(完整word版)比例运算电路

(完整word版)比例运算电路
(完整word版)比例运算电路

比例运算电路

定义:将输入信号按比例放大的电路,称为比例运算电路。

分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分)

比例放大电路是集成运算放大电路的三种主要放大形式

(1)反向比例电路

输入信号加入反相输入端,电路如图(1)所示:

输出特性:因为:,

所以:

从上式我们可以看出:Uo 与Ui 是比例关系,改变比例系数

,即可改变Uo

的数值。负号表示输出电压与输入电压极性相反。

反向比例电路的特点: (1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低

(2)输入电阻低:r i =R 1.因此对输入信号的负载能力有一定的要求.

(2)同相比例电路

输入信号加入同相输入端,电路如图(2)所示:

输出特性:因为:(虚短但不是虚地);

所以:

改变R

f /R

1

即可改变Uo的值,输入、输出电压的极性

相同

同相比例电路的特点:

(1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高

(3)差动比例电路

输入信号分别加之反相输入端和同相输入端,电路图如图

(3)所示:

它的输出电压为:

由此我们可以看出它实际完成的是:对输入两信号的差运算。

十:和、差电路

(1)反相求和电路

它的电路图如图(1)所示:(输入端

的个数可根据需要进行调整)其中

电阻R'为:

它的输出电压与输入电压的关系为:

它可以模拟方程:。它的特点与反相比例电路相同。它可十分方便的某一电路的输入电阻,来改变电路的比例关系,而不影响其它路的比例关系。

(2)同相求和电路

它的电路图如图(2)所示:(输入

端的个数可根据需要进行调整)

它的输出电压与输入电压的关系为:。它的调节不如反相求和电路,而且它的共模输入信号大,因此它的应用不很广泛。

(3)和差电路

它的电路图如图(3)所示:

此电路的功能是对U i1、U i2进行反

相求和,对U i3、U i4进行同相求和,

然后进行的叠加即得和差结果。 它的输入输出电压的关系是:。

由于该电路用一只集成运放,它的电阻计算和电路调整均不方便,因此我们常用二级集成运放组成和差电路。它的电路图如图(4)所示

它的输入输出电压的关系是:

它的后级对前级没有影响(采用的

是理想的集成运放),它的计算十

分方便。

比例求和运算电路知识讲解

比例求和运算电路

实验八 比例求和运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求和电路的特点及性能。 2、学会上述电路的测试和分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。 反相求和电路 22110i F i F V R R V R R V ?+?-= 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求和电路 ?? ? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块 四、预习要求 1、计算表8-l 中的V 0和A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V 0值 5、计算表8-7中的V 0值

五、实验内容 1、电压跟随器 实验电路如图8-l所示. 图8-l电压跟随器 按表8-l内容实验并测量记录。 V i (V)-2 -0.5 0 0.5 0.98 V (V) R L =∞ R L = 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器 (l) 按表8-2内容实验并测量记录. 直流输入电压U i (mV)30 100 300 9803000 输出电压U 理论估算 (mV) 实测值(mV)10800 误差 (2) 按表8-3要求实验并测量记录. 测试条件理论估算值实测值 ΔU R L 开路,直流输入信号

比例求和运算电路

实验八 比例求和运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求和电路的特点及性能。 2、学会上述电路的测试和分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。 反相求和电路 22 110i F i F V R R V R R V ?+?-= 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求和电路 ??? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块

四、预习要求 1、计算表8-l中的V0和A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V0值 5、计算表8-7中的V0值 五、实验内容 1、电压跟随器 实验电路如图8-l所示. 图8-l电压跟随器按表8-l内容实验并测量记录。 表 8-1 V i(V)-2 -0.5 0 0.5 0.98 V0(V)R L=∞ R L= 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器(l) 按表8-2内容实验并测量记录. 表8-2

反相比例运算电路

西安建筑科技大学华清学院课程设计(论文) 课程名称:模拟电子线路电课程设计 题目:反相比例运算电路 院(系):机械电子工程系 专业班级:电子信息科学与技术0902 姓名:谢宏龙 学号:0906030216 指导教师:高树理 2011年7 月8 日

摘要 本设计主要通过Multisim软件实现了对模拟电子基础中的集成运电路的设计和模拟。小组成员分别对由集成运放电路组成的反相运算放大电路和同相运算放大电路进行设计。设计主要内容包括:由集成运算放大电路组成的反相比例运算放大电路跟随器的输出波形的观察和比较,求出它的电压放大倍数,电阻的分析和比较,共模输入电压的比较分析,构成同相比例运算放大电路的原理和特性的介绍,通过对同相和反相比例运算放大电路的比较得出一些结论。在本设计中,不仅包括实验所要求的内容,而且对由集成运算放大电路构成的同相放大电路和由集成运放构成的反相比例运算放大电路原理和作用作了比较详细的的说明,这样能够使大家更好的对其组成的电路能够更好的了解,同时也使人们了解到了其的应用以及功能所在,以便更合理的应用它们。 关键字Multisim,反相运算放大器,同相运算放大器,

目录 1绪论 (2) 2M u l t i s i m的简介 (3) 3集成运算放大器电路的介绍和特性 (3) 3.1介绍 (3) 3.2特性 (3) 4由集成运算短路构成的反相比例运算电路的设计 (4) 4.1电路图设计 (4) 4.2反相比例运算电路波形的观察 (4) 4.3 由集成运算短路构成的反相比例运算电路特性 (5) 5 由集成运算短路构成的同相比例运算电路的特性和原理 (5) 5.1原理 (5) 5.2特性 (6) 6反相比例运算电路和同相电路的对比 (6) 7课设的体会与心得 (6) 8结束语 (7)

比例运算电路(有数据版)

暨南大学本科实验报告专用纸 课程名称模拟电子技术实验成绩评定 实验项目名称比例求和运算电路指导教师窦庆萍实验项目编号0712*******实验项目类型验证型实验地点实B406 学生姓名李佳学号2013053123 学院电气信息学院专业电子信息科学与技术 一、实验目的 1.掌握用集成运算放大电路组成比例、求和电路的特点及性能。 2.学会上述电路的测试和分析方法。 二、实验仪器 1.数字万用表 2.示波器 3.信号发生器 三、预习要求 1.计算表6.1中的Vo和Af 2.估算表6.3的理论值 3.估算表6.4、表6.5中的理论值 4.计算表6.6中的Vo值 5.计算表6.7中的Vo值

四、实验内容 1.电压跟随电路 实验电路如图6.1所示。 图6.1 电压跟随电路 按表6.1内容实验并测量记录。 表6.1 2.反相比例放大器 实验电路如图6.2所示。 图6.2 反相比例放大电路(1)按表6.2内容实验并测量记录。 (2)按表6.3要求实验并测量记录。

(3)测量图6.2电路的上限截止频率。 3.同相比例放大电路 电路如图6.3所示 (1)按表6.4和6.5实验测量并记录。 图6.3 同相比例放大电路 表6.4 (2)测出电路的上限截止频率。 上限截止频率为23.5KHz,且其为低通。 4.反相求和放大电路。 实验电路如图6.4所示。 按表6.6内容进行实验测量,并与预习计算比较。

图6.4反相求和放大电路 5.双端输入求和放大电路 实验电路为图6.5所示。 图6.5 双端输入求和电路 表6.7 按表6.7要求实验并测量记录。 五、实验小结 1.总结本实验中5种运算电路的特点及性能。 电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低。 反相比例放大器,输出电压按比例增大,相位与输入电压相反。同相比例放大器,输出电压按比例增大,相位与输入电压相同。

反向比例运算电路

反向比例运算电路 (1)电路的组成 图—1 反向比例运算电路的组成如图—1所示。由图可见,输入电压u i 通过电阻R 1加在运放的反向输入端。R f 是沟通输出和输入的通道,是电路的反馈网络。 同向输入端所接的电阻R P 为电路的平衡电阻,该电阻等于从运放的同向输入端 往外看除源以后的等效电阻,为了保证运放电路工作在平衡的状态下,同相输入端的电阻应该取 R P =R 1//R f (2)电压放大倍数

图-2 理想运算放大器组成的反相比例运算电路见图-2,显然是一个电压并联负反馈电路。 在输入信号作用下,输入端有电流i I、i′I、 i f 。 根据虚断的特性有i'I≈0 于是i I≈i f 根据虚短的特性,有u+ ≈ u- 所以 放大倍数A u为 (3)反向比例运算电路的输入电阻 为了保证运放电路工作在平衡的状态下,同相输入端的电阻应该取 R P =R1//R f (4)由于反向比例运算电路具有虚地的特点。所以共模输入电压为 反相比例运算电路由于具有“虚地”的特点,运放的同相输入端和反相输入端均为0电位,所以反相比例运算电路的共模输入电压等于0。 结论: 1. 电路是深度电压并联负反馈电路,理想情况下,反相输入端“虚地”,共模输入电压低。 2. 实现了反相比例运算。|Au| 取决于电阻 R f和 R1之比。U0与 U i反相, | Au | 可大于1、等于 1 或小于 1 。 3. 电路的输入电阻不高,输出电阻很低。 4. 虽然理想运放的输入电阻为无穷大,由于引入并联负反馈后,电路的输入电阻减少了,变成R 1 ,要提高反向比例运算放大器的输入电阻,需加大电阻 R 1的值。R 1 的值越大,R f 的值也必需加大,电路的噪声也加大,稳定性越差。 f o 1 I R u R u - ≈ 1 I I I I i R i u i u R= - = =

同相比例和反相比例放大器-成考

同相比例和反相比例 一、反相比例运算放大电路 反相输入放大电路如图1所示,信号电压通过电阻R 1加至运放的反相输入端,输出电压v o 通过反馈电阻R f 反馈到运放的反相输入端,构成电压并联负反馈放大电路。R ¢为平衡电阻应满足R ¢= R 1//R f 。 利用虚短和虚断的概念进行分析,v I=0,v N=0,i I =0,则 即 ∴ 该电路实现反相比例运算。 反相放大电路有如下特点 1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。 2.v N= v P ,而v P=0,反相端N 没有真正接地,故称虚地点。 3.电路在深度负反馈条件下,电路的输入电阻为R 1,输出电阻近似为零。 二、同相比例运算电路 图 1 反相比例运算电路

同相输入放大电路如图1所示,信号电压通过电阻 R S加到运放的同相输入端,输出电压v o通过电阻R1 和R f反馈到运放的反相输入端,构成电压串联负反馈放 大电路。 根据虚短、虚断的概念有v N=v P=v S,i1=i f 于是求得 所以该电路实现同相比例运算。 同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。 2.由于v N=v P=v S,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。 三、加法运算电路 图1所示为实现两个输入电压v S1、v S2的反 相加法电路,该电路属于多输入的电压并联负反馈 电路。由于电路存在虚短,运放的净输入电压v I= 0,反相端为虚地。利用v I=0,v N=0和反相端输入 电流i I=0的概念,则有 或 图1 同相比例运算电路 图1 加法运算电路

反相比例运算电路仿真分析.doc

1 反相比例运算电路 1.1 综述 反相比例运算电路实际上是深度的电压并联负反馈电路。在理想情况下,反相输入端的电位等于零,称为“虚地”。因此加在集成运放输入端的共模电压很小。 输出电压与输入电压的幅值成正比,但相位相反,因此,电路实现了反相比例运算。比例系数的数值决定于电阻RF与R1之比,而与集成运放内部各项参数无关。只要RF 和R1的阻值比较准确和稳定,即可得到准确额比例运算关系。比例系数的数值可以大于或等于1,也可以小于1。 由于引入了深度电压并联负反馈,因此电路的输入电阻不高,而输出电阻很低。1.2 工作原理 1.2.1 原理图说明 图1.2.1.1 反相比例运算电路 如图所示,输入电压V1经电阻R1接到集成运放的反相输入端,运放的同相输入端经电阻R2接地。输出电压经反馈电阻RF引回到反相输入端。 集成运放的反相输入端和同相输入端,实际上是运放内部输入级两个差分对管的基极。为使差分放大电路的参数保持对称,应使两个差分对管基极对地的电阻尽量一致,以免静态基流流过这两个电阻时,在运放输入端产生附加的偏差电压。因此,通常选择R2的阻值为R2=R1∥RF 经过分析可知,反相比例运算电路中反馈的组态是电压并联负反馈。由于集成运放

的开环差模增益很高,因此容易满足深度负反馈的条件,故可以认为集成运放工作在线性区。所以,可以利用理想运放工作在线性区时“虚短”和“虚断”的特点来分析反相比例运算电路的输出输入关系。 由于“虚断”,U +=0 又因“虚短”,可得 U - =U + =0 由于 I -=0 , 则由图可见 I I =I F 即(U I -U - )/R1=(U—U )/RF 上式中U - =0,由此可求得反相比例运算电路的输出电压与输入电压的关系为 U 0=-RF·U I /R1 1.2.2 元件表 元件名称大小数量 集成运算放大器741 1 直流电源1V 1 电阻 6.8K 1 10K 1 20K 1 1.3 仿真结果分析 图1.3.1 仿真分析结果图 由于输入电压为1V,所以根据公式可得输出电压为-1.997,符合理论。

比例运算电路

比例运算电路 比例运算电路的输出电压与输入电压之间存在比例关系,即电路可实现比例运算。比例电路是最基本的运算电路,是其他各种运算电路的基础,本章随后将要介绍的求和电路、积分和微分电路、对数和指数电路等等,都是在比例电路的基础上,加以扩展或演变以后得到的。根据输入信号接法的不同,比例电路有三种基本形式:反相输入、同相输入以及差分输入比例电路。1、反相比例运算电路在上图中,输入 电压u1经电阻R1加到集成支放的反相输入端,其同相输入端经电阻R2接地。输出电压u0经RF接回到反相输入端。集成运放的反相输入端和同相输入端,实际上是运放内部输入级两个差分对管的基极。为使差动放大电路的参数保持对称,应使两个差分对管基极对地的电阻尽量一致,以免静态基流流过这两个电阻时,在运放输入端产生附加的偏差电压。因此,通常选择R2的阻值为R2=R1 // RF (1)经过分析 可知,反相比例运算电路中反馈的组态是电压并联负反馈。由于集成运放的开环差模增益很高,因此容易满足深负反馈的条件,故可以认为集成运放工作在线性区。因此,可以利用理想运放工作在线性区时“虚短”和“虚断”的特点来分析反 相比例运算电路的电压放大倍数。在上图中,由于“虚断”, 故i+=0,即R2上没有压降,则u+=0。又因“虚短”,可得

u-= u+=0 (2)上述说明在反相比例运算电路中,集成运放的反相输入端与同相输入端两点的电位不仅相等,而且均等于零,如同该两点接地一样,这种现象称为“虚地”。“虚地” 是反相比例运算电路的一个重要特点。由于I-=0,由由图可见iI= iF即上式中u-=0,由此可求得反相比例运算电路的 电压放大倍数为(3)下面分析反相比例运算电路的输入电阻。因为反相输入端“虚地”,显而易见,电路的输入电阻为Rif = R1 (4)综合以上分析,对反相比例运算电路可以归纳得出以下几点结论:1)反相比例运算电路实际上是一个深度的电 压并联负反馈电路。在理想情况下,反相输入端的电位等于零,称为“虚地”。因此加在集成运簇输入端的共模输入电压 很小。2)电压放大倍数, 即输出电压与输入电压的幅值成正比,但相位相反。也就是说,电路实现了反相比例运算。比值Auf 决定于电阻RF和R1之比,而与集成运放内部各项参数无关。只要RF和R1的阻值比较准确而稳定,就可以 得到准确的比例运算关系。比值Auf 可以大于1,也可以小于1。当RF=R1时,Auf=-1,称为单位增益倒相器。3)由于引入了深度电压并联负反馈,因此电路的输入电阻不高,输出电阻很低。2、同相比例运算电路在上图中,输入电压 u1接至同相输入端,但是为保证引入的是负反馈,输出电压uo通过电阴RF仍接到反相输入端,同时,反相输入端通过电阴R1接地。为了使集成运放反相输入端和同相输入端对

基本运算电路比例积分微分

第一节基本运算电路 一、比例运算电路 比例运算电路有反相输入、同相输入和差动输入三种基本形式。1.反相比例运算电路 ·平衡电阻――使两个差分对管基极对地的电阻一致,故R 2 的阻值为 R 2=R 1 //R F 反相比例运算电路 ·虚地概念 运放的反相输入端电位约等于零,如同接地一样。“虚地”是反相比例运算电路的一个重要特点。 可求得反相比例运算放大电路的输出电压与输入电压的关系为 反相比例运算电路的输入电阻:由于反相输入端为“虚地”,显然电路的输 入电阻为 R i =R 1 。 反相比例运算电路有如下几个特点: ①输出电压与输入电压反相,且与R F 与R 1 的比值成正比,与运放内部各项 参数无关。当R F =R 1 时,u O =-u I ,称为反相器。 ②输入电阻R i =R 1 ,只决定于R 1 ,一般情况下反相比例运算电路的输入电阻 比较低。 ③由于同相输入端接地,反相输入端为“虚地”,因此反相比例运算电路没有共模输入信号,故对运放的共模抑制比要求相对比较低。 2.同相比例运算电路 利用“虚短”和“虚断”,可得输出电压与输入电压的关系为

同相比例运算电路有如下几个特点: ①输出电压与输入电压同相,且与R F 与R 1 的比值成正比,电压放大倍数 当R f =∞或R 1 =0时,则u O =u I 。这种电路的输出电压与输入 电压幅度相等、相位相同,称为电压跟随器,又称为同相跟随器。 ②同相比例运算电路的输入电阻很高。由于电路存在很深的负反馈实际的输入电阻要比R id 高很多倍。 ③同相比例运算电路由于u +=u - 而u + =u I ,因此同相比例运算电路输入端 本身加有共模输入电压u IC =u I 。故对运放的共模抑制比相对要求高。 无论是反相比例运算电路还是同相比例运算电路由于引入的是电压负反馈(详细分析见第七章),所以输出电阻R o 很低。 3.差分比例运算电路 利用“虚短”和“虚断”,即i +=i - =0、u + =u - ,应用叠加定理可求得 当满足条件R 1=R 2 、R F =R 3 时, 电路的输出电压与两个输入电压之差成正比,实现了差分比例运算。 电路的差模输入电阻为R i =2R 1 。 缺点:对元件的对称性要求较高,外接电阻要求精密匹配,即使选用误差为±0.1%的电阻,也往往不能满足要求。在要求改变运算关系时,又必须同时选配两对高精密电阻,非常不方便。输入电阻不够高。 4.比例电路应用实例 二、加法电路

