基本计算轴心受力构件的强度和刚度计算

基本计算轴心受力构件的强度和刚度计算
基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算

1.轴心受力构件的强度计算

轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为

N、

<7 =——< f(4-1)

4

式中:N一构件的轴心拉力或压力设计值;

A,_——构件的净截面面积;

f——钢材的抗拉强度设计值。

对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已山孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算:

N'

b =——

4

NJN(1 — O?5 仝) (4-3)

n

式中:n—连接一侧的高强度螺栓总数;

坷——计算截面(最外列螺栓处)上的高强度螺栓数;

0.5——孔前传力系数。

采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度

N cr =——< f(4-4)

A

式中:人——构件的毛截面面积。

2.轴心受力构件的刚度计算

为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。

轴心受力构件的刚度是以限制其长细比来保证的,即

2 <[A]

式中:A——构件的最大长细比;

[2]——构件的容许长细比。

3.轴心受压构件的整体稳定计算

《规范》对轴心受压构件的整体稳定计算采用下列形式:

(4-25)

式中:(P—轴心受压构件的整体稳定系数,0 = 2工。

J y

整体稳定系数0值应根据构件的截面分类和构件的长细比查表得到。

构件长细比兄应按照下列规定确定:

(1)截面为双轴对称或极对称的构件

(4-26)

式中:h,心一构件对主轴x和y的计算长度;

止,.一构件截面对主轴x和〉,的回转半径。

双轴对称十字形截面构件,人或九取值不得小于5.07b/t (其中b/t为悬伸板件宽厚比)。

(2)截面为单轴对称的构件

以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为),轴)的稳定应取计?及扭转效应的下列换算长细比代替心

葢“詔/(人/25.7 + J//:)

单角钢截面和双角钢组合T形截面绕对称轴的换算长细比可采用简化方法确定。

无任何对称轴且乂非极对称的截面(单面连接的不等边单角钢除外)不宜用作轴心受压构件。

对单面连接的单角钢轴心受压构件,考虑折减系数后,可不考虑弯扭效应。当槽形截面用于格构式构件的分肢,汁算分肢绕对称轴(y轴)的稳定性时,不必考虑扭转效应,直接入用查出仪值。

4.工字形和H形截面轴心受压构件的局部稳定

在单向压应力作用下,当板件进入弹塑性状态后,临界应力可用下式表达

凤k/E f 2

(4-36)

12(l-v2) h

式中:Z——板边缘的弹性约束系数;

11——弹性模量折减系数,根据轴心受压构件局部稳定的试验资料,可取为

77 = 0.101322(1- 0.0248才人 / E)f y / E(4-37)

局部稳定验算考虑等稳定性,保证板件的局部失稳临界应力不小于构件整体稳定的临界应力(0几),即

(4-38)

山式(4-38)即可确定板件宽厚比的限值。

(1)工字形和H形截面的受压翼缘

工字形截面的腹板一般较薄,对翼缘板儿乎没有嵌固作用,翼缘可视为三边简支一边自山的均匀受圧板,取屈曲系数=0.425,弹性约束系数Z=1.0o由式(4-38)可以得到翼缘板外伸部分的宽厚比b/t与长细比几的关系

y< (10 + 0. (4-39)

式中:2——构件两方向长细比的较大值。当2 <30时,取2=30;当2 >100

时,取2=100。

(2)工字形和H形截面的腹板

腹板可视为四边支承板,屈曲系数当腹板发生屈曲时,翼缘板对腹板将起一定的弹性嵌固作用,取约束系数力=1.3。由式(4-38)经简化后得到腹

板高厚比%亿的表达式

(4-40)

同理,可得其他截面构件的板件宽厚比限值。

轴心受力构件的强度和刚度验算

1.图1 (a)所示为一支架,其支柱的压力设计值为2,柱两端钱接,截而无孔眼削弱。已知:钢材等级(f),容许长细比[兄]。支柱选用材料的规格(整体稳世系数0值表。验算此支柱的承载力。

