反向比例运算等电路设计

反向比例运算等电路设计
反向比例运算等电路设计

集成运放基本运算电路的分析与设计

实验报告 实验名称集成运放基本运算电路的分析与设计 课程名称模电实验 院系部:控计专业班级: 学生姓名:学号: 同组人:实验台号: 指导老师:成绩: 实验日期: 华北电力大学 一、实验目的和要求 1.掌握使用集成运算放大器构成反相输入比例运算电路、同相输入比例运算电路、反相输入求和运算电路、减法运算电路的方法。2.进一步熟悉该基本运算电路的输出与输入之间的关系。 二、实验设备 1.模拟实验箱 2.数字万用表 3.运算放大器LM324 4.10K、20K、100K的电阻若干

5.模拟实验箱上有滑动变阻器可供同学使用 三、实验原理. 实际运放具有高增益、低漂移、高输出阻抗、低输出阻抗、可靠性高的特点,可视为理想器件。运放的理想参数: 1.开环电压增益 A=∞vd2.输入电阻 R=∞,R=∞icid3.输出电阻 R =0 o4.开环带宽 BW= ∞ KCMR =∞.共模抑制比5 .失调电压、电流6 、=0VI=0 ioio 根据分析时理想运放的条件,得出两个重要结论: =V 虚开路:I=0 V虚短路:i+-下图为反相比例运算放大器与同相比例运算放大器。 四、实验方法与步骤: 1.反向输入比例运算 按实验原理中所示电路接线,接通电源。从实验箱的直流信号源引入输入信号U,测量对应的输出信号U的值,算出A,将实验值与理论值uiO相比较,分析误差产生的原因。 2.同向输入比例运算 参照反相输入比例运算的电路,设计比例系数为6的同相比例运算电路,设计出相应的电路图及表格,得到四组数据。并将测量值与设计要求进行比较。 输入电压不能过大,要保证运放工作在线性区。

3.反向输入比例求和运算 按实验原理中所示电路接线,接通电源。从实验箱的直流信号源引入输入信号U,测量对应的输出信号U的值,算出A,将实验值与理论值uOi相比较,分析误差产生的原因。 4.减法运算 参照反相输入求和运算的电路,设计比例系数为5的减法运算电路,设计出减法运算的电路图及相应的表格,得到四组数据。然后将测量值与设计要求进行比较。. 输入电压不能过大从而保证运放工作在线性区。五、实验结果与数据处理反向输入比例运算(V) U i U(V) o A 实验值u A-5 计算值 -5 -5 -5 u同向输入比例运算自行设计的电路图 自行设计的表格 (V)i (V) U o A 实验值u A6 6 6 6 计算值u反向输入求和运算 U(V) i1U-1 1 -1 (V) 1 i2U实验值o U计算值o减法运算自行设计电路图 自行设计表格 U (V) i1. -1 1 -1 1 (V) U i2U 实验值o U 计算值o六、思考题第

基本运算电路实验报告

实报告 课程名称:电路与模拟电子技术实验指导老师:成绩: 实验名称:基本运算电路设计实验类型:同组学生姓名: 一、实验目的和要求: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 二、实验设备: 双运算放大器LM358 三、实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信 息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠 加到交流电压上,使得交流电的零线偏移 (正负电压不对称),但是由于交流电可 以通过“隔直流”电容(又叫耦合电容) 输出,因此任何漂移的直流缓变分量都不 能通过,所以可以使输出的交流信号不受 失调电压的任何影响。 专业: 姓名: 日期: 地点:紫金港东

5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 四、实验步骤: 1.实现两个信号的反相加法运算 实验电路: R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差 输入信号v s1v s1输出电压v o ,1kHz 0 2.减法器(差分放大电路) 实验电路: R1=R2、R F=R3 输入信号v s1v s1输出电压v o ,1kHz 0 共模抑制比850 3.用积分电路转换方波为三角波 实验电路: 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。 因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变

反相比例运算电路

西安建筑科技大学华清学院课程设计(论文) 课程名称:模拟电子线路电课程设计 题目:反相比例运算电路 院(系):机械电子工程系 专业班级:电子信息科学与技术0902 姓名:谢宏龙 学号:0906030216 指导教师:高树理 2011年7 月8 日

摘要 本设计主要通过Multisim软件实现了对模拟电子基础中的集成运电路的设计和模拟。小组成员分别对由集成运放电路组成的反相运算放大电路和同相运算放大电路进行设计。设计主要内容包括:由集成运算放大电路组成的反相比例运算放大电路跟随器的输出波形的观察和比较,求出它的电压放大倍数,电阻的分析和比较,共模输入电压的比较分析,构成同相比例运算放大电路的原理和特性的介绍,通过对同相和反相比例运算放大电路的比较得出一些结论。在本设计中,不仅包括实验所要求的内容,而且对由集成运算放大电路构成的同相放大电路和由集成运放构成的反相比例运算放大电路原理和作用作了比较详细的的说明,这样能够使大家更好的对其组成的电路能够更好的了解,同时也使人们了解到了其的应用以及功能所在,以便更合理的应用它们。 关键字Multisim,反相运算放大器,同相运算放大器,

目录 1绪论 (2) 2M u l t i s i m的简介 (3) 3集成运算放大器电路的介绍和特性 (3) 3.1介绍 (3) 3.2特性 (3) 4由集成运算短路构成的反相比例运算电路的设计 (4) 4.1电路图设计 (4) 4.2反相比例运算电路波形的观察 (4) 4.3 由集成运算短路构成的反相比例运算电路特性 (5) 5 由集成运算短路构成的同相比例运算电路的特性和原理 (5) 5.1原理 (5) 5.2特性 (6) 6反相比例运算电路和同相电路的对比 (6) 7课设的体会与心得 (6) 8结束语 (7)

加减法运算电路设计

电子课程设 ——加减法运算电路设计 学院:电信息工程学院 专业:电气工程及其自动化 班级: 姓名: 学号: 指导老师:闫晓梅 2014年12月19日

加减法运算电路设计 一、设计任务与要求 1.设计一个4位并行加减法运算电路,输入数为一位十进制数, 2.作减法运算时被减数要大于或等于减数。 3.led灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算 模式,运算完毕,所得结果亦用数码管显示。 4.系统所用5V电源自行设计。 二、总体框图 1.电路原理方框图: 图2-1二进制加减运算原理框图 2.分析: 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。

例如: 若选择加法运算方式,则(1001)2+(0111)2=(10000)2 十进制9+7=16,并在七段译码显示器上显示16; 若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2,并在七段译码显示器上显示02。 三、选择器件 1.器件种类: 表3-1 2.重要器件简介: (1) . 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。 1).74LS283 基本特性:供电电压: 4.75V--5.25V 输出高电平电流: -0.4mA 输出低电平电流: 8mA 。 2).引脚图: 图3-1 引出端符号: A1–A4 运算输入端 B1–B4 运算输入端 C0 进位输入端 序号 元器件 个数 1 74LS283D 2个 2 74LS86N 5个 3 74LS27D 1个 4 74LS04N 9个 5 74LS08D 2个 6 七段数码显示器 4个 7 74LS147D 2个 8 开关 19个 9 LM7812 1个 10 电压源220V 1个 11 电容 2个 12 直流电压表 1个

反向比例运算电路

反向比例运算电路 (1)电路的组成 图—1 反向比例运算电路的组成如图—1所示。由图可见,输入电压u i 通过电阻R 1加在运放的反向输入端。R f 是沟通输出和输入的通道,是电路的反馈网络。 同向输入端所接的电阻R P 为电路的平衡电阻,该电阻等于从运放的同向输入端 往外看除源以后的等效电阻,为了保证运放电路工作在平衡的状态下,同相输入端的电阻应该取 R P =R 1//R f (2)电压放大倍数

图-2 理想运算放大器组成的反相比例运算电路见图-2,显然是一个电压并联负反馈电路。 在输入信号作用下,输入端有电流i I、i′I、 i f 。 根据虚断的特性有i'I≈0 于是i I≈i f 根据虚短的特性,有u+ ≈ u- 所以 放大倍数A u为 (3)反向比例运算电路的输入电阻 为了保证运放电路工作在平衡的状态下,同相输入端的电阻应该取 R P =R1//R f (4)由于反向比例运算电路具有虚地的特点。所以共模输入电压为 反相比例运算电路由于具有“虚地”的特点,运放的同相输入端和反相输入端均为0电位,所以反相比例运算电路的共模输入电压等于0。 结论: 1. 电路是深度电压并联负反馈电路,理想情况下,反相输入端“虚地”,共模输入电压低。 2. 实现了反相比例运算。|Au| 取决于电阻 R f和 R1之比。U0与 U i反相, | Au | 可大于1、等于 1 或小于 1 。 3. 电路的输入电阻不高,输出电阻很低。 4. 虽然理想运放的输入电阻为无穷大,由于引入并联负反馈后,电路的输入电阻减少了,变成R 1 ,要提高反向比例运算放大器的输入电阻,需加大电阻 R 1的值。R 1 的值越大,R f 的值也必需加大,电路的噪声也加大,稳定性越差。 f o 1 I R u R u - ≈ 1 I I I I i R i u i u R= - = =

运放三种输入方式的基本运算电路及其设计方法

熟悉运放三种输入方式的基本运算电路及其设计方法 2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。 3、了解积分、微分电路的工作原理和输出与输入的函数关系。 学习重点:应用虚短和虚断的概念分析运算电路。 学习难点:实际运算放大器的误差分析 集成运放的线性工作区域 前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放。 当集成运放工作在线性区时,作为一个线性放大元件 v o=A vo v id=A vo(v+-v-) 通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证v o不超出线性范围。 对于工作在线性区的理想运放有如下特点: ∵理想运放A vo=∞,则 v+-v-=v o/ A vo=0 v+=v- ∵理想运放R i=∞ i+=i-=0 这恰好就是深度负反馈下的虚短概念。 已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i= 2MΩ。则v+-v-=?,i+=?,i-=?

可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。 这说明在工程应用上,把实际运放当成理想运放来分析是合理的。 返回 第二节基本运算电路 比例运算电路是一种最基本、最简单的运算电路,如图8.1所示。后面几种运算电路都可在比例电路的基础上发展起来演变得到。v o∝ v i:v o=k v i(比例系数k即反馈电路增益 A vF,v o=A vF v i) 输入信号的接法有三种: 反相输入(电压并联负反馈)见图8.2

同相输入(电压串联负反馈)见图8.3 差动输入(前两种方式的组合) 讨论: 1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。 2)分析时都可利用"虚短"和"虚断"的结论: i I=0、v N=v p。见图8.4

反相比例运算电路仿真分析.doc

1 反相比例运算电路 1.1 综述 反相比例运算电路实际上是深度的电压并联负反馈电路。在理想情况下,反相输入端的电位等于零,称为“虚地”。因此加在集成运放输入端的共模电压很小。 输出电压与输入电压的幅值成正比,但相位相反,因此,电路实现了反相比例运算。比例系数的数值决定于电阻RF与R1之比,而与集成运放内部各项参数无关。只要RF 和R1的阻值比较准确和稳定,即可得到准确额比例运算关系。比例系数的数值可以大于或等于1,也可以小于1。 由于引入了深度电压并联负反馈,因此电路的输入电阻不高,而输出电阻很低。1.2 工作原理 1.2.1 原理图说明 图1.2.1.1 反相比例运算电路 如图所示,输入电压V1经电阻R1接到集成运放的反相输入端,运放的同相输入端经电阻R2接地。输出电压经反馈电阻RF引回到反相输入端。 集成运放的反相输入端和同相输入端,实际上是运放内部输入级两个差分对管的基极。为使差分放大电路的参数保持对称,应使两个差分对管基极对地的电阻尽量一致,以免静态基流流过这两个电阻时,在运放输入端产生附加的偏差电压。因此,通常选择R2的阻值为R2=R1∥RF 经过分析可知,反相比例运算电路中反馈的组态是电压并联负反馈。由于集成运放

的开环差模增益很高,因此容易满足深度负反馈的条件,故可以认为集成运放工作在线性区。所以,可以利用理想运放工作在线性区时“虚短”和“虚断”的特点来分析反相比例运算电路的输出输入关系。 由于“虚断”,U +=0 又因“虚短”,可得 U - =U + =0 由于 I -=0 , 则由图可见 I I =I F 即(U I -U - )/R1=(U—U )/RF 上式中U - =0,由此可求得反相比例运算电路的输出电压与输入电压的关系为 U 0=-RF·U I /R1 1.2.2 元件表 元件名称大小数量 集成运算放大器741 1 直流电源1V 1 电阻 6.8K 1 10K 1 20K 1 1.3 仿真结果分析 图1.3.1 仿真分析结果图 由于输入电压为1V,所以根据公式可得输出电压为-1.997,符合理论。

除法运算电路(模拟电路课程设计)

模拟电路课程设计报告设计课题:除法运算电路 专业班级: 学生: 学号: 指导教师: 设计时间:

目录 第一设计任务与要求 (3) 第二方案设计与论证 (3) 第三单元电路设计与参数计算 (4) 第四总原理图及元器件清单 (9) 第五安装与调试 (11) 第六性能测试与分析 (12) 第七结论与心得 (14) 第八参考文献 (15)

题目4:除法运算电路(4) 一、设计任务与要求 1.设计一个二输入的除法运算电路。 2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 该课程设计是做一个二输入的除法电路,而因此需要利用对数和指数运算电路实现或者用模拟乘法器在集成运放反馈通路中的应用来实现。 在产生正、负电源的实用电路中,多采用全波整流电路,最常用的是单向桥式整流电路,即将四个二极管首尾相连,引出两根线接变压器,另外两个接后面电路,并将桥式整流电路变压器副边中点接地,并将二个负载电阻相连接,且连接点接地。电容滤波电路利用电容的充放电作用,使输出电压趋于平滑。 方案一: 除法电路的输出电压正比于其两个输入电压相除所得的商,所以利用对数电路、差分比例运算电路和指数电路,可得除法运算电路的方块图: I1 u

方案二: 利用反函数型运算电路的基本原理,将模拟乘法器放在集成运放的反馈通路中,便可构成除法运算电路。 比较: 方案一:该方案是利用对数电路、差分比例运算电路和指数电路的组合来设计的,运算放大器uA741要四个,电阻也很多,对焊接有很大的要求,要焊的器件比较多,相对来说比较复杂。 方案二:该方案是利用模拟乘法器放在集成运放的反馈通路中的应用, uA741只要一个,电阻也很少,焊接起来比较方便。 我选择方案二。 三、单元电路设计与参数计算 1.对数运输电路 (1)电路原理图 由二极管方程知 ) 1e (D S D -=T U u I i 当 u D >>U T 时, T U u I i D e S D ≈

01运算放大器16个基本运算电路设计

运算放大器16个基本运算电路设计 一、集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为 芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 1.1反向比例电路 第1题:电路如下,推导输入与输出的关系,计算电路的理论值,并与仿真值比较,说明电路功能。 v u u R R u i i f 5101 0-=-=-=根据虚断虚短得 1.2反向求和加法电路 第2题:电路如下,推导输入与输出的关系,计算电路的理论值,并与仿真值比较,说明电

路功能。 v u u u R R u R R u i i i f i f 3(10)212 3 11 0-=--=--=—根据虚断虚短得 1.3电压跟随电路 第4题 电路如下,推导输入与输出的关系,计算电路的理论值,并与仿真值比较,说明电路功能。 这是一个电压跟随器: mv u u R R u i i f 100)1(11 1 0==+=

1.4加减运算电路 加减运算电路如图4所示,输入信号1i u 、2i u 分别加在反相输入端和同相输入端,这种形式的电路也称为差分运算电路。 输出电压为: 2 21123 1 (1) f f o i i R R R u u u R R R R =+ - +

基本运算放大器电路设计

基本运算放大器电路设计

————————————————————————————————作者:————————————————————————————————日期:

武汉理工大学 开放性实验报告 (A类) 项目名称:基本运算放大器电路设计实验室名称:创新实验室 学生姓名:**

创新实验项目报告书 实验名称基本运算放大器电路设计日期2018.1.14 姓名** 专业电子信息工程 一、实验目的(详细指明输入输出) 1、采用LM324集成运放完成反相放大器与加法器设计 2、电源为单5V供电,输入输出阻抗均为50Ω,测试负载为50Ω输出误差 不大于5% 3、输入正弦信号峰峰值V1≤50mV,V2=1V,输出为-10V1+V2. 二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页) 通过使用LM324来设计反相放大器和加法器,因为每一个芯片内都有4个运放,所以我们就是使用其内部的运放来连接成运算放大器电路。 我们采用两个芯片串联的方式进行芯片的级联。对于反相放大器,输出电压Vo=-Rf/R1*Vi;对于同相加法器,Vo=(Rf/R1*Vi1+Rf/R2*Vi2)。 由于对该运放使用单电源5V供电,故需要对整个电路的共地端进行 2.5V 的直流偏置。为实现2.5V的共地端,在这里采用了电压跟随器的运放模型。2.5V 的分压点用两个相同100k的电阻进行分压,并根据经验选取了一个10uF的极性电容并联在2.5V分压点处,起滤除电源噪声的作用。最终由电压跟随器输出端作为后面电路的共地端。同样为使反相放大器能够放大10倍,有-Rf/R1=-10,即Rf=10R1,可取R1=10kΩ,Rf=100kΩ,则R2=R1//Rf。对于加法器,有R1=R2=Rf,均取为100kΩ,则R=100kΩ。

反比例放大电路

反比例放大电路 一、实验目的: 1、了解常用电子仪器:示波器、函数信号发生器、直流稳压 电源等的主要特性指标、性能及正确的使用方法。 2、学会自己设计正向反向比例放大电路 3、掌握示波器的基本调整方法和工作模式。 4、了解Multism软件的使用,学会绘制简单的电路图。 5、了解运算放大器的工作原理 二、实验环境 仪器:双踪示波器、函数信号发生器、数字万用表、电路实验箱; 电子元件:电环电阻、集成运算放大器ua741; 软件:Multisim软件; 三、实验原理 集成运算放大器ua741构造图如下: 1、5脚:失调调零端 2:反向输入端(V-) 3:同相输入端(V+) 4:负电源端(-Vee) 6:输出(OUT) 7:正电源端(+Vcc) 8:空 4 3 2 1

注意事项:在连接时8号端口不连,输入输出端(2、3端)需先接电阻再进行输入输出(并且接入的电阻阻值应该相等),正负电源接反就会爆炸!!! 设计电路图如下: 对照本图,运算放大器放大倍数为-Rf/R1(反比例)。 通常将运放视为理想运放,即将运放的各项技术指标理想化,理想运放在线性应用时的两个重要特性:

虚短:因为理想运放的电压放大倍数很大,而运放工作在线性区,是一个线性放大电路,输出电压不超出线性范围(即有限值),所以,运算放大器同相输入端与反相输入端的电位十分接近相等。在运放供电电压为±15V时,输出的最大值一般在10~13V。所以运放两输入端的电压差,在1mV以下,近似两输入端短路。这一特性称为虚短,显然这不是真正的短路,只是分析电路时在允许误差范围之内的合理近似。 虚断:由于运放的输入电阻一般都在几百千欧以上,流入运放同相输入端和反相输入端中的电流十分微小,比外电路中的电流小几个数量级,流入运放的电流往往可以忽略,这相当运放的输入端开路,这一特性称为虚断。显然,运放的输入端不能真正开路。 运用“虚短”、“虚断”这两个概念,在分析运放线性应用电路时,可以简化应用电路的分析过程。运算放大器构成的运算电路均要求输入与输出之间满足一定的函数关系,因此均可应用这两条结论。如果运放不在线性区工作,也就没有“虚短”、“虚断”的特性。如果测量运放两输入端的电位,达到几毫伏以上,往往该运放不在线性区工作,或者已经损坏。

基本运算电路设计实验报告

实验报告 课程名称:电路与模拟电子技术实验 指导老师: 成绩: __________________ 实验名称: 基本运算电路设计 实验类型:______ _同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验目的和要求 1. 掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2. 掌握基本运算电路的调试方法。 3. 学习集成运算放大器的实际应用。 二、实验内容和原理(仿真和实验结果放在一起) 1、反相加法运算电路: 1212 12121 2 =( ) f o I I f f f o I I I I I u u u R R R R R u u u R R ++=-=-+ 当R1=R2时, 121 () f o I I R u u u R =- +,输出电压与Ui1,Ui2之和成正 比,其比例系数为1f R R ,电阻R ’=R1//R2//Rf 。 2、减法器(差分放大电路) 专业:机械电子工程 姓名:许世飞 学号: 日期: 桌号:

11o I f u u u u R R ----= 由于虚短特性有:2 3 23 321231 1233211 11,() I f f o I I f f o I I f u u u R R R R R R u u u R R R R R R R R R u u u R R R -+== ?+?? =+ - ?+??===-=因此解得:时,有可见,当时,输出电压等于出入电压值差。 3、由积分电路将方波转化为三角波: 电路中电阻R2的接入是为了抑制由IIO 、VIO 所造成的积分漂移,从而稳定运放的输出零点。在t<<τ2(τ2=R2C )的条件下,若vS 为常数,则vO 与t 将近似成线性关系。因此,当vS 为方波信号并满足Tp<<τ2时(Tp 为方波半个周期时间),则vO 将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 4 、同相比例计算电压运算特性:

反相比例运算电路教学内容

反相比例运算电路

西安建筑科技大学华清学院 课程设计(论文) 课程名称:模拟电子线路电课程设计 题目:反相比例运算电路 院(系):机械电子工程系 专业班级:电子信息科学与技术0902 姓名:谢宏龙 学号: 0906030216 指导教师:高树理 2011年 7 月 8 日 仅供学习与交流,如有侵权请联系网站删除谢谢2

摘要 本设计主要通过Multisim软件实现了对模拟电子基础中的集成运电路的设计和模拟。小组成员分别对由集成运放电路组成的反相运算放大电路和同相运算放大电路进行设计。设计主要内容包括:由集成运算放大电路组成的反相比例运算放大电路跟随器的输出波形的观察和比较,求出它的电压放大倍数,电阻的分析和比较,共模输入电压的比较分析,构成同相比例运算放大电路的原理和特性的介绍,通过对同相和反相比例运算放大电路的比较得出一些结论。在本设计中,不仅包括实验所要求的内容,而且对由集成运算放大电路构成的同相放大电路和由集成运放构成的反相比例运算放大电路原理和作用作了比较详细的的说明,这样能够使大家更好的对其组成的电路能够更好的了解,同时也使人们了解到了其的应用以及功能所在,以便更合理的应用它们。 关键字 Multisim,反相运算放大器,同相运算放大器, 仅供学习与交流,如有侵权请联系网站删除谢谢3

目录 1绪论 (2) 2M u l t i s i m的简介 (3) 3集成运算放大器电路的介绍和特性 (3) 3.1介绍 (3) 3.2 特性 (3) 4由集成运算短路构成的反相比例运算电路的设计 (4) 4.1 电路图设计 (4) 4.2 反相比例运算电路波形的观察 (4) 4.3 由集成运算短路构成的反相比例运算电路特性 (5) 5 由集成运算短路构成的同相比例运算电路的特性和原理 (5) 5.1 原理 (5) 5.2 特性 (6) 6反相比例运算电路和同相电路的对比 (6) 7 课设的体会与心得 (6) 8 结束语 (7) 9 参考文献 (8) 仅供学习与交流,如有侵权请联系网站删除谢谢1

反相比例运算电路的误差分析

反相比例运算电路的误差分析 汤 洁 (甘肃建筑职业技术学院,甘肃 兰州 730050) 摘 要 本文以集成运算放大器的反相比例运算电路为例,从三个方面 讨论了集成运放几个主要参数对闭环电压放大倍数运算精度的影响,以 及这种影响与应用条件和外部参数的关系。 关键词 电子技术 集成运算放大器 反相比例运算电路 误差 在测试集成运算放大器的闭环电压放大倍数uf A 的实验中,我们常常会发现根据测试得出的闭环电压放大倍数与理论值总是存在着一定的误差,这是为什么呢?这是由于实际的集成运算放大器产品,尽管其性能参数可以做得越来越好,越来越接近理想运放,但是任何实际的运放性能不可能完全达到理想条件,其开环电压放大倍数uo A 、输入电阻id R 等都不可能为无穷大,而只能是有限值;其输出电阻o R 、失调电压io U 、失调电流io I 及输入偏置电流B I 等也不是真正为零,而是一些很小的确定值,这些因素都会产生输出误差,从而导致实际电路的输出与输入关系不完全符合理想条件下所推出来的表达式。本文以反相比例运算电路(图1所示)为例,从三个方面讨论几种主要因素对运算精度的影响,以及这种影响与应用条件和外部参数的关系。 1 开环电压放大倍数uo A 和输入电阻id R 为有限值的影响 反相比例运算电路在uo A 、id R 不是无穷大而其他参数均为理想时的电路如图2所示。由于∞≠uo A ,因此当0≠o U 时, -+≠U U ;∞≠id R 时,则必有0≠i I 。由 图可列出如下方程: )(-+-=U U A U uo o , 2R I U i =+ , 1 1R U U I i - -= , f o R U U I f -= - , id i R U U I + --= , i f I I I +=1 求解上述方程组可得出实际闭环电压放大倍数为:

加法运算电路课程设计解读

1 设计任务描述 1.1 设计题目:加法运算电路 1.2 设计要求 1.2.1 设计目的 (1 掌握加法运算电路的构成、原理与设计方法; (2 熟悉集成电路的使用方法。 1.2.2 基本要求 (1 设计被加数寄存器A 和加数寄存器B 单元; (2 设计全加器工作单元; (3 能进行四位二进制数的加法运算电路。 1.2.3 发挥部分 (1 实现了用数码管以十进制形式显示最后运算结果; (2 考虑了有进位的显示情况,可以实现全部四位二进制数的加法运算; (3 输入端填加了发光二极管可以清晰直观地显示输入的四位二进制数; (4 设计了清零开关S 1和加法控制开关S 2使运算控制更为人性化。 2 设计思路 我做的课程设计题目是加法运算电路,首先根据设计要求,我确定了设计必需的几种基本器件:寄存器74LS175、超前进位集成四位加法器74LS283、7448译码器和终端的显示器。 接下来,该到具体的设计环节了,首先是输入电路,要求实现两个四位二进制数的加法运算,于是我在一开始放置了八个开关,四个为一组,用来输入两个四位二进制数,考虑到发挥部分,所以我优化了电路功能,在开关后并排放了八个发光