反相比例加法运算电路

反相比例加法运算电路 R1 5.1kohm R2 2.0kohm R3 10kohm U1 741 3 2 4 7 6 5 1 BAL 1 BAL 2 VS+ VS-V1 -0.5V V2 0.2V -12V VDD 12V VCC -0.011V + - R1 5.1kohm R2 2.0kohm R3 10kohm U1 741 3 2 4 7 6 5 1 BAL 1 BAL 2 VS+ VS--12V VDD 12V VCC X FG1 V1 -1V 1V 1000Hz A B T G X SC1

减法电路 R2 2.0kohm R4 10kohm U1 741 3 2 4 7 6 5 1 BAL 1 BAL 2 VS+ VS--12V VDD 12V VCC -0.994V + -V1 0.4V V2 0.6V R3 10kohm R1 2.0kohm R2 2.0kohm R4 10kohm U1 741 3 2 4 7 6 5 1 BAL 1 BAL 2 VS+ VS--12V VDD 12V VCC -1.994V + -V1 0.3V V2 0.7V R3 10kohm R1 2.0kohm

R2 2.0kohm R4 10kohm U1 741 3 2 4 7 6 5 1 BAL 1 BAL 2 VS+ VS--12V VDD 12V VCC -2.494V + -V1 0.4V V2 0.9V R3 10kohm R1 2.0kohm 两运放电路 U1 741 3 2 4 7 6 5 1 BAL 1 BAL 2 VS+ VS--12V VDD 12V VCC U2 741 3 2 4 7 6 5 1 BAL 1 BAL 2 VS+ VS--12V VDD 12V VCC R1 1.0kohm R2 5.1kohm R3 2.0kohm R4 10kohm R5 10kohm R6 10kohm V1 0.2V V2 0.6V V3 0.4V -1.179V + -

比例求和运算电路

实验八 比例求与运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求与电路的特点及性能。 2、学会上述电路的测试与分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,就是其她各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求与电路的输出量反映多个模拟输入量相加的结果,用运算实现求与运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出她们的计算公式。 反相求与电路 22 110i F i F V R R V R R V ?+?- = 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求与电路 ?? ? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块 四、预习要求 1、计算表8-l 中的V 0与A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V 0值 5、计算表8-7中的V 0值 五、实验内容

1、电压跟随器 实验电路如图8-l所示、 图8-l电压跟随器按表8-l内容实验并测量记录。 V i (V) -2 -0、5 0 0、5 0、98 V (V) R L =∞ R L = 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器 (l) 按表8-2内容实验并测量记录、 直流输入电压U i (mV) 3 000 输出电压U 理论估算(mV) 实测值(mV) 10800 误差 (2) 按表8-3要求实验并测量记录、 测试条件理论估算值实测值 ΔU R L 开路,直流输入信号U i 由0变为800mV ΔU AB ΔU R2 ΔU R1

比例运算电路

比例运算电路 定义:将输入信号按比例放大的电路,称为比例运算电路。 分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分) 比例放大电路是集成运算放大电路的三种主要放大形式 (1)反向比例电路 输入信号加入反相输入端,电路如图(1)所示: 输出特性:因为:, 所以: 从上式我们可以看出:Uo与Ui 是比例关系,改变比例系数,即可改变Uo 的数值。负号表示输出电压与输入电压极性相反。 反向比例电路的特点: (1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低 (2)输入电阻低:r i =R 1 .因此对输入信号的负载能力有一定的要求. (2)同相比例电路 输入信号加入同相输入端,电路如图(2)所示: 输出特性:因为:(虚短但不是虚地); ;

所以: 改变R f /R 1 即可改变Uo的值,输入、输出电压的极性相 同 同相比例电路的特点: (1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高 (3)差动比例电路 输入信号分别加之反相输入端和同相输入端,电路图如图 (3)所示: 它的输出电压为: 由此我们可以看出它实际完成的是:对输入两信号的差运算。 十:和、差电路 (1)反相求和电路 它的电路图如图(1)所示:(输入 端的个数可根据需要进行调整) 其中电阻R' 为: 它的输出电压与输入电压的关系为: 它可以模拟方程:。它的特点与反相比例电路相同。它可十分方便的某一电路的输入电阻,来改变电路的比例关系,而不影响其它路的比例关系。 (2)同相求和电路 它的电路图如图(2)所示:(输 入端的个数可根据需要进行调 整)

