分子遗传学名词解释

分子遗传学名词解释
分子遗传学名词解释

绪论

1. 独立分离定律:在生物体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。

2. 自由组合定律:控制不同性状的遗传椅子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成队的遗传因子彼此分离,决定不同性状的遗传因子自由组合.

3. “连锁”:染色体可以自由组合,而排在一条染色体上的基因是不能自由组合的。同源染色体的断离与结合,而产生了基因的“互相交换”。

4. 分子遗传学:是研究遗传信息大分子的结构和功能的科学。它依据物理、化学的原理来解释遗传现象,并在分子水平上研究遗传机制及遗传物质对代谢过程的调控。

第一章

1.基因:遗传的物质基础,是DNA分子上具有遗传信息的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。既是功能单位,又是重组单位和突变单位。

2.顺反子:编码单条多肽链的一个遗传功能单位,即转录单位。

3.朊病毒:一类不含核酸而仅由蛋白质构成的可自我复制并具有感染性的因子。

4.表观遗传学:在DNA序列不发生改变的情况下,基因表达发生表化的遗传学研究。

5.断裂基因:基因的编码序列在DNA放在上不是连续的,而是被不编码的序列隔开,形成镶嵌排列的断裂形式。

6.外显子:基因中编码的序列,与mRNA的序列相对应。内含子:基因中不编码的序列。

7.重叠基因:是指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上基因的组成部分。

8.DNA的转座:由可移位因子介导的遗传物质重排现象。

9.转座子:存在于染色体DNA上可自主复制和位移的基本单位。

10.基因序列:指基因组里决定蛋白质(或RNA产物)的DNA序列。

11.非基因序列:是基因组中除基因以外的所有DNA序列,主要是两个基因之间的间插序列。

12.编码序列:指编码RNA和蛋白质的DNA序列。

13.非编码序列:指基因的内含子序列以及居间序列的总和。

14.单一序列:是基因组里只出现一次的DNA序列,又称非重复序列。

15.中度重复序列:重复次数为几十次到几千次。如rRNA基因、tRNA基因和某些蛋白质的基因。

16.高度重复序列:重复几百万次,一般是少于10个核苷酸残基组成的短片段。如异染色质上的卫星DNA。

17.基因家族:真核生物基因组中来源相同,结构和功能相关的一组基因形成一个基因家族。

18.多基因家族:多基因家族是一个基因组中功能相似、进化上同源的一组基因。

19.超基因家族:DNA序列相似,但功能不一定相关的若干基因家族或单拷贝基因总称。由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同

20.N值悖理:生物基因数目同生物进化程度或生物复杂性的不对应性

21.N值:生物中包含基因的总数目,称为N值。

22.C值悖理:生物基因组的大小同生物在进化上所处的地位及复杂性之间无严格的对应关系。

23.基因是功能单位(决定性状),基因是突变单位(基因是突变的最小结构),交换单位(交换的最小结构)三位一体的组合。

第二章

1.DNA的变性:在理化因素作用下,DNA双螺旋的两条互补链松散而分开成为单链,从而导致DNA 的理化性质及生物学性质发生改变

2.Tm值:加热变性使DNA的双螺旋结构失去一半时的温度称为该DNA的变性温度(82-95℃)。

3.DNA的复性:变性DNA在适当条件下,又可以使两条彼此分开的链重新缔合成为双螺旋结构

4.退火:变性DNA在缓慢冷却时,可以复性,此过程称为退火。

5.染色质:是由DNA、组蛋白、非组蛋白和少量RNA组成的线性复合结构,是遗传物质在间期细胞的存在形式,常呈网状不规则结构。

6.组蛋白:真核生物体细胞染色质中的碱性蛋白质,富含精氨酸和赖氨酸等碱性

7.核小体:组成真核细胞染色体的基本结构单位,由组蛋白和大约200个bp的DNA组成的直径约10 nm的球形小体。

8.非组蛋白:一组极不均一的在细胞内与DNA结合的组织特异蛋白质(15~100 kDa)。大多为酸性蛋白质,参与基因表达调控。

9.常染色质:间期核内染色质丝折叠压缩程度低,处于伸展状态,着色浅的那部分染色质。富含单拷贝DNA序列,有转录活性。

10.异染色质:间期核内染色质丝折叠压缩程度高,处于凝聚状态,染料着色深的那部分染色质。富含重复DNA序列、复制延迟,一般无转录活性。

11.DNA:DNA指脱氧核苷酸的高聚物,是染色体的主要成分。

第三章

1.操纵子:有原核生物中,由几个功能相关的结构基因成簇排列而组成的一个基因表达的协同单位,称为操纵子

第四章

1.细胞核遗传:由细胞核中的DNA决定的遗传现象。

2.细胞质遗传:由细胞质中的DNA决定的遗传现象。

3.内共生假说:真核细胞祖先是种吞噬细胞;线粒体祖先是种革兰氏阴性菌。前者吞后者

4.细胞分化假说:原始的原核细胞质膜内陷包被DNA,然后再分化形成独立的细胞器。

第五章

1.基因丢失:在细胞分化过程中,某些原生动物、线虫、昆虫等体细胞通过丢失某些基因而除去这些基因的活性。

2.基因扩增:某个或某些基因的拷贝数选择性增加的现象。这种增加可以发生在细胞或组织内,也可以在体外(试管中)或在细胞或组织中。这种增加一般与基因组的其他基因的增加不成比例。

3.基因重排:指某些基因片段改变原来存在顺序而重新排列组合,成为一个完整的转录单位。

4.顺式作用元件:指DNA上对基因表达有调节活性的某些特定的调节序列,其活性仅影响与其自身处于同一DNA分子的基因。这种DNA序列多位与基因旁侧或内含子中,不编码蛋白质。

5.启动子:位于转录起始位点附近,具有相对固定位置,且为转录起始所必需的序列元件。

6.增强子(enhancer):位于转录起始位点较远位置上,具有参与、激活和增强转录起始功能的序列元件。增强子元件常常是组织特异性或短暂调节的靶位点。

7.应答元件:一组受共同调控的基因,各基因都有一个相同的序列元件,该元件是诱导型转录因子识别靶基因的位点,称为应答元件。

8.反式作用因子: 指能直接或间接地识别或结合在各顺式作用元件8~15bp核心序列上,参与调控靶基因转录效率的一组蛋白质,也称序列特异性DNA结合蛋白

9.锌指结构:指含有一段保守氨基酸顺序的蛋白质与该蛋白的辅基锌螫合而形成的环状结构,分为锌指、锌扭和锌簇结构;也有按照与锌结合的氨基酸残基性质分为Cys2/Cys2和Cys2/His2指。

10.同源结构域:同源盒基因家族各基因间具有一相同的保守序列,称为同源结构域

11.碱性亮氨酸拉链:有些肽链C末端有一段30个氨基酸序列以α-螺旋构型出现的结构单元,每间隔6个氨基酸出现一个亮氨酸残基,能形成两性α-螺旋。两个具有这种结构的因子接触后可借助侧链疏水性交错对插,形成稳定卷曲螺旋结构的二聚体。

12.螺旋-环-螺旋结构:含两个双性α-螺旋,每3~4个氨基酸含一个疏水性残基,中间为非螺旋环区,内含一个或多个能阻断螺旋的氨基酸残基。

13.5ˊ端加帽:真核生物转录生成的mRNA在转录后,在5ˊ端加上7-甲基鸟苷 (m7GPPPmNp-)。意义:保护转录体mRNA不受5ˊ外切酶降解;增强mRNA的稳定性。

14. 3ˊ端加尾:转录后在mRNA在3ˊ末端加上50~200个腺苷酸,即poly(A)尾(成熟mRNA)。意义:保护mRNA的完整性;有利于mRNA从细胞核向胞质的转运;促进mRNA与核糖体的结合。

15.mRNA前体的剪接:真核细胞基因表达所转录出的mRNA前体在剪接酶作用下,有序删除每一个内含子并将外显子拼接起来,形成成熟的mRNA,这一过程即为剪接。

16.选择性剪接:一个外显子或内含子是否出现在成熟的mRNA中是可以选择的,这种剪接方式称为选择性剪接。

17.RNA编辑:是指转录后的RNA在编码区发生碱基的突变、加入或丢失等现象。

第六章

1.病毒:病毒是由蛋白质外壳包被核酸形成的细胞中一类原始的微小复合大分子寄生物。

2.干扰:在两种病毒共同感染同一种细胞时,可发生一种病毒抑制另一种病毒复制的现象

第七章

1.个体发育:从受精卵形成胚胎,而后胚胎生长发育成个体的过程称为个体发育。从形态上看,个体发育过程经历生长、分化和形态发生。

2.细胞分化:在个体发育中, 细胞的后代在形态、结构和功能上发生差异的过程称为细胞分化。其本质是基因选择性表达的结果,即基因表达调控的结果。

3.胚胎诱导作用:胚胎发育过程中,一部分细胞影响相邻细胞向一定方向分化的作用。

4.分化抑制作用:分化成熟的细胞可以产生抑素,抑制相邻细胞发生同样的分化。

5.镶嵌型发育:如果在发育早期将一个特定分裂球从整体胚胎上分离下来,他就会形成如同其在整体胚胎中将会形成的结构一样的组织,而胚胎其余部分形成的组织会缺乏分离裂球所能产生的结构,两者恰好相补。这种以细胞自主特化为特点的胚胎发育模式称为镶嵌型发育(形态发生决定子决定)。

6.调整型发育:对细胞进行有条件特化的胚胎来说,如果在发育早期将一个分裂球从整体胚胎上分离下来,剩余胚胎中某些细胞可以改变发育命运,填补分离掉的裂球所留下的空缺,仍形成一个正常的胚胎。这种以细胞有条件特化为特点的胚胎发育模式称为调整型发育(胚胎细胞的相互作用决定)。

7.细胞特化:细胞经过一系列潜在的改变而具有了自主分化的能力。(发育可逆)

8.细胞决定:能够在胚胎特定的位置进行自主分化的能力。(不可逆)

9.干细胞:是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。

10.细胞全能性:植物已分化细胞保留着全部的核基因组,它具有生物个体生长、发育所需要的全部遗传信息,即能够表达本身基因库中的任何一种基因,也就是说分化细胞具有发育为完整个体的潜能,称为全能性。

11.脱分化:已经分化,并且具有一定功能的体细胞(或性细胞),丧失了原有的结构和功能,又重新恢复了分裂功能,就叫做植物细胞的脱分化。

12.再分化:处于脱分化状态的愈伤组织移植到合适的培养基上继续培养,愈伤组织就会重新进行分化,并形成具有根、茎、叶的完整植株。这个过程就叫做植物细胞的再分化。

13.植物的诱导抗性:是外界因子对个体发育中基因表达调控的另一种形式。

第八章

1.重组DNA技术:又称为基因克隆或分子克隆技术。它是基因工程的核心技术。

2.限制性内切核酸酶:又称限制酶。是特异性地切断DNA链中磷酸二酯键的核酸酶。

3.载体:将外源目的DNA导入受体细胞,并能自我复制和增殖的工具。

4.克隆载体:为使插入的外源DNA序列被扩增而特意设计的载体称为克隆载体。

5.表达载体:为使插入的外源DNA序列可转录翻译成多肽链而特意设计的载体称为表达载体。

6.质粒:菌细胞内一种自我复制的环状双链DNA分子,能稳定地独立存在于染色体外,并传递到子代,一般不整合到宿主染色体上。

7.粘粒:粘粒又称柯斯质粒,是一类由人工构建的含有λDNA 粘性末端cos序列和质粒复制子的杂种质粒载体

8.感受态细胞:受体细胞经处理后处于最适摄取和容忍重组体的状态。

9.转化:通过自动获取或人为地供给外源DNA,使细胞或培养的受体细胞获得新的遗传表型,称为转化作用。

10.转导:当病毒从被感染的(供体)细胞释放出来、再次感染另一(供体)细胞时,发生在供体细胞与受体细胞之间的DNA转移及基因重组即为转导作用。

11.转染:是特殊形式的转化,是离体状态的完整的病毒噬菌体DNA/RNA感染受体菌而引起的后者遗传型和表型发生的变化。

12.PCR:是模拟体内DNA复制条件,应用DNA聚合酶反应,特异性扩增某一DNA片段的技术。

13.基因组DNA文库:将某一基因组DNA用适当的限制酶切断后,与载(质粒或噬菌体)体DNA重组,再全部转化宿主细胞,存在于转化细胞内由克隆载体所携带的所有基因组DNA的集合称为G文库。

14.cDNA文库:以某种细胞的全部mRNA为模板,利用逆转录酶合成与mRNA互补的DNA(cDNA)再复制成双链cDNA,与适当的载体连接后转化入受体菌,得到含全部表达基因的种群,称为C-文库。

15.分子杂交:标记的探针DNA变性后与变性后的靶DNA/RNA通过碱基互补配对结合,形成杂种分子的过程。

16.基因探针:是指与一段目的基因或DNA/RNA片段特异杂交的核苷酸序列。可以是整个基因,或是基因的一部分,是DNA,也可以是RNA。

17.DNA多态:DNA区域中等位基因(或片段)存在两种或两种以上形式(主要是长度),对基因没有影响,称为DNA 多态。

18.遗传标记:基因定位是确定某一基因在染色体上的未知位置,用连锁分析法进行基因定位需要一些遗传位点,这些位点应按孟德尔方式遗传,且具有多态性以显示其连锁关系,这些标记位点称为遗传标记。

第九章

1.光周期途径:CO,GI,FT 等。影响长日照条件下的开花途径

2.春化作用途径:VRN1,VRN2,VRN3,VER2等。通过影响染色质的结构实现春化作用。

3.GA途径:通过促进LFY基因的表达和调控DELLA蛋白的合成完成对开花的诱导作用。

4.自主途径:通过抑制FRI,FLC等直接促进LFY的表达,以影响开花。

高级分子遗传学复习提纲

高级分子遗传学复习题 1、概念解释: PDT 噬菌体展示技术(phage displayed technology,PDT)是将外源蛋白或多肽与噬菌体外壳蛋白融合,展示在噬菌体表面并保持特定的空间构象,利用特异性亲和作用以筛选特异性蛋白或多肽的一项新技术。该技术将基因型与表型、分子结合活性与噬菌体的可扩增性结合在一起,是一种高效的筛选新技术。目前已成功应用于抗原表位分析,单抗筛选,蛋白质功能拮抗多肽或模拟多肽的确定等。 DNA shuffling 将不同品系具有不同突变位点的基因(1~6kb)或同一家族的基因混合,用DNase I酶切构成随机DNA 片段库(Pool)。用此库样品为模板、以小分子引物进行PCR扩增,一些随机模板得到扩增,由于片段间存在同源性,在退火过程中常出现模板转换(switch),从而有可能出现集多种突变点于一个基因上的DNA分子,可从多种多样的重组分子中筛选出有用基因。 卫星RNA(satellite RNA) 类病毒(viroids)和拟病毒(virusoids)中类病毒是有侵染性并能独立作用的RNA分子,没有任何蛋白质外壳。拟病毒在构成上与类病毒类似,但是被植物病毒包装,与一个病毒基因组包被在一起。拟病毒不能独立复制,需要病毒帮助其复制。有时拟病毒又称为卫星RNA(satellite RNA)。 交换固定(crossover fixation) 指某一基因簇中的突变通过不等交换趋向扩展到整个基因簇的现象。结果突变的基因要么被淘汰,要么占据全部原来相同基因的位置。 分子伴侣(chaperone) 一种能诱导靶蛋白质形成特定构象使其正确组装的蛋白质。 空转反应(idling reaction) 当空载tRNA进入A位点时,核糖体产生pppGpp 和ppGpp, 诱发应急型反应。 AARS:(氨酰-tRNA合成酶) 催化氨基酸和tRNA2‘或3’-OH共价连接的酶。根据氨基酸序列,可将AARS分为I、II型两组。I 型:Arg、Gln、Glu、Ile、Leu、Trp、Tyr、Val、Cys-RS,其余为II型。I 型RS含有HIGH签名序列(His-Ile-Gly-His)和KMSKS(Lys-Met-Ser-Lys-Ser)序列,使AA结合在3'A的2'-OH上,可以在2'、3'之间移动。II型RS无签名序列,而有3个保守基序。 RNAi/RNAq(RNA干扰、RNA压制) 转录后基因沉默广泛存在于各种生物中,在植物中被称为转录后基因沉默(PTGS),在动物中被称为RNA 干扰(RNA interference, RNAi),在真菌中则被称为RNA压制(RNA quelling,RNAq)。尽管叫法不同,但都具有相似机制,都启动一种特殊的RNA降解过程。 酸性面条(negative noodle)

遗传学第一章绪论(答案)

第一章绪论(答案) 一、选择题 (一)单项选择题 *1 .遗传病的最基本特征是: A.家族性 B. 先天性 C. 终身性 D. 遗传物质的改变 E. 染色体畸变 2. 根据遗传因素和环境因素在不同疾病发生中作用不同,对疾病分类下列哪项是错误的? A.完全由遗传因素决定发病 B .基本由遗传因素决定发病 C.遗传因素和环境因素对发病都有作用 D .遗传因 素和环境因素对发病作用同等 E.完全由环境因素决定发病 *3 .揭示生物性状的分离律和自由组合律的两个遗传学基本规律的科学家是 A. Mendel B. Morgan C . Garrod D . Hardy. Wenberg E . Watson, Crick 4. 关于人类遗传病的发病率,下列哪个说法是错误的? A.人群中约有3%^5%的人受单基因病所累 B .人群中约有0.5%?1%的人受染色体病所累C .人群中约有 15%?20%勺人受多基因病所累 D. 人群中约有20%?25%勺人患有某种遗传病 E. 女性人群中红绿色盲的 发病率约为5% *5.研究染色体的结构、行为及其与遗传效应关系的遗传学的一个重要支柱学科称为: A .细胞遗传学 B .体细胞遗传学C.细胞病理学D .细胞形态学 E .细胞生理学 6. 研究基因表达与蛋白质(酶)的合成,基因突变所致蛋白质(酶)合成异常与遗传病关系的医学遗传学的一个支柱学科为: A.人类细胞遗传学 B .人类生化遗传学 C. 医学分子生物学 D.医学分子遗传学E .医学生物化学 7. 细胞遗传学的创始人是: A. Mendel B . Morgan C . Darwin D . Schleiden , Schwann E.Boveri , Sutton 8 .在1944年首次证实DNA分子是遗传物质的学者是; A. Feulgen B . Morgan C . Watson, Crