4.2 轴心受压构件承载力计算

4.2 轴心受压构件承载力计算
4.2 轴心受压构件承载力计算

轴心受压构件承载力计算

按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋

柱;一种是配置纵向钢筋和螺旋筋(图)或

焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或

间接箍筋柱。

需要指出的是,在实际工程结构中,几

乎不存在真正的轴心受压构件。通常由于荷

载作用位置偏差、配筋不对称以及施工误差

等原因,总是或多或少存在初始偏心距。但

当这种偏心距很小时,如只承受节点荷载屋

架的受压弦杆和腹杆、以恒荷载为主的等跨

多层框架房屋的内柱等,为计算方便,可近

似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。

一、轴心受压构件的破坏特征

按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。

1.轴心受压短柱的破坏特征

配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。

2.轴心受压长柱的破坏特征

对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。

由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

的稳定系数来表示长柱承截力降低的程度。试验的实测结果表明,稳定系数主要和构件的长细比l 0/b有关,长细比l0/b越大,值越小。当l0/b≤8时,= 1,说明承截力的降低可忽略。

稳定系数可按下式计算:

(4.2.1)式中——柱的计算长度;

——矩形截面的短边尺寸,圆形截面可取(为截面直径),对任意截面可取(为截面最小回转半径)。构件的计算长度l0与构件两端支承情况有关,在实际工程中,由于构件支承情况并非完全符合理想条件,应结合具体情况按《混凝土规范》的规定取用。

二、普通箍筋柱的正截面承截力计算

1.基本公式

钢筋混凝土轴心受压柱的正截面承载力由混凝

土承载力及钢筋承载力两部分组成,如图4.2.4所示。

根据力的平衡条件,得短柱和长柱的承载力计算公式

为:

N≤N u=(fA c+f y/A c)(4.2.2)

式中N u—轴向压力承载力设计值;

N—轴向压力设计值;

—钢筋混凝土构件的稳定系数;

f c—混凝土的轴心抗压强度设计值,按表2.2.2

采用;

A—构件截面面积,当纵向钢筋配筋率大于3%

时,A应改为A c=A-A s;

f y ′—纵向钢筋的抗压强度设计值按附表采用;

A y ′—全部纵向钢筋的截面面积。

式中系数,是考虑到初始偏心的影响以及主要承受永久荷载作用的轴心受压柱的可靠性,引入的承载力折减系数;

2.计算方法

实际工程中,轴心受压构件的承载力计算问题可归纳为截面设计和截面复核两大类。

(1)截面设计

已知:构件截面尺寸b×h,轴向力设计值,构件的计算长度,材料强度等级;

求:纵向钢筋截面面积。

计算步骤如图4.2.5所示。

若构件截面尺寸b×h为未知,则可先根据构造要求并参照同类工程假定柱截面尺寸b×h,然后按上述步骤计算。纵向钢筋配筋率宜在%~2%之间。若配筋率ρ'过大

或过小,则应调整b、h,重新计算。也可先假定和的值(常可假定=1,

=1%),由下式计算出构件截面面积,进而得出b×h:

A =(4.2.3)

(2)截面承载力复核

已知:柱截面尺寸b×h,计算长度,纵向钢筋数量及级别,混凝土强度等级;

求:柱的受压承载力N u,或已知轴向力设计值N,判断截面是否安全。

计算步骤如图4.2.6所示。

【例4.2.1】已知某多层现浇钢筋混凝土框架结构,首层中柱按轴心受压构件计算。该柱安全等级为二级,轴向压力设计值N=1400kN,计算长度l0=5m,纵向钢筋采用HRB335级,混凝土强度等级为C30。求该柱截面尺寸及纵向钢筋截面面积。

【解】f c=mm2,f y′=300N/mm2,=

(1)初步确定柱截面尺寸

设ρ′==1%,=1,则

A ==mm2=89916.5mm2

选用方形截面,则b=h==299.8mm,取用b = h =3 00mm。

(2)计算稳定系数

l0/b=5000/300=

==

(3)计算钢筋截面面积A s′

A s′===1677mm2

(4)验算配筋率

ρ′===%

>=%,且<3% ,满足最小配筋率要求。

纵筋选用425(A s′=1964mm2),箍筋配置φ8@300,如图4.2.7所示。

【例4.2.2】某现浇底层钢筋混凝土轴心受压柱,截面尺寸b×h=300×300mm,采用420的HRB335级(f y′=300N/ mm2)钢筋,混凝土强度等级C25(f c=mm2),l0=4.5m,承受轴向力设计值800kN,试校核此柱是否安全。

【解】查表得f y′=300N/ mm2,f c=mm2,=1256mm2

(1)确定稳定系数

l0/b=4500/300=15

=

=

(2)验算配筋率

=%<ρ′===%<3%

(3)确定柱截面承载力

N u=( f c A+)=×××300×300+300×1256)N

=×103N=>N=800kN

此柱截面安全。

三、螺旋箍筋柱简介

在普通箍筋柱中,箍筋是构造钢筋。柱破坏时,混凝土处于单向受压状态。而螺旋箍筋柱的箍筋既是构造钢筋又是受力钢筋。由于螺旋筋或焊接环筋的套箍作用可约束核心混凝土(螺旋筋或焊接环筋所包围的混凝土)的横向变形,使得核心混凝土处于三向受压状态,从而间接地提高混凝土的纵向抗压强度。当混凝土纵向压缩产生横向膨胀时,将受到密排螺旋筋或焊接环筋的约束,在箍筋中产生拉力而在混凝土中产生侧向压力。当构件的压应变超过无约束混凝土的极限应变后,尽管箍筋以外的表层混凝土会开裂甚至剥落而退出工作,但核心混凝土尚能继续承担更大的压力,直至箍筋屈服。显然,混凝土抗压强度的提高程度与箍筋的约束力的大小有关。为了使箍筋对混凝土有足够大的约束力,箍筋应为圆形,当为圆环时应焊接。由于螺旋筋或焊接环筋间接地起到了纵向受压钢筋的作用,故又称之为间接钢筋。

需要说明的是,螺旋箍筋柱虽可提高构件承载力,但施工复杂,用钢量较多,一般仅用于轴力很大,截面尺寸又受限制,采用普通箍筋柱会使纵向钢筋配筋率过高,而混凝土强度等级又不宜再提高的情况。

螺旋箍筋柱的截面形状一般为圆形或正八边形。箍筋为螺旋环或焊接圆环,间距不应大于80mm及(为构件核心直径,即螺旋箍筋内皮直径),且不宜小于40mm。间接钢筋的直径应符合柱中箍筋直径的规定。

4.2 轴心受压构件承载力计算

4.2 轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍 筋柱;一种是配置纵向钢筋和螺旋筋(图 4.2.1b)或焊接环筋(图4.2.1c)的柱,称为 螺旋箍筋柱或间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构 件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边 尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=0.002,相应的纵向钢

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 f A N n ≤= σ (4-1) 式中: N ——构件的轴心拉力或压力设计值; n A ——构件的净截面面积; f ——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: f A N n ≤= ' σ (4-2) 'N =)5 .01(1 n n N - (4-3) 式中: n ——连接一侧的高强度螺栓总数; 1n ——计算截面(最外列螺栓处)上的高强度螺栓数; ——孔前传力系数。 采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度 f A N ≤= σ (4-4) 式中: A ——构件的毛截面面积。 2.轴心受力构件的刚度计算 为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。 轴心受力构件的刚度是以限制其长细比来保证的,即

][λλ≤ (4-5) 式中: λ——构件的最大长细比; [λ]——构件的容许长细比。 3. 轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: f A N ≤? (4-25) 式中:?——轴心受压构件的整体稳定系数,y cr f σ?= 。 整体稳定系数?值应根据构件的截面分类和构件的长细比查表得到。 构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件 ? ?? ==y y y x x x i l i l //00λλ (4-26) 式中:x l 0,y l 0——构件对主轴x 和y 的计算长度; x i ,y i ——构件截面对主轴x 和y 的回转半径。 双轴对称十字形截面构件,x λ或y λ取值不得小于t (其中b/t 为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T 形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为y 轴)的稳定应取计及扭转效应的下列换算长细比代替y λ [] 2 /122202022222)/1(4)()(2 1 z y z y z y yz i e λ λλλλλλ--+++= )/7.25//(2 202ωωλl I I A i t z +=

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

4.3-偏心受压构件承载力计算

4.2 轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e =M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,0 相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压 构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情 况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这 种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N 增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加 宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并 形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减 小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图 4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过 多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载 逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

第8章受扭构件的扭曲截面承载力习题答案

第8章 受扭构件的扭曲截面承载力 8.1选择题 1.下面哪一条不属于变角度空间桁架模型的基本假定:( A )。 A . 平均应变符合平截面假定; B . 混凝土只承受压力; C . 纵筋和箍筋只承受拉力; D . 忽略核心混凝土的受扭作用和钢筋的销栓作用; 2.钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比7.16.0<<ζ说明,当构件破坏时,( A )。 A . 纵筋和箍筋都能达到屈服; B . 仅箍筋达到屈服; C . 仅纵筋达到屈服; D . 纵筋和箍筋都不能达到屈服; 3.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应( D )。 A . 不受限制; B . 0.20.1<<ζ; C . 0.15.0<<ζ; D . 7.16.0<<ζ; 4.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是:( D )。 A . 混凝土和钢筋均考虑相关关系; B . 混凝土和钢筋均不考虑相关关系; C . 混凝土不考虑相关关系,钢筋考虑相关关系; D . 混凝土考虑相关关系,钢筋不考虑相关关系; 5.钢筋混凝土T 形和I 形截面剪扭构件可划分为矩形块计算,此时( C )。 A . 腹板承受全部的剪力和扭矩; B . 翼缘承受全部的剪力和扭矩; C . 剪力由腹板承受,扭矩由腹板和翼缘共同承受; D . 扭矩由腹板承受,剪力由腹板和翼缘共同承受; 8.2判断题 1.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( × ) 2.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是混凝土和钢筋均考虑相关关系;( × ) 3. 在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应不受限制( × )