比例求和运算电路

比例求和运算电路 一、实验目的 1.掌握用集成运算放大器组成比例、求和电路。 2.掌握比例、求和运算电路的特点及性能。 3.学会上述电路的测试和分析方法。 4.掌握各电路的工作原理。 二、预习要求 1.计算表8.1中的V o 和Af 。 2.估算表8.3中的理论值。 3.估算表8.4中的理论值。 4.计算表8.6中的O V 值。 5.计算表8.7中的O V 值。 三、实验原理及参考电路 (一)、比例运算电路 1.工作原理 比例运算(反相比例运算与同相比例运算)是应用最广泛的一种基本运算电路。 a .反相比例运算,最小输入信号min i U 等条件来选择运算放大器和确定外围电路元件参数。 如下图所示。 10k Ω 输入电压i U 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2接地。输出电压O U 经R F 接回到反相输入端。通常有: R 2=R 1//R F 由于虚断,有 I +=0 ,则u +=-I +R 2=0。又因虚短,可得:u -=u +=0 由于I -=0,则有i 1=i f ,可得: F o 1i R u u R u u -= --- 由此可求得反相比例运算电路的电压放大倍数为: ??? ???? ==-==1i i if 1F i o uf R i u R R R u u A 反相比例运算电路的输出电阻为:R of =0

输入电阻为:R if =R 1 b .同相比例运算 F 10k Ω 输入电压i U 接至同相输入端,输出电压O U 通过电阻R F 仍接到反相输入端。R 2的阻值应为R 2=R 1//R F 。 根据虚短和虚断的特点,可知I -=I +=0, 则有 o F u R R R u ?+= -11 且 u -=u +=u i ,可得: i o F u u R R R =?+11 1 F i o uf R R 1u u A +== 同相比例运算电路输入电阻为: ∞==i i if i u R 输出电阻: R of =0 以上比例运算电路可以是交流运算,也可以是直流运算。输入信号如果是直流,则需加调零电路。如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。 选择集成运算放大器时,首先应查阅手册,了解运放主要参数,一般为了减小闭环增益误差,提高放大电路的工作稳定性,应尽量选用失调温漂小,开环电压增益高,输入电阻高,输出电阻低的运算放大器。 特别是在交流放大时,为减小放大电路的频率失真和相位失真(动态误差),集成运算放大器的增益——带宽积G ·B ω和转换速度SR 必须满足以下关系: f B A B G uf ωω?>? max max 2o R U f S ?>π 式中f max 为输入信号最高工作频率,U omax 为最大输出电压幅值 对于同相比例电路运算电路,还要特别注意存在共模输入信号的问题,也就是说,要求集成运算放大器允许的共模输入电压范围必须大于实际的共模输入信号幅值。并要求有很高的共模抑制比。

实验四 比例求和运算电路实验报告

实验四 比例求与运算电路 一、实验目的 1.掌握用集成运算放大器组成比例、求与电路的特点及性能。 2.学会上述电路的测试与分析方法。 二、实验仪器 1、数字万用表 2、信号发生器 3、双踪示波器 其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求与运算电路”模板。 三、实验原理 (一)、比例运算电路 1.工作原理 a.反相比例运算,最小输入信号min i U 等条件来选择运算放大器与确定外围电路元件参数。 如下图所示。 10k Ω 输入电压i U 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2 接地。输出电压O U 经R F 接回到反相输入端。通常有: R 2=R 1//R F 由于虚断,有 I +=0 ,则u +=-I +R 2=0。又因虚短,可得:u -=u +=0 由于I -=0,则有i 1=i f ,可得: F o 1i R u u R u u -=--- 由此可求得反相比例运算电路的电压放大倍数为: ??? ???? ==-==1i i if 1F i o uf R i u R R R u u A 反相比例运算电路的输出电阻为:R of =0

输入电阻为:R if =R 1 b.同相比例运算 A V i V o F 100k Ω R 1 10k Ω R 2 10k Ω A B 输入电压i U 接至同相输入端,输出电压O U 通过电阻R F 仍接到反相输入端。R 2的阻值应为R 2=R 1//R F 。 根据虚短与虚断的特点,可知I -=I +=0,则有 o F u R R R u ?+= -11 且 u -=u +=u i ,可得: i o F u u R R R =?+11 1 F i o uf R R 1u u A +== 同相比例运算电路输入电阻为: ∞==i i if i u R 输出电阻: R of =0 以上比例运算电路可以就是交流运算,也可以就是直流运算。输入信号如果就是直流,则需加调零电路。如果就是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。 (二)求与运算电路 1.反相求与 根据“虚短”、“虚断”的概念 1212i i o F u u u R R R +=- 1212()F F o i i R R u u u R R =-+ 当R 1=R 2=R,则 12()F o i i R u u u R =-+ 四、实验内容及步骤 1、、电压跟随电路 实验电路如图1所示。按表1内容进行实验测量并记录。 理论计算: 得到电压放大倍数: 即:Ui=U+=U-=U