二极管,这样就可以直观地显示输入了两个数了。寄存器除了输入和输出外,还有两个管脚,一个是清零控制,另一个是CP 端。因此,我又设计了两个开关S 1和S 2,S 1用来清零,S 2则用来输入CP 脉冲,这样会使运算的控制更为人性化。 然后设计具体的运算电路,为了方便我用十进制数来叙述,如果结果是一个两位数,那么我可以通过逐步减相应个数的10最后剩下一位数,这个数就是最后的个位,而减去了几个10十位就是几。两个四位二进制数输入寄存器后,将他们共同输出到加法器的输入端,如果有进位那么在进位输出端输出1进位,把剩下的四位数输出,通过演算我发现进位后剩下的数正好比数进来时少了16,那么为了实现减10的功能,必须想办法再加上一个6,所以还需要一个加法器实现加6的功能,所以我又放置了一个加法器,并让上一个加法器的进位端和这个加法器的加数端相连,如果进位则预置后一个加法器的加数为6,否则为0。与此同时输出一个高电平进位信号A 留给输出十位时使用。在第二个加法器运算之后,通过验算发现还有大于15的情况,所以我又放置了一个加法器和前面的那个实现同样的功能,最后有进位输出一个高电平进位信号B 留给输出十位时使用。这样一来通过第三个加法器后的数不会再比10大了,只能是0—10这11种情况。于是我想到了用一个减法器如果是10就减10,如果是0—9的数就减0。那么怎么判断是10还是0呢?这里我又想到了比较器,让第三个加法器的结果和9来比较,如果大于9那必定是10,那么就输出一个高电平,一方面给减法器的减数预置10,另一方面输出一个高电平信号C 留给输出时使用,因为它也相当于进了一位;如果小于等于9,输出低电平给减法器的减数端预置0。这样一来,减法器输出的结果就是的个位数了。 再来看十位数,前面有三个进位信号A 、B 、C ,我想设计一个电路,实现的功能是:他们中有几个是高电平十位就是几,于是我想到了用门电路来实现,所以我先根据功能画出了真值表,然后画出卡诺图化简成表达式最后设计出了门电路,输出两位二进制数。 最后设计输出端,对于个位,减法器的输出端直接和7448译码器输入端相连,再接到显示器上,就可以以十进制形式显示个位的数了。对于十位,上面的门

基本运算电路实验报告

实验名称:基本运算电路设计实验类型:同组学生姓名: 三、实验须知:

四、实验步骤: 1.实现两个信号的反相加法运算 实验电路: R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差 输入信号v s1v s1输出电压v o 0.1V,1kHz 0 1.01V 0.1V 0.1V 2.03V 2.减法器(差分放大电路) 实验电路: R1=R2、R F=R3 输入信号v s1v s1输出电压v o 0.1V,1kHz 0 1.02V 0 0.1V 1.03V 0.1V 0.1V 0.12mV 共模抑制比850 3.用积分电路转换方波为三角波 实验电路:

电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 根据电路参数求出τ2,确定三种情况下的方波信号频率,在坐标系中画出输入和输出波形。 v S方波周期v S幅值(峰峰值) v o波形v o周期v o幅值(峰峰值) T=0.1R2C 未测 T=R2C 1.000 如下图1ms 6.64V T=10R2C 1.000 如下图10ms 10.60V T=100R2C 1.000 如下图100ms 11.00V ①T=0.1R2C=0.1ms 未测 ②T=R2C=1ms ③T=10R2C=10ms

同向运算放大电路的设计资料

同向运算放大电路的设计 1 技术指标 以集成电路运算放大器LF353为主,设计一种模拟信号运算电路,其中包括加法、减 法和反相比例等电路的运用,要求能够实现函数( )的三路可调输入模拟信号的运算,测试并记录下各节点的波形图。 2 设计方案及其比较 2.1 方案一 要实现函数 ,可利用两个反向加法运算放大电路,首先可在第一级电路中输入v i1与v i2,进行计算后,利用不同阻值的电阻使信号达到5v i1+v i2,实现两个信号的相加,第一级电路的输出则会使信号反向变为-5v i1-v i2,同时也为第二级的输入,第二级也使用一个反向加法运算放大电路,在第二级中输入信号v i3,经过运算放大器即会实现 。(如图1所示) 图1 两个反向加法器实现运算 12350.5o i i i v v v v =+-12350.5o i i i v v v v =+-12350.5o i i i v v v v =+-

其中根据虚短和虚断可以得出Vp=Vn ,根据计算 V o=R 7R 3V i1/R 6R 1+R 7R 3V i2/R 6R 2-R 7V i3/R 5............................(1) 选择R 1=2k Ω,R 2=10k Ω,R 3=10k Ω,R 4=1k Ω,R 5=2k Ω,R 6=1k Ω,R 7=1k Ω R 8=1k Ω 其中R 4与R 8作为整个电路的平衡电阻。 2.2 方案二 利用同向两个减法器实现,由于此设计是两个同向的减法器,在经过第一级运方时,输入两路信号,同向端输入v i3,反向端输入v i2,经过运放可得到v i3’-v i2’,在经过第二级运放,同相端输入v i1,反向端为v i3’-v i2’,经过减法器即可得到v i1’-(v i3’-v i2’),即v i1’+v i2-’ v i3’,经过计算得出电阻的阻值。最终使得信号输出为 。(如图2所示) 图2 两个同向减法器实现运算 其中根据虚短和虚断可以得出Vp=Vn ,根据计算得出 V o=(1+R 8/R 7)(1+R 1/R 6)V i1+R 5R 8/R 2R 7V i2-R 8R 4(R 2+R 5)/R 7R 2(R 3+R 4)V i3............(2) 根据上述式子可选择R 1=10k Ω,R 2=27k Ω,R 3=895k Ω,R 4=5k Ω,R 5=3k Ω,R 6=20k Ω R 7=2k Ω,R 8=18k Ω 如图3为方案二的仿真图 12350.5o i i i v v v v =+-