轴心受压构件长细比详细计算公式及扩展

关于受压杆件长细比的计算 1.对于轴压构件的长细比计算公式如下: i l 0=λ l l ?=μ0 A I i =(根据I 的定义,理解i ) 其中对各个系数进行详解: A —构件的横截面积。矩形面积为A=bh 。对于圆形截面为:42 D A π=,圆管截面22 )1(4απ-=D A 。 I —构件的截面惯性矩。对于矩形的截面惯性矩为123 bh I =,对于圆形截面来说为644 D I π=,对于圆管截面的惯性矩为 )1(6444 απ-=D I 其中D d /=α,d 为圆管内径,D 为圆管外径。 矩形:24/3232022 222bh y b dy b y dA y I h h h =?=?=?= ??- 圆形: 64/)22sin (2164)2cos 1(2164sin sin 320420 42022032202202D D d D d dr r rd r dr dA y I D D πθθθθθθθθππππ=-?=-?==?= ?=??????(θθ2sin 212cos -=) l 为构件的几何长度,其具体长度又根据混凝土,钢结构,砌体等不同的结构形式而有所不同。

μ为长度因数,其值由竿端约束情况决定。例如,两端铰支的细长压杆,μ=1;一段固定、一段自由的细长压杆,μ=2;两端固定的细长压杆,μ=0.5;一段固定一段铰支的细长压杆,μ=0.7。 拓展: 根据i 的计算公式,很明显,我们可以就算出矩形和圆形的回转半径i : 矩形:12 h i =;圆形(实):4D i =,圆环:4)1(4α-=D i (不用记) 钢结构受压杆件的容许长细比

第三章轴心受力构件承载力问答题参考答案

第三章轴心受力构件承载力 问答题参考答案 1.简述结构工程中轴心受力构件应用在什么地方? 答:当纵向外力N的作用线与构件截面的形心线重合时,称为轴心受力构件。房屋工程和一般构筑物中,桁架中的受拉腹杆和下弦杆以及圆形储水池的池壁,近似地按轴心受拉构件来设计,以恒载为主的多层建筑的内柱以及屋架的受压腹杆等构件,可近似地按轴心受压构件来设计。在桥梁工程内中桁架桥中的某些受压腹杆可以按轴心受压构件设计;桁架拱桥的拉杆、桁架桥梁的拉杆和系杆拱桥的系杆等按轴心受拉构件设计。 2.轴心受压构件设计时,如果用高强度钢筋,其设计强度应如何取值? 答:纵向受力钢筋一般采用HRB400级、HRB335级和RRB400级,不宜采用高强度钢筋,因为与混凝土共同受压时,不能充分发挥其高强度的作用。混凝土破坏时的压应变0.002,此时相应的纵筋应力值бs’=E sεs’=200×103×0.002=400 N/mm2;对于HRB400级、HRB335级、HPB235级和RRB400级热扎钢筋已达到屈服强度,对于Ⅳ级和热处理钢筋在计算f y’ 值时只能取400 N/mm2。 3.轴心受压构件设计时,纵向受力钢筋和箍筋的作用分别是什么? 答:纵筋的作用:①与混凝土共同承受压力,提高构件与截面受压承载力;②提高构件的变形能力,改善受压破坏的脆性;③承受可能产生的偏心弯矩、混凝土收缩及温度变化引起的拉应力;④减少混凝土的徐变变形。横向箍筋的作用:①防止纵向钢筋受力后压屈和固定纵向钢筋位置;②改善构件破坏的脆性;③当采用密排箍筋时还能约束核芯内混凝土,提高其极限变形值。 4.受压构件设计时,《规范》规定最小配筋率和最大配筋率的意义是什么? 答:《规范》规定受压构件最小配筋率的目的是改善其脆性特征,避免混凝土突然压溃,能够承受收缩和温度引起的拉应力,并使受压构件具有必要的刚度和抗偶然偏心作用的能力。考虑到材料对混凝土破坏行为的影响,《规范》规定受压构件最大配筋率的目的为了防止混凝土徐变引起应力重分布产生拉应力和防止施工时钢筋过于拥挤。 5.简述轴心受压构件的受力过程和破坏过程? 答:第Ⅰ阶段——加载到钢筋屈服前0<ε≤εy 此阶段钢筋和混凝土共同工作,应力与应变大致成正比。在相同的荷载增量下,钢筋的压应力比混凝土的压应力增加得快而先进入屈服阶段。 第Ⅱ阶段——钢筋屈服到混凝土压应力达到应力峰值εy<ε≤ε0 钢筋进入屈服,对于有明显屈服台阶的钢筋,其应力保持屈服强度不变,而构件的应变值不断增加,混凝土的应力也随应变的增加而继续增长。《混凝土结构设计规范》(GB50010-2002)取最大压应变为0.002。 第Ⅲ阶段——混凝土应力达到峰值到混凝土应变达到极限压应变,构件产生破坏ε0<ε≤εcu 当构件压应变超过混凝土压应力达到峰值所对应的应变值ε0时,受力过程进入了第Ⅲ阶段,此时施加于构件的外荷载不再增加,而构件的压缩变形继续增加,一直到变形达到混凝土极限压应变,这时轴心受压构件出现的纵向裂缝继续发展,箍筋间的纵筋发生压屈向外

第8章___受扭构件承载力计算1

第8章 受扭构件承载力计算 一、填空题 1、 素混凝上纯扭构件的承载力t t u W f T 7.0=介于__________和__________分析结果之间。t W 是假设________ 导出的。 2、 钢筋混凝土受扭构件随着扭矩的增大,先在截面________最薄弱的部位出现斜裂缝,然后形成大体连续的 _________。 3、 由于配筋量不同,钢筋混凝土纯扭构件将发生__________破坏、________破坏、___________破坏、_________ 破坏。 4、 钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力___________;扭矩的增加将使构件的抗剪承载 力_____________。 5、 为了防止受扭构件发生超筋破坏,规范规定的验算条件是_____________。 6、 抗扭纵向钢筋应沿__________布置,其间距______________。 7、 T 行截面弯、剪、扭构件的弯矩由___________承受,剪力由___________承受,扭矩由__________承受。 8、 钢筋混凝土弯、剪、扭构件箍筋的最小配筋率min ,sv ρ= __________,抗弯纵向钢筋的最小筋率ρ= __________, 抗扭纵向钢筋的最小配筋率tl ρ= ___________。 9、 混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在___________范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成________形状。,且箍筋的两个端头应 ______________________。 二、判断题 1、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 ( ) 2、素混凝土纯扭构件的抗扭承载力可表达为t t u W f T 7.0=,该公式是在塑性分析方法基础上建立起来的。 ( ) 3、受扭构件中抗扭钢筋有纵向钢筋和横向箍筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。( ) 4、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值ζ应满足以下条件:0.6≤ζ≤1.7。 ( ) 5、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。( ) 6、矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式cor stl yv t t A S A f W f T ζ 2.135.0+≤只考虑混凝土和箍 筋提供的抗扭计算。 ( ) 7、在纯扭构件中,当t t W f T 175.0≤时,可忽略扭矩的影响,仅按普通受弯构件的斜截面受剪承载力公式计算箍 筋用量。 ( ) 8、在弯、剪、扭构件中,当0035.0bh f V t c ≤或05 .11 .0bh f V t c +≤ λ时,可忽略剪力的影响,按纯扭构件的受 承载力公式计算箍筋用量。 ( )

轴心受力构件习题及问题详解

轴心受力构件习题及答案 一、选择题 的构件,在拉力N作用下的强度计算公1. 一根截面面积为A,净截面面积为A n 式为______。 2. 轴心受拉构件按强度极限状态是______。 净截面的平均应力达到钢材的抗拉强度 毛截面的平均应力达到钢材的抗拉强度 净截面的平均应力达到钢材的屈服强度 毛截面的平均应力达到钢材的屈服强度 3. 实腹式轴心受拉构件计算的容有______。 强度强度和整体稳定性强度、局部稳定和整体 稳定强度、刚度(长细比) 4. 轴心受力构件的强度计算,一般采用轴力除以净截面面积,这种计算方法对下列哪种连接方式是偏于保守的? 摩擦型高强度螺栓连接承压型高强度螺栓连 接普通螺栓连接铆钉连接 5. 工字型组合截面轴压杆局部稳定验算时,翼缘与腹板宽厚比限值是根据 ______导出的。 6. 图示单轴对称的理想轴心压杆,弹性失稳形式可能为______。

X轴弯曲及扭转失稳Y轴弯曲及扭转失稳 扭转失稳绕Y轴弯曲失稳 7. 用Q235号钢和16锰钢分别建造一轴心受压柱,其长细比相同,在弹性围屈曲时,前者的临界力______后者的临界力。 大于小于等于或接近无法 比较 8. 轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,是因为______。 格构构件的整体稳定承载力高于同截面的实腹构件 考虑强度降低的影响 考虑剪切变形的影响 考虑单支失稳对构件承载力的影响 9. 为防止钢构件中的板件失稳采取加劲措施,这一做法是为了______。 改变板件的宽厚比增大截面面积改变截面上 的应力分布状态增加截面的惯性矩 10. 轴心压杆构件采用冷弯薄壁型钢或普通型钢,其稳定性计算______。 完全相同 仅稳定系数取值不同 仅面积取值不同 完全不同 11. 工字型截面受压构件的腹板高度与厚度之比不能满足按全腹板进行计算的要求时,______。