同相输入比例运算电路

同相输入比例运算电路先知[理想的教育发表于2006-12-12 14:33:00] 课题名称:同相输入比例运算电路李 教时:1教时班级: 一、教学目标: 1、掌握虚短和虚断的概念以及应用 2、掌握同相输入比例运算电路的特点 3、掌握同相输入比例运算电路的输出电压推导过程 4、掌握集成运放问题的一般解题方法和步骤 二、教学重点:输出电压的推导过程 三、教学难点;输出电压的推导方法 四、教具和环境:多媒体教室及多媒体教学系统 五、教学内容和教学步骤: [复习导课]:上次课我们学习了集成运放的理想特性和两个推论。 提问:什么是集成运放的理想特性? 学生回答。 教师明确答案。 教师展示动画:虚短和虚断 虚短和虚断是两个重要的推论。我们将如何应用它呢? 我们一起学习“同相输入比例运算电路” [学习新知识] 一、任务驱动:1、电路特点:2、VO和Vi 的关系 二、讲解: 1、电路特点:(1)Vi——B(+);(2)VO—RF—A(—);(3)A(—)—地 2、输出电压推导: 方法一课件展示 方法二黑板领讲 放大倍数及比例系数: 3、结论:放大倍数与A vo 无关,取决于R f 的R1 比值。 4、名字由来:VO 和Vi 同相,且有比例关系。

[例题解析]例1 例2 [巩固练习]1同相比例集成运放的反馈类型为() A、电压串联负反馈; B、电压并联饭反馈; C、电流串联负反馈; D、电流并联负反馈。 2同相比例集成运放的输入信号是从_____输入的(同相输入端/反向输入端)。 3(1)R f =0时,求Vo 和Vi 的关系? (2)R f =0,R1=∞时,求Vo 和Vi 的关系? [知识总结] 1、R f =0,R1=∞时,为电压跟随器 电压跟随器是同相输入比例运算电路的特例。 2、反馈类型: 3、解题的一般步骤: (1)利用虚短和虚断得结论 (2)节点电流公式和欧姆定理 (3)求解 4、思考:比较同相比例运算电路和反相比例运算电路的异同 [参考材料] [作业] 阅读全文(536)| 回复(0)| 引用通告(1)| 编辑

积分、微分、比例运算电路要点

模拟电路课程设计报告 题目:积分、微分、比例运算电路 一、设计任务与要求 ①设计一个可以同时实现积分、微分和比例功能的运算电路。 ②用开关控制也可单独实现积分、微分或比例功能 ③用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V),为运算电路提供偏置电源。此电路设计要求同时实现比例、积分、微分运算等功能。即在一个电路中利用开关或其它方法实现这三个功能。

方案一: 用三个Ua741分别实现积分、微分和比例功能,在另外加一个Ua741构成比例求和运算电路,由于要单独实现这三个功能,因此在积分、微分和比例运算电路中再加入三个开关控制三个电路的导通与截止,从而达到实验要求。 缺点:开关线路太多,易产生接触电阻,增大误差。此运算电路结构复杂,所需元器件多,制作难度大,成本较高。并且由于用同一个信号源且所用频率不一样,因此难以调节。 流程图如下: 图1 方案二: 用一个Ua741和四个开关一起实现积分、微分和比例功能,并且能够单独实现积分、微分或比例功能。 优点:电路简单,所需成本较低。 电路图如下: 积分运算电路 微分运算电路 比例运算电路 比例求和运算电路

图2 三、单元电路设计与参数计算 1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 其流程图为: 图3 直流电源电路图如下: 电源变 压器 整流电路 滤波电路 稳压电路

V1220 Vrms 50 Hz 0?? U11_AMP T1 7.32 1D21N4007 D3 1N4007D4 1N4007 C13.3mF C23.3mF C3220nF C4220nF C5470nF C6470nF C7220uF C8220uF U2LM7812CT LINE VREG COMMON VOLTAGE U3LM7912CT LINE VREG COMMON VOLTAGE D51N4007D61N4007 LED2 LED1 R11k|?R21k|?23 4 5 D1 1N400715 16 6 7 14 17 图4 原理分析: (1)电源变压器: 由于要产生±12V 的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V 的变压器。 (2)整流电路: 其电路图如下: 图5 ①原理分析: 桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,

同相输入比例运算电路、加法运算电路减法运算电路案例分析

同相输入比例运算电路、加法运算电路减法运算电路案例分析 1.同相输入比例运算电路 电路如图3.7(a)所示。 (a) 同相输入比例运算电路 (b)电压跟随器 图3.7 比例运算电路 根据运放工作在线性区的两条分析依据可知: f 1i i =,i u u u ==+- 而 F o F o f 1 110R u u R u u i R u R u i i i -= -=-=-= -- 由此可得: i u R R u ???? ? ?+=1F o 1 输出电压与输入电压的相位相同。 同反相输入比例运算电路一样,为了提高差动电路的对称性,平衡电阻F 1p //R R R =。 闭环电压放大倍数为: 1 F o 1R R u u A i uf +== 可见同相比例运算电路的闭环电压放大倍数必定大于或等于1。当0f =R 或∞=1R 时,i u u =o ,即1=uf A ,这时输出电压跟随输入电压作相同的变化,称为电压跟随器,电路如 图3.7(b)所示。 2.加法运算电路 加法运算电路如图3.8(a)图所示。