运算放大器基本电路详解

运算放大器基本电路大全 1.2虚地 单电源工作的运放需要外部提供一个虚地,通常情况下,这个电压是VCC/2,图二的电路可以用来产生VCC/2的电压,但是他会降低系统的低频特性。 图二 R1和R2是等值的,通过电源允许的消耗和允许的噪声来选择,电容C1是一个低通滤波器,用来减少从电源上传来的噪声。在有些应用中可以忽略缓冲运放。 在下文中,有一些电路的虚地必须要由两个电阻产生,但是其实这并不是完美的方法。在这些例子中,电阻值都大于100K,当这种情况发生时,电路图中均有注明。 1.3交流耦合 虚地是大于电源地的直流电平,这是一个小的、局部的地电平,这样就产生了一个电势问题:输入和输出电压一般都是参考电源地的,如果直接将信号源的输出接到运放的输入端,这将会产生不可接受的直流偏移。如果发生这样的事情,运放将不能正确的响应输入电压,因为这将使信号超出运放允许的输入或者输出范围。 解决这个问题的方法将信号源和运放之间用交流耦合。使用这种方法,输入和输出器件就都可以参考系统地,并且运放电路可以参考虚地。当不止一个运放被使用时,如果碰到以下条件级间的耦合电容就不是一定要使用:第一级运放的参考地是虚地 第二级运放的参考第也是虚地 这两级运放的每一级都没有增益。任何直流偏置在任何一级中都将被乘以增益,并且可能使得电路超出它的正常工作电压范围。 如果有任何疑问,装配一台有耦合电容的原型,然后每次取走其中的一个,观察电工作是否正常。除非输入和输出都是参考虚地的,否则这里就必须要有耦合电容来隔离信号源和运放输入以及运放输出和负载。一个好的解决办法是断开输入和输出,然后在所有运放的两个输入脚和运放的输出脚上检查直流电压。所有的电压都必须非常接近虚地的电压,如果不是,前级的输出就就必须要用电容做隔离。(或者电路有问题) 1.4组合运放电路 在一些应用中,组合运放可以用来节省成本和板上的空间,但是不可避免的引起相互之间的耦合,可以影响到滤波、直流偏置、噪声和其他电路特性。设计者通常从独立的功能原型开始设计,比如放大、直流偏置、滤波等等。在对每个单元模块进行校验后将他们联合起来。除非特别说明,否则本文中的所有滤波器单元的增益都是1。 1.5选择电阻和电容的值

运算放大器基本电路大全

运算放大器基本电路大全 运算放大器电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一

基本运算电路实验报告

课程名称:电路与模拟电子技术实验 实验名称: 基本运算电路设计 实验类型: 同组学生姓名:

v 输入信号v s1v s1 1kHz 0 0.1V 0.1V

电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移, 放的输出零点。 (τ2=R2C)的条件下,若v S为常数,则 为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则 变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之 根据电路参数求出τ2,确定三种情况下的方波信号频率,在坐标系中画出输入和输出波形。 v幅值(峰峰值) v波形v T=10R2C=10ms

、什么是集成运算放大器的电压传输特性?输入方式的改变将如何影响电压传输 输出电压和输入电压之比为运算放大器的电压传输特性。 线形范围(输出输入成比例)很小,所以运放线形应用都在负反馈的情况下,常见电路为电压并联负反馈(反向比例放大器)和电压串联负反馈 开环工作和正反馈工作都是非线形应用,如各种比较电路, 正、负两种状态。 、集成运算放大器的输入输出成线性关系,输出电压将会无限增大,这话对吗?为什么? 不会。运放的输入输出电压的线性关系只是在某一个电压范围才有效,超过这 仿真实验

1 两种情况下仿真电路分别为: ①v s1=0.1V,v s1=0,由探针的显示的参数V(rms)为输出电压,大小为1.00V V1 V4 1kHz 0° ②v s1 V1 V4 1kHz 0° 2

R3 V1②v s1=0V ,v s1=0.1V R3 V1 15 V V41kHz 0° ③v s1=0.1V , v s1=0.1V V1 V41kHz 0° 3

相关文档
最新文档