受扭构件承载力计算

第六章受扭构件承载力计算 思考题 6.1在实际工程中有哪些构件有扭矩作用? ①詹口竖向荷载作用的挑詹梁。 ②受水平作用的吊车梁。 ③现浇框架的边梁。 6.2在抗扭矩计算中如何避免少筋破坏和超筋破坏? 为了防止出现混凝土先压碎的超筋构件的脆性破坏,配筋率的上限以截面限制条件的形式给出 T≤0.2βfcWt 最小配箍率ρsumin对纯扭构件取:ρsvmin=0.28ft fyv 最小纵筋配筋率ρtl,min = 0.85 ft fyv 6.3什么是配筋强度比?配筋强度比的范围为什么要加以限制?即纵筋与箍筋的体积比和强度比的乘积 ξ=fyAstls / Fyv AstlUcor 加以限制才能保证构件破坏时纵筋和箍筋的强度都得以充分利用。 6.4《规范》抗扭承载力计算公式中βt 的物理意义是什么? Βt 称为剪扭构件混凝土强度降低系数。用来考虑剪扭构件混凝土抵抗剪力和扭矩之间的相关性。物理意义为随着同时作用的扭矩增大,物件的抗剪承受力逐渐降低;当扭矩达到纯扭构件的承载力时,其抗剪承载力下降为零。反之亦然。

6.5受扭构件中纵筋和箍筋的配置应注意哪些问题? ⑴剪扭构件中,箍筋的配筋率ρsv(ρ=Asv / Bs)不应小于0.28ft/ fyv ,箍筋间距应符合表5-1的规定。箍筋应做成封闭。箍筋末端应做成135°弯钩。其平直段长度不应小于5倍箍筋直径或50mm。当采用多肢箍筋受剪时,受扭所需箍筋应采用沿截面周面布置的封闭箍筋,受剪箍筋壳采用复合箍筋。(2)纵向钢筋的配筋率,不应小于受拉构件纵向受拉钢筋的最小 ρ之和。 配筋率和受扭纵向钢筋的最小配筋率 tl ,min

受压构件承载力计算复习题(答案)详解

受压构件承载力计算复习题 一、填空题: 1、小偏心受压构件的破坏都是由于 而造成 的。 【答案】混凝土被压碎 2、大偏心受压破坏属于 ,小偏心破坏属 于 。 【答案】延性 脆性 3、偏心受压构件在纵向弯曲影响下,其破坏特征有两 种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。 【答案】强度破坏 失稳 4、在偏心受压构件中,用 考虑了纵向弯曲的 影响。 【答案】偏心距增大系数 5、大小偏心受压的分界限是 。 【答案】b ξξ= 6、在大偏心设计校核时,当 时,说明s A '不屈 服。 【答案】s a x '2 7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

【答案】b ξξ≤ b ξξ 8、偏心受压构件 对抗剪有利。 【答案】轴向压力N 9、在钢筋混凝土轴心受压柱中,螺旋钢筋的作用是使截面中间核心部分的混凝土形成约束混凝土,可以提高构件的______和______。 【答案】承载力 延性 10、偏心距较大,配筋率不高的受压构件属______受压情况,其承载力主要取决于______钢筋。 【答案】大偏心 受拉 11、受压构件的附加偏心距对______受压构件______受压构件影响比较大。 【答案】轴心 小偏心 12、在轴心受压构件的承载力计算公式中,当f y <400N /mm 2 时,取钢筋抗压强度设计值f y '=______;当f y ≥400N /mm 2时,取钢筋抗压强度设计值f y '=______N /mm 2。 【答案】f y 400 二、选择题: 1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。 A 受压混凝土是否破坏 B 受压钢筋是否屈服 C 混凝土是否全截面受压 D 远离作用力N 一侧钢筋是否屈服

习题-第五章 受扭承载力计算

第5章 受扭构件承载力计算 一、填空题 1、素混凝土纯扭构件的承载力0.7u t t T f w =介于 和 分析结果之间。t w 是假设 导出的。 2、钢筋混凝土受扭构件随着扭矩的增大,先在截面 最薄弱的部位出现斜裂缝,然后形成大体连续的 。 3、由于配筋量不同,钢筋混凝土纯扭构件将发生 破坏、 破坏、 破坏和 破坏。 4、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。 5、为了防止受扭构件发生超筋破坏,规范规定的验算条件是 。 6、抗扭纵向钢筋应沿 布置,其间距 。 7、T 形截面剪、扭构件的剪力由 承受,扭矩由 承受。 8、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率,min sv ρ= ,抗弯纵向钢筋的最小配筋率ρ= ,抗扭纵向钢筋的最小配筋率tl ρ= 。 9、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在 范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 11、钢筋混凝土受扭构件计算中应满足10.6 1.7stl y st yv cor A f s A f u ζ??≤=≤??,其中 0.6ζ≤的目的是保证 在极限状态时屈服, 1.7ζ≤的目的是保证 在极限状态时屈服。 二、判断题 1、构件中的抗扭纵筋应尽可能地沿截面周边布置。 2、在受扭构件中配置的纵向钢筋和箍筋可以有效地延缓构件的开裂,从而大大提高开裂扭矩值。 3、受扭构件的裂缝在总体上成螺旋形,但不是连贯的。 4、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 5、素混凝土纯扭构件的抗扭承载力可表达为0.7U t t T f w =,该公式是在塑性分析方法基础上建立起来的。

8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件 ...