(a) 加法运算电路 (b)减法电路 图3.8 加减运算电路 根据运放工作在线性区的两条分析依据可知: 21f i i i += 111R u i i = ,222R u i i =,F o f R u i -= 由此可得: )( 22 F 11F o i i u R R u R R u +-= 若F 21R R R ==,则: )(21o i i u u u +-= 可见输出电压与两个输入电压之间是一种反相输入加法运算关系。这一运算关系可推广到有更多个信号输入的情况。平衡电阻F 21p ////R R R R =。 3.减法运算电路 减法电路如图3.8(b)图所示。 由叠加定理: u i 1单独作用时为反相输入比例运算电路,其输出电压为: 11F o i u R R u -=' u i 2单独作用时为同相输入比例运算,其输出电压为: 2323 1F o 1i u R R R R R u +???? ? ?+='' u i 1和u i 2共同作用时,输出电压为: 2323 1F 11F o o o 1i i u R R R R R u R R u u u +???? ? ?++-=''+'= 若∞=3R (断开),则: 21F 11F o 1i i u R R u R R u ???? ? ?++- = 若21R R =,且F 3R R =,则: )(121 F o i i u u R R u -= 若F 321R R R R ===,则: 12o i i u u u -=

比例求和运算电路实验报告.doc

实验四比例求和运算电路 一、实验目的 ①掌握用集成运算放大器组成比例求和电路的特点和性能; ②学会用集成运算放大电路的测试和分析方法。 二、实验仪器 ①数字万用表;②示波器;③信号发生器。 三、实验内容 Ⅰ.电压跟随器 实验电路如图 1所示: 图 1电压跟随器 按表 1内容实验并记录。 V i(V)-2 -0.5 0 +0.5 1 R L=∞-2.001 -0.505 0.003 0.507 1.002 V O(V) R L=5K1 -2.001 -0.505 0.003 0.507 1.002 表1 Ⅱ.反相比例放大电路 实验电路如图 2所

精选

图2 反相比例放大器 1)按表 2内容实验并测量记录: 直流输入电压 U i (mV ) 30 100 300 1000 3000 理论估算( mV ) -300 -1000 -3000 -10000 -30000 输出电压 实测值( mV ) -320 -1046 -3004 -9850 -9940 U O 误差 (mV) 20 46 4 -150 -20060 表2 发现当 U i =3000 mV 时误差较大。 2)按表 3要求实验并测量记录: 测试条件 理论估算值 实测值 (mV ) (mV ) U O -8000 -8030 U AB L 开路,直流输入信号 U i 0 R U R2 由 0变为 800mV 800 0 U R1 0 0 U OL U=800mV , 0.02 R 由开路变为 5K1 L 表3 其中 R L 接于 V O 与地之间。表中各项测量值均为 U i =0及 U i =800mV

比例求及运算电路实验报告

比例求和运算电路实验报告 一、实验目的 ①掌握用集成运算放大器组成比例\求和电路的特点和性能; ②学会用集成运算放大电路的测试和分析方法。 二、实验仪器 ①数字万用表;②示波器;③信号发生器。 三、实验内容 Ⅰ.电压跟随器 实验电路如图6-1所示: 理论值:U i=U+=U-=U

图6-1 电压跟随器 按表6-1内容实验并记录。 V i (V ) -2 -0.5 +0.5 1 V O (V ) R L =∞ -2.18 -0.671 -0.1 7 +0.33 0.83 R L =5K1 -2.18 -0.671 -0.1 7 +0.33 0.83 表6-1 Ⅱ.反相比例放大电路 实验电路如图6-2所示: 理论值:(U i -U -)/10K=(U --U O )/100K 且U +=U -=0故U O =-10U i 图6-2 反相比例放大器 1)按表6-2内容实验并测量记录:

直流输入电压U i(mV)3010030010003000 输出电压 U O 理论估算(mV)-300-1000-3000 -1000 -3000 0实测值(mV)-1251-1965-3990 -1051 -1051 0误差316%96.5%33% 5.1%0.63% 表6-2 发现当U i=3000 mV时误差较大。 2)按表6-3要求实验并测量记录: 测试条件 理论估算值 (mV) 实测值(mV) ΔU O R L开路,直流输入信号U i 由0变为800mV -8000-7800 ΔU AB00 ΔU R200 ΔU R1800800ΔU OL U=800mV, R L由开路变为5K1 00 表6-3 其中R L接于V O与地之间。表中各项测量值均为U i=0及U i=800mV 时所得该项测量值之差。 Ⅲ.同相比例放大器 电路如图6-3所示。理论值:U i/10K=(U i-U O)/100K故U O=11U i

相关文档
最新文档