效果不一的影响。而这些细节,正式所有HIFI器材必须追求的,这也是HIFI与普通民用设备的基本区别。 全频音箱上限不用切都可以,下限要看音箱尺寸而定。15寸的到60;12寸的到80;10寸的到90超低的上限要根据每个音箱的品质而定,你可以现场感觉听,听到哪里舒服就定哪里。关于超低的下限,我建议分到40以上因为现在的国产超低都是有严重拖尾的现象,40一下也是场所装修严重共振的地方。 分频器设计制作是要看喇叭具体数据的,最简单的是:几寸的喇叭(高音,中低音)两个喇叭的阻抗各是多少欧。还有就是分频点想选择在多少HZ。衰减选择多少?没有这些初级数据一个最简单的分频器都是弄不好的。

音箱分频器工作原理详解

音箱分频器工作原理详解 音箱分频器介绍音箱分频器可以将声音信号分成若干个频段。如二分频器就是由一个高通滤波器和一个低通滤波器组成。三分频则又增加了一个带通滤波器。分频器是音箱中的“大脑”,对音质的好坏至关重要。 分频器的使用问题音响技术分频器是一种可以将声音信号分成若干个频段的音响设备。我们知道,声音的频率范围是在20Hz—20kHz之间,祈望仅使用一只扬声器就能够保证放送、20Hz—20kHz这样宽频率的声音是很难做到的,因为这会在技术上存在各种各样的问题和困难。所以,在通常情况下,高质量的放音系统,为了保证再现声音的频率响应和频带宽度,在专业范畴内大都采用高低音分离式音箱放音,而采用高低音分离式音箱放送声音时,就必然要使用分频器。 音箱分频器结构音箱分频器采用了下图结构,具体分析: 连接高音喇叭的电路:让电流先流过电容器,阻止低频,让高频通过,并且喇叭与一个线圈并联,让线圈产生负电压,那么这个电压对于高音喇叭来说正好是一个电压补偿,于是可以近似地逼真还原声音电流。连接低音喇叭电路:电流先流过线圈,这样高频部分被阻止,而低频段由于线圈基本没有阻碍作用而顺利通过,同样,低音喇叭并联了一个电容器,就是利用电容器在高频的时候产生一个电压来补偿损失的电压,道理和高音喇叭端是一样的。 可以看出,分频器充分利用的电容器和线圈的特性达到分频。但是,线圈和电容器在各自阻碍的频率段内终究还是消耗了电压的,所以电路分频器会损失一定的声音,其补偿措施也有很多,由于笔者知识不够,难以说的很清楚。而电子分频就解决了这个问题,当声音输入到功放之前就先分频,然后对不同的频段使用专门的放大电路进行放大,这样的话声音失真小,还原逼真。但是电路复杂,造价昂贵。 音箱分频器电路音箱分频器就是能够将声音信号的频率分开,将不同频段的声音信号区分

音频分频器

音频分频器 分频器是音箱内的一种电路装置,用以将输入的音乐信号分离成高音、中音、低音等不同部分,然后分别送入相应的高、中、低音喇叭单元中重放。分频器是指将不同频段的声音信号区分开来,分别给于放大,然后送到相应频段的扬声器中再进行重放。在高质量声音重放时,需要进行电子分频处理。 概述 常见普通音响电路分频器 分频器是指使输出信号频率为输入信号频率整数分之一的电子电路。在许多电子设备中如电子钟、频率合成器等,需要各种不同频率的信号协同工作,常用的方法是以稳定度高的晶体振荡器为主振源,通过变换得到所需要的各种频率成分,分频器是一种主要变换手段。早期的分频器多为正弦分频器,随着数字集成电路的发展,脉冲分频器(又称数字分频器)逐渐取代了正弦分频器,即使在输入输出信号均为正弦波时也往往采用模数转换,数字分频,数模转换的方法来实现分频。正弦分频器除在输入信噪比低和频率极高的场合已很少使用。 对于任何一个N次分频器,在输入信号不变的情况下,输出信号可以有N种间隔为2π/N 的相位。这种现象是分频作用所固有的,与分频器的具体电路无关,称为分频器输出相位多值性。 原理 分频器原理 从电路结构来看,分频器本质上是由电容器和电感线圈构成的LC滤波网络,高音通道是高通滤波器,它只让高频信号通过而阻此低频信号;低音通道正好想反,它只让低音通过而阻此高频信号;中音通道则是一个带通滤波器,除了一低一高两个分频点之间的频率可以通过,高频成份和低频成份都将被阻止。在实际的分