8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件的受扭承载力计算 2.掌握剪扭相关性的含义 3.受扭塑性抵抗矩的推导方法 4.掌握抗扭纵筋和箍筋的构造要求 二、重点难点 1.剪扭相关性的应用 2.弯剪扭构件受扭承载力的计算 三、主要内容 8.1概述 钢筋混凝土构件的扭转可分为两类:平衡扭转和协调扭转。 平衡扭转:若构件中的扭矩由荷载直接引起,其值可由平衡条件直接求出, 协调扭转:若扭矩是由相邻构件的位移受到该构件的约束而引起该构件的扭转, 这种扭矩值需结合变形协调条件才能求得,这类扭转称为协调扭转。 构件在扭矩作用下将产生剪应力和相应的主拉应力,当主拉应力超过混凝土的抗拉强度时,构件便会开裂,因此需要配置钢筋来提高构件的受扭承载力。 8.2 构件的开裂扭矩 8.2.1矩形截面构件的开裂扭矩 (1)匀质弹性材料受扭应力分布 由材料力学可知,匀质弹性材料的矩形截面受扭时, 截面上将产生剪应力τ (图8.2),截面剪应力的分布如图 8.3a 所示,最大剪应力产生在矩形长边中点。由微元体 平衡可知,主拉应力τσ=tp 其方向与构件轴线成450角。 当主拉应力超过混凝土的抗拉强度时,首先将在截面长边 中点处垂直于主拉应力方向上开裂,然后逐渐伸展,裂缝与纵轴线大致成450角。 (2)理想塑性材料受扭应力分布 对于理想的塑性材料来说,截面上某一点的应力达到强度权

限时,构件并不立即破坏,只意味着局部材料开始进入塑性状态,构件仍能承受荷载,直到截面上的应力全部达到强度极限时,构件才达到其极限受扭承载力,这时截面上剪应力的分布如图8.3b 所示。 (3)弹塑性材料受扭应力分布 由于混凝土既不是理想的弹性材料又不是理想的塑性材料,而是介于两者之间的弹塑性材料。与实测的开裂扭矩相比,按理想的弹性应力分布计算的值偏低,而按理想的塑性应力分布计算的值又馆高。要想准确地确定截面真实的应力分布是十分困难的,比较切实可行的办法是在按塑性应力分布计算的基础上,根据试验结果乘以一个降低系数。 设矩形截面的边长长边为h ,短边为b ,根据塑性力学理论,当截面上各点的剪应力都达到混凝土的抗拉强度六时,构件才达到其极限扭矩。为了便于计算,可近似将截面上的剪应力分布划分为四个部分,即两个梯形和两个三角形(8.3c)。计算各部分剪应力的合力及相应组成的力偶,对截面的扭转中心O 点取矩,可求得按塑性应力分布时截面所能承受的极限扭矩为 混凝土不是理想塑性材料。试验表明,对于高强度混凝土,其降低系数约为0.7,对于低强度混凝土,其降低系数接近0.8,为计算方便统一取0.7。又由于素混凝土构件的开裂扭矩和极限扭矩基本相同,因此可以得开裂扭矩的计算公式为T cr =0.7t t W f 受扭塑性抵抗矩t W 的计算公式也可以借助堆沙模拟法得到。设砂堆安息角各斜面均为α,沙堆体积为V ,则截面的受扭塑性抵抗矩为αtan 2V W t = 一般可取方便的α值,如取450,相应的1tan =α 矩形截面,取45=α0,则2 b H =,这样 )3(6 ])2(31[2)])((21[222 b h b H b b b h bH V W t -=?+-==

偏心受压构件承载力计算

轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M 的共同作用时,等效于承受一个偏心距为 e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0 的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0 较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0 较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0 较小,或偏心距e0 虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu 被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0 较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

受压构件的承载力计算

受压构件的承载力计算 6.1 重点与难点 6.1.1 轴心受压构件正截面承载力计算 1. 配置一般箍筋的柱 受压破坏时混凝土被压碎,纵向受压钢筋达到其受压屈服强度,正截面承载力公式如下: )''(9.0s y c u A f A f N N +=≤? (6—1) 式中:φ—稳定性系数,按规范查表6.2.15确定,对于短柱,φ=1(如 矩形截面,当80≤b l 时即为短柱,b 为截面较小边长;圆形7/0≤d l ,d 为直径;其他截面,28/0≤i l ,i 为截面最小回转半径); A —构件截面面积,但当纵向钢筋配筋率大于3%时,取混凝土 净截面面积' S A A -; 'y f ——纵向钢筋抗压强度设计值; N ——轴向压力设计值;其他符号与前同; 0.9——可靠度调整系数 2. 配置螺旋式(或焊接环式)箍筋的柱 柱截面形状一般为圆形或多边形。受压破坏时核芯混凝土达到其 三向抗压强度,保护层剥落,纵向受压钢筋达到其受压屈服强度,环向箍筋达到其抗拉屈服强度,正截面承载力公式如下: )2(9.00''ss y s y cor c u A f A f A f N N α++=≤ (6—2) s A d A ss cor ss 1 0 π= (6—3) 式中: cor A ——构件的核心截面面积;取间接钢筋内表面范围内混凝土面积 y f ——间接钢筋的抗压强度设计值;0ss A ——间接钢筋的换算截面面积; cor d ——构件的核心截面直径; s ——间接钢筋间距; 1ss A ——单根间接钢筋的截面面积; α——间接钢筋对砼的约束的折减系数:C50级以下砼,α=1.0 ,C80级砼,α=0.85 其间现性插入。 按式(6—2)计算时尚须注意: ⑴式(6—2)计算的承载力设计值不应大于按式(6—1)计算所得的1.5倍; ⑵下列任一情况下,不考虑间接钢筋的作用。 ①当120>d l 时; ②当按式(6—2)算得的承载力设计值小于按式(6—1)计算所得值时; ③当' 0%25s ss A A <时。 6.1.2 偏心受压构件正截面承载力计算 1. 偏心受压构件的破坏特征 ⑴受拉破坏(大偏心受压破坏) 当相对偏心距较大,且受拉钢筋配置不太多时发生此种破坏。破坏始于受拉钢筋 (离轴

轴心受压构件纵向受压钢筋计算

结构构件计算书 轴心受压构件纵向受压钢筋计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号: ZH-1 二、依据规范: 《混凝土结构设计规范》 (GB 50010-2010) 三、计算参数 1.几何参数: 截面形状: 矩形 截面宽度: b=400mm 截面高度: h=400mm 构件的计算长度: lo=5000mm 2.材料信息: 混凝土强度等级: C30 fc =14.3N/mm2 钢筋类型: HRB335 fy'=300N/mm2 3.设计参数: 结构重要性系数: γo=1.0 纵筋最小配筋率: ρmin=0.600% 4.荷载信息: 轴向力设计值: N=2000.000kN 四、计算过程 1.确定稳定系数Φ: lo/b=5000/400=12.500 查《混凝土结构设计规范》(GB 50010-2010)表6.2.15 得, Φ= 0.943 2.计算纵筋面积A's: 截面面积A=bh=400*400=160000mm2 A's= (γo*N/0.9Φ-fc*A)/fy' = (1.0*2000.000*1000/(0.9*0.943)-14.3*160000)/300=228mm2 纵筋配筋率ρ=A's/A=(228/160000)%=0.143%≤3%,结果符合标准。 3.验算纵筋配筋率: ρ=A's/A=(228/160000)%=0.143% ρmin=0.600% ρ<ρmin 纵筋配筋率不满足要求 所以满足最小配筋面积A's=A*ρmin=160000*0.600=960mm2 第1页,共1页

受扭构件承载力计算

第六章 受扭构件承载力计算 思考题 6.1在实际工程中有哪些构件有扭矩作用? ①詹口竖向荷载作用的挑詹梁。 ②受水平作用的吊车梁。 ③现浇框架的边梁。 6.2在抗扭矩计算中如何避免少筋破坏和超筋破坏? 为了防止出现混凝土先压碎的超筋构件的脆性破坏,配筋率的上限以截面限制条件的形式给出 T≤0.2βfcWt 最小配箍率ρsumin对纯扭构件取:ρsvmin=0.28ft fyv 最小纵筋配筋率ρtl,min = 0.85 ft fyv 6.3什么是配筋强度比?配筋强度比的范围为什么要加以限制?即纵筋与箍筋的体积比和强度比的乘积 ξ=fyAstls / Fyv AstlUcor 加以限制才能保证构件破坏时纵筋和箍筋的强度都得以充分利用。 6.4《规范》抗扭承载力计算公式中βt 的物理意义是什么? Βt 称为剪扭构件混凝土强度降低系数。用来考虑剪扭构件混凝土抵抗剪力和扭矩之间的相关性。物理意义为随着同时作用的扭矩增大,物件的抗剪承受力逐渐降低;当扭矩达到纯扭构件的承载力时,其抗剪承载力下降为零。反之亦然。 6.5受扭构件中纵筋和箍筋的配置应注意哪些问题?

⑴剪扭构件中,箍筋的配筋率ρsv(ρ=Asv / Bs)不应小于0.28ft/ fyv ,箍筋间距应合表5-1的规定。箍筋应做成封闭。箍筋末端应做成135°弯钩。其平直段长度不应小于5倍箍筋直径或50mm。当采用多肢箍筋受剪时,受扭所需箍筋应采用沿截面周面置的封闭箍筋,受剪箍筋壳采用复合箍筋。(2)纵向钢筋的配筋率,不应小于受拉构件纵向受拉钢筋的最小配筋率和受扭纵向钢筋的最小配筋率之和。 习题 6.1已知钢筋混凝土矩形截面构件,b×h=250mm×400mm,支座处承受 扭矩设计值T=8kN.m,弯矩设计值M=45kN.m,均布荷载产生的剪力设 计值V=46kN,采用C20混凝土,纵筋和箍筋均采用HPB235钢筋,试计 算其配筋。 解:(1)验算截面尺寸。C20混凝土f c=9.6N/mm2,f t=1.1N/mm2, HPB235钢筋f y=210N/mm2, . 截面尺寸符合要求。 (2)验算是否需要按计算配置受扭钢筋 故需按计算配置抗扭和抗剪钢筋。 (3)确定计算方法 故不能忽略剪力和扭矩的影响,应该按弯剪扭共同计算。 (4)计算抗剪箍筋 由,采用双肢箍,n=2,则 (5)计算抗扭箍筋 由,取 (6) 计算抗扭纵筋 (7)计算抗弯纵筋 ,查表=0.626,为适筋。 (8)计算抗弯纵筋 选Ф8双肢箍,㎜2,则箍筋间距。 取