解:

(1)强度验算:强度因截而无孔眼削弱,可不验算强度。

(2)局部稳定验算:轧制工字形钢的翼缘和腹板均较厚,可不验算局部稳左。

(3)刚度验算。

<(25 + 0.52)

1-1

(b)

长细比人=仏<[刀

九=竺V [刀

(4)整体稳泄验算:

人远大于人,故由人计算得(P = 0.592 ,于是根据构件的截面分类和构件的长细比查表得整体稳定系数0值。

—=—16(X)X1()__- = 200.2(N/mm2)</ = 205 N/mm2

(pA 0.592 x 135 xlO2' '

2.图2所示一上端较接,下端固左的轴心受压柱,承受的压力设计值为N。已知:柱的长度,il?算长度系数“,钢材等级(f)以及A, i x, i y0容许长细比[2]。柱截面的尺寸如图所示。截而绕x轴和y轴分别属于b类和c类截面。已知b类截而的整体稳定系数表与c类截而的整体稳泄系数表,局部稳定验算公式:九〃“=(25+ 0.5刀拝7?;,

b〃 = (10 + 0.U)j235/./; °验算此柱的整体稳左,刚度和局部稳左。

图2 解:

(1>计算长细比

入f ―厲

(2)计算整体稳左系数

(ft)

由题目所给的表中可以计算出取久曲

(3)整体稳怎验算:

7V/(?4) < f

整体稳泄满足要求。

(4)刚度验算:

心v [刀

刚度满足要求。

(5)局部稳定验算:

腹板高厚比:^<(25 + 0.52)/—

5

fy

局部稳泄满足要求。

3?如图3所示支柱上下端均为餃接且设置支撑。支柱长度为9m,在两个三分点处均有侧向 支

撑,以阻止柱在弱轴方向的过早失稳。已知:构件的设计压力为N,容许长细比[几],支 柱材料的规格(A ,\钢材的等级(/)o 截而绕x 轴属于a 类截面,绕y 轴属于 b 类截而,且知a 类截面的整体稳定系数表与b 类截而的整体稳左系数表。验算此支柱的整 体稳左和刚度。

解:

(1) 验算支柱的刚度

先计算长细比人=h / i x , 2y = l Oy / i y 翼缘宽厚比: 亠■■■—<

1 II

1 §

II

||

§ tn H ?1 1 ?

-<(10 + 0.12)

A x <[2], 2V < [2]

刚度满足要求。

(2)验算此支柱的整体稳定

由题目所给的a类截而的整体稳左系数表与b类截面的整体稳圮系数表中可以计算岀篠,衿;取%

进行整体稳泄性验算:

N/(网)< f

整体稳泄性满足要求。

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 f A N n ≤= σ (4-1) 式中: N ——构件的轴心拉力或压力设计值; n A ——构件的净截面面积; f ——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: f A N n ≤= ' σ (4-2) 'N =)5 .01(1 n n N - (4-3) 式中: n ——连接一侧的高强度螺栓总数; 1n ——计算截面(最外列螺栓处)上的高强度螺栓数; ——孔前传力系数。 采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度 f A N ≤= σ (4-4) 式中: A ——构件的毛截面面积。 2.轴心受力构件的刚度计算 为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。 轴心受力构件的刚度是以限制其长细比来保证的,即

][λλ≤ (4-5) 式中: λ——构件的最大长细比; [λ]——构件的容许长细比。 3. 轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: f A N ≤? (4-25) 式中:?——轴心受压构件的整体稳定系数,y cr f σ?= 。 整体稳定系数?值应根据构件的截面分类和构件的长细比查表得到。 构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件 ? ?? ==y y y x x x i l i l //00λλ (4-26) 式中:x l 0,y l 0——构件对主轴x 和y 的计算长度; x i ,y i ——构件截面对主轴x 和y 的回转半径。 双轴对称十字形截面构件,x λ或y λ取值不得小于t (其中b/t 为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T 形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为y 轴)的稳定应取计及扭转效应的下列换算长细比代替y λ [] 2 /122202022222)/1(4)()(2 1 z y z y z y yz i e λ λλλλλλ--+++= )/7.25//(2 202ωωλl I I A i t z +=

轴心受力构件(五)

第四章轴心受力构件 一、轴心受力构件的特点和截面形式 轴心受力构件包括轴心受压杆和轴心受拉杆。轴心受力构件广泛应用于各种钢结构之中,如网架与桁架的杆件、钢塔的主体结构构件、双跨轻钢厂房的铰接中柱、带支撑体系的钢平台柱等等。 实际上,纯粹的轴心受力构件是很少的,大部分轴心受力构件在不同程度上也受偏心力的作用,如网架弦杆受自重作用、塔架杆件受局部风力作用等。但只要这些偏心力作用非常小(一般认为偏心力作用产生的应力仅占总体应力的3%以下。)就可以将其作为轴心受力构件。 轴心受力的构件可采用图中的各种形式。 其中 a)类为单个型钢实腹型截面,一般用于受力较小的杆件。其中圆钢回转半径最小,多用作拉杆,作压杆时用于格构式压杆的弦杆。钢管的回转半径较大、对称性好、材料利用率高,拉、压均可。大口径钢管一般用作压杆。型钢的回转半径存在各向异性,作压杆时有强轴和弱轴之分,材料利用率不高,但连接较为方便,单价低。 b) 类为多型钢实腹型截面,改善了单型钢截面的稳定各向异性特征,受力较好,连接也较方便。 c) 类为格构式截面,其回转半径大且各向均匀,用于较长、受力较大的轴心受力构件,特别是压杆。但其制作复杂,辅助材料用量多。 二、轴心受拉杆件 轴心受拉杆件应满足强度和刚度要求。并从经济出发,选择适当的截面形式,处理好构造与连接。 1、强度计算 轴心拉杆的强度计算公式为:

(6-1) 式中: N——轴心拉力; A n——拉杆的净截面面积; f ——钢材抗拉强度设计值。 当轴心拉杆与其它构件采用螺栓或高强螺栓连接时,连接处的净截面强度计算如连接这一章所述。 公式(6-1)适用于截面上应力均匀分布的拉杆。当拉杆的截面有局部削弱时,截面上的应力分布就不均匀,在孔边或削弱处边缘就会出现应力集中。但当应力集中部分进入塑性后,内部的应力重分布会使最终拉应力分布趋于均匀。因而须保证两点:(1)选用的钢材要达到规定的塑性(延伸率)。(2)截面开孔和消弱应有圆滑和缓的过渡,改变截面、厚度时坡度不得大于1:4。 2、刚度计算 为了避免拉杆在使用条件下出现刚度不足、横向振动以造成过大的附加应力,拉杆设计时应保证具有一定的刚度。普通拉杆的刚度按下式用长细比来控制。 (6-2)式中: ——拉杆按各方向计算得的最大长细比; l0 ——计算拉杆长细比时的计算长度; i ——截面的回转半径(与 l0 相对应);

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

轴心受力构件习题及问题详解

轴心受力构件习题及答案 一、选择题 的构件,在拉力N作用下的强度计算公1. 一根截面面积为A,净截面面积为A n 式为______。 2. 轴心受拉构件按强度极限状态是______。 净截面的平均应力达到钢材的抗拉强度 毛截面的平均应力达到钢材的抗拉强度 净截面的平均应力达到钢材的屈服强度 毛截面的平均应力达到钢材的屈服强度 3. 实腹式轴心受拉构件计算的容有______。 强度强度和整体稳定性强度、局部稳定和整体 稳定强度、刚度(长细比) 4. 轴心受力构件的强度计算,一般采用轴力除以净截面面积,这种计算方法对下列哪种连接方式是偏于保守的? 摩擦型高强度螺栓连接承压型高强度螺栓连 接普通螺栓连接铆钉连接 5. 工字型组合截面轴压杆局部稳定验算时,翼缘与腹板宽厚比限值是根据 ______导出的。 6. 图示单轴对称的理想轴心压杆,弹性失稳形式可能为______。

X轴弯曲及扭转失稳Y轴弯曲及扭转失稳 扭转失稳绕Y轴弯曲失稳 7. 用Q235号钢和16锰钢分别建造一轴心受压柱,其长细比相同,在弹性围屈曲时,前者的临界力______后者的临界力。 大于小于等于或接近无法 比较 8. 轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,是因为______。 格构构件的整体稳定承载力高于同截面的实腹构件 考虑强度降低的影响 考虑剪切变形的影响 考虑单支失稳对构件承载力的影响 9. 为防止钢构件中的板件失稳采取加劲措施,这一做法是为了______。 改变板件的宽厚比增大截面面积改变截面上 的应力分布状态增加截面的惯性矩 10. 轴心压杆构件采用冷弯薄壁型钢或普通型钢,其稳定性计算______。 完全相同 仅稳定系数取值不同 仅面积取值不同 完全不同 11. 工字型截面受压构件的腹板高度与厚度之比不能满足按全腹板进行计算的要求时,______。

轴心受压构件长细比详细计算公式及扩展

关于受压杆件长细比的计算 1.对于轴压构件的长细比计算公式如下: l 0=λ l l ?=μ0 A I i =(根据I 的定义,理解i ) 其中对各个系数进行详解: A —构件的横截面积。矩形面积为A=bh 。对于圆形截面为: 4 2 D A π= ,圆管截面 22 )1(4 απ-= D A 。 I —构件的截面惯性矩。对于矩形的截面惯性矩为12 3 bh I =,对于 圆形截面来说为64 4 D I π= ,对于圆管截面的惯性矩为 )1(64 44 απ-= D I 其中D d /=α,d 为圆管内径,D 为圆管外径。 矩形:24/323 2 022 2 2 2 bh y b dy b y dA y I h h h =?=?=?=?? - 圆形: 64/)22sin (2164)2cos 1(2 1 64sin sin 320420 420 2 2 3 2 20 2 2 2 D D d D d dr r rd r dr dA y I D D πθθθθθθθθπ π π π =-?=-? == ?= ?= ?????? (θθ2 sin 212cos -=) l 为构件的几何长度,其具体长度又根据混凝土,钢结构,砌体 等不同的结构形式而有所不同。

μ为长度因数,其值由竿端约束情况决定。例如,两端铰支的细长压杆,μ=1;一段固定、一段自由的细长压杆,μ=2;两端固定的细长压杆,μ=0.5;一段固定一段铰支的细长压杆,μ=0.7。 拓展: 根据i 的计算公式,很明显,我们可以就算出矩形和圆形的回转半径i : 矩形:12h i =;圆形(实):4D i =,圆环:4)1(4α-=D i (不用记) 钢结构受压杆件的容许长细比 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 N、 <7 =——< f(4-1) 4 式中:N一构件的轴心拉力或压力设计值; A,_——构件的净截面面积; f——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已山孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: N' b =——

轴心受力构件的刚度是以限制其长细比来保证的,即

2 <[A] 式中:A——构件的最大长细比; [2]——构件的容许长细比。 3.轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: (4-25) 式中:(P—轴心受压构件的整体稳定系数,0 = 2工。 J y 整体稳定系数0值应根据构件的截面分类和构件的长细比查表得到。 构件长细比兄应按照下列规定确定: (1)截面为双轴对称或极对称的构件 (4-26) 式中:h,心一构件对主轴x和y的计算长度; 止,.一构件截面对主轴x和〉,的回转半径。 双轴对称十字形截面构件,人或九取值不得小于5.07b/t (其中b/t为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为),轴)的稳定应取计?及扭转效应的下列换算长细比代替心 葢“詔/(人/25.7 + J//:)

相关文档
最新文档