频器中,有时为了平衡高、低音单元之间的灵敏度差异,还要加入衰减电阻;另外,有些分频器中还加入了由电阻、电容构成的阻抗补偿网络,其目的是使音箱的阻抗曲线心理平坦一些,以便于功放驱动。 由于现在的音箱几乎都采用多单元分频段重放的设计方式,所以必须有一种装置,能够将功放送来的全频带音乐信号按需要划分为高音、低音输出或者高音、中音、低音输出,才能跟相应的喇叭单元连接,分频器就是这样的装置。如果把全频带信号不加分配地直接送入高、中、低音单元中去,在单元频响范围之外的那部分“多余信号”会对正常频带内的信号还原产生不利影响,甚至可能使高音、中音单元损坏。 作用 输入和输出部分都清晰可见的应用分频器 分频器是音箱中的“大脑”,对音质的好坏至关重要。功放输出的音乐讯号必须经过分频器中的各滤波元件处理,让各单元特定频率的讯号通过。要科学、合理、严谨地设计好音箱之分频器,才能有效地修饰喇叭单元的不同特性,优化组合,使得各单元扬长避短,淋漓尽致地发挥出各自应有的潜能,使各频段的频响变得平滑、声 像相位准确,才能使高、中、低音播放出来的音乐层次分明、合拍,明朗、舒适、宽广、自然的音质效果。 在一个扬声器系统里,人们把箱体、分频电路、扬声器单元称为扬声器系统的三大件,而分频电路对扬声器系统能否高质量地还原电声信号起着极其重要的作用。尤其在中、高频部分,分频电路所起到的作用就更为明显。其作用如下: 合理地分割各单元的工作频段; 合理地进行各单元功率分配;

音箱分频器测试仪使用方法

音箱分频器测试仪使用方法 发表时间:2005-8-22 一、慨述:传统音箱分频器的检测方法是用电脑、软件和硬件组成一个测试系统,这种检验方法是成本高、速度慢,一套的成本在1.5万元~2.6万元不等(根据你的参数要求不一样而价格不同);测试完一套三分频器需要10秒钟。而我公司所生产的SF200F音箱分频器测试仪的价格极低不到电脑测试系统的七分之一;它测试完一套三分频器仅需要3秒钟(含QC人员线上取件、测试、贴QC—PASS纸和放回生产线上时间)。下面介绍SF200F的测试原理和使用方法。 二、SF200F音箱分频器测试仪的测试原理:目前音箱分频器的组成元件是电感、电容和电阻,由它们组成的带通回路将20Hz~20KHz音频范围分为几段,如两分频器就将20Hz~20KHz音频范围分为高、低两段(如A图所示)。 三分频器就将20Hz~20KHz音频范围分为高、中、低三段(如B图所示)。

分频器上的电感、电容、电阻元件都是无源元件,它们的参数发生变化都不会使频响中的某一频率点电压值发生突变,而是一个频段的电压值上升或下降。例如一个三分频器的低频段对地的高频衰减电容比标准电容值大,结果是V01、V02的电压值都会同时比标准值降低;反之电容值减小,结果是V01、V02的电压值都会同时比标准值高。SF200F音箱分频器测试仪内设计了五个存储器,它们的存储功能是等同的,一个存储器同时能存储你所设置的频率和电压值。如果你当前要检验是一个三分频的分频器,你就用SF200F的存储器“用户1”储存F01频率值和V01电压值、“用户2” 储存F02频率值和V02电压值、“用户3” 储存F03频率值和V03电压值、“用户4” 储存F04频率值和V04电压值、“用户5” 储存F05频率值和V05电压值。生产线的品管QC检验人员只需按SF200F仪器所配控制盒上的“用户1”、“用户2” 、“用户3” 、“用户4”、“用户5”按键,同时观察毫伏表指针是否偏离规定值,这样就能很方便地判断分频器是否合格。下面将介绍SF200F的具体使用方法和技巧。 三、SF200F音箱分频器测试仪的具体使用方法和技巧:由于三分频器测试比二分频器复杂,所以本例以检测三分频器为例,并假设分频器所接扬声器均为4Ω。 1、外围配套设备:用SF200F仪器测试分频器还需购买两台立体声(双针)毫伏表,每台价格是160元人民币;50W(4Ω)负载电阻3只;根据你要测试的分频器PCB板要制作一个测试治具。 2、接线方法:SF200F仪器的功率输出端通过治具连接到被测分频器的输入端;分频器的低、中、高输出端通过治具连接到50W(4Ω)的负载电阻上;第一台毫伏表(以后称A表)黑指针对应的输入端连接在低频输出端上、红指针对应的输入端连接在中频输出端上,第二台毫伏表(以后称B表)黑指针对应的输入端连接在中频输出端上、红指针对应的输入端连接在高频输出端上。注意毫伏表的背面有一个左右声道是否共同接地开关要将它置于开的位置。 3、SF200F仪器的设置和检验方法: 按以上要求连接好后将SF200F仪器的电源打开。将两台毫伏表的量程调到3V档,将标准的三分频器按入测试治具架中。按遥控器上的“线路测量→功率测量→F0测量”键将其设置为“功率测量”,仪器显示为“TEST POWE”;这时

DIY音响(二)-分频器制作

DIY音响(二)-分频器制作 分频器在音箱系统中的作用用“举足轻重”一词来形容一点也不过分。然而这一个非常重要的问题却又是一个极易被一般爱好者所忽视的问题。我常常见到有些DIYer到器材店去买分频器时最关心的是几分频、几阶滤波,价格几许。好一些的情况也就是挑一下与自己的单元相同的品牌,注意一下电感的线径,电容的材质,分频点是多少。至于这只分频器的设计是否合理,是否适合自己的单元却很少见到有人会去关心,这很有些“买椟还珠”的感觉。 在DIYer中还存在这样的一个看法:分频器的滤波阶数取高些好,理由是可以得到陡峭的衰减特性,因此单元之间的干扰就小。但事实上我们应该知道这样的一个常识:电抗器件(或者说是惯性元件)对通过的交流信号有相移,每一阶最大的相移量达到90度。照此计算,一个四阶滤波器最终将产生360度的相移。如此一来,高低频单元的相位就必须衔接的非常好,否则稍一错位就会出乱子,出现一系列的峰谷。然而这还不算最糟的,更糟的是由于相位变化的剧烈带来了大量的相位失真。从这个意义上说,不用滤波器最好,但并不现实。既然必须采用滤波器,就我个人的看法,滤波的阶数应该是少些好。可是如果滤波阶数太少又得不到足够的衰减率,这对单元也是一个很大的折磨,这又是一个矛盾。一般来说,解决这个矛盾采用二阶滤波还是比较合理的。理由是:(1)由于标准二阶滤波衰减斜率为12dB,在正常情况下是足以应付;(2)由于最大相移为180度,因此比较容易实现相位对接,同时相位失真也在可忍受范围。

一个设计、制作优良的分频器,应该是针对某一组单元度身定做的,没有一个放诸四海皆真理、那种万金油似的分频器。道理非常简单:每一款杨声器由于设计、制作上的差异,都有不同的特性。从声压特性、阻抗特性到相位特性都有所不同。设计一个分频器应该将这些因素综合考虑,使得各单元的优点得以充分发挥,缺点得以有效抑制,方可算得上是一个成功的设计。 我们以往设计分频器选择器件参数时比较常用的方法是采用教科书上所介绍的,根据分频点、衰减斜率进行计算得到的。从理论上来说,这样没什么错。问题在于书上所介绍的方法基于一个并不存在的条件:即所用的单元都是理想器件,这样的单元在本世纪肯定是造不出来的了,因此这样的条件无异于空中楼阁。我们目前所制造使用的单元都不是理想器件,如何解决这些问题是一个优秀的设计师所应具备的能力。而这也正是使许多“土炮友”感到困惑的地方,甚至一些业内混了很多年的“工程师”也在困惑。 单元的不理想性主要体现在两个方面,分别是单元阻抗的非线性和声幅射的非线性。阻抗的非线性体现在它的非纯阻性,它的阻抗模与阻抗角都是频率的函数(见图1)。声幅射非线性的成因主要是由于非活塞振动所造成的,因为在非活塞振动区域的声幅射是由单元上个质点幅射的合成,由于各质点振动的幅度与相位都不一样,因此合成的声压与相位也都是很复杂的频率函数(图2)。

相关主题
相关文档
最新文档