受压构件承载力计算例题

受压构件承载力计算 1、某现浇框架柱,截面尺寸为 300×300,轴向压力设计值 N = 1400 kN ,计算长度 3.57 m ,采用 C30 混凝土、Ⅱ级(HRB335)钢筋。求所需纵筋面积。 解:9.1130035700==b l ,查得ψ= 0.9515, ???? ??-=A f N f A c y s ?9.0'1'=??? ? ????-??3003003.14962.09.010*********=1159.5mm 2 ,A A s ''=ρ= 3003003 .1159?=0.01288 > 006.0'min =ρ 2、已知某正方形截面轴心受压柱,计算长度 7.5 m ,承受轴向压力设计值N = 1800 kN ,混凝土强度等级为 C20,采用Ⅱ(HRB335)级钢筋。试确定构件截面尺寸及纵向钢筋截面面积。 解:75.1840075000==b l ,查得ψ= 0.7875 ???? ??-=A f N f A c y s ?9.0'1'=6.33454004006.97875.09.010*********=??? ? ????-??mm 2 , A A s ''=ρ= 4004006 .3345?=0.021>006.0'min =ρ 3、 已知一偏心受压柱,b ×h = 450×450,α=α′= 40,C30,HRB335钢筋,ξ b = 0.55,承受纵向力 N = 350 kN ,计算弯距 M = 220 kN ·m 。柱计算长度为 l0= 3.0 m ,受压区钢筋A's = 402 (2#16),求受拉区钢筋面积。 解: (1) 设计参数 0.11=α,α=α′= 40, h 0=410 , f c =14.3 2/mm N ,2/300mm N f y =' e0= 630,取ea =20,ei =e0 +ea =e0+20=648 ==N A f c 5.01ζ=???3500004504503.145.0 4.1 取ζ1=1 08.1450 3000 01.015.101.015.102=?-=-=h l ζ,取ζ2=1 =????+ =??? ??+=11)450 3000(4506481400111400 112 212 00 ζζηh l h e i 1.02 (2) 受压区高度 ηei = 661> 0.3 h 0 按大偏压计算 e=661+(450/2-40)= 846, ) ()2('0''01a h A f x h bx f Ne s y c -+-=α ) 40410(402300)2410(45014.31846350000-?+-??=?x x

第7章 受扭构件承载力讲解

第7章 受扭构件承载力 一、判断题 1.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( F ) 2.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是混凝土和钢筋均考虑相关关系。( F ) 3.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应不受限制。( F ) 4.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( F ) 5.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是混凝土和钢筋均考虑相关关系;( F ) 6. 在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应不受限制( F ) 二、单选题 1.钢筋混凝土受扭构件中受扭纵筋和箍筋的配筋强度比7.16.0<<ζ说明,当构件破坏时,( A )。 A 、纵筋和箍筋都能达到屈服; B 、仅箍筋达到屈服; C 、仅纵筋达到屈服; D 、纵筋和箍筋都不能达到屈服。 2.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应( D )。 A 、不受限制; B 、 0.20.1<<ζ; C 、 0.15.0<<ζ; D 、7.16.0<<ζ。 3.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是:( D )。 A . 混凝土和钢筋均考虑相关关系; B . 混凝土和钢筋均不考虑相关关系; C . 混凝土不考虑相关关系,钢筋考虑相关关系; D . 混凝土考虑相关关系,钢筋不考虑相关关系。 4.钢筋混凝土T 形和I 形截面剪扭构件可划分为矩形块计算,此时( C )。 A . 腹板承受全部的剪力和扭矩; B . 翼缘承受全部的剪力和扭矩; C . 剪力由腹板承受,扭矩由腹板和翼缘共同承受;

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 N、 <7 =——< f(4-1) 4 式中:N一构件的轴心拉力或压力设计值; A,_——构件的净截面面积; f——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已山孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: N' b =——

轴心受力构件的刚度是以限制其长细比来保证的,即

2 <[A] 式中:A——构件的最大长细比; [2]——构件的容许长细比。 3.轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: (4-25) 式中:(P—轴心受压构件的整体稳定系数,0 = 2工。 J y 整体稳定系数0值应根据构件的截面分类和构件的长细比查表得到。 构件长细比兄应按照下列规定确定: (1)截面为双轴对称或极对称的构件 (4-26) 式中:h,心一构件对主轴x和y的计算长度; 止,.一构件截面对主轴x和〉,的回转半径。 双轴对称十字形截面构件,人或九取值不得小于5.07b/t (其中b/t为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为),轴)的稳定应取计?及扭转效应的下列换算长细比代替心 葢“詔/(人/25.7 + J//:)

相关文档
最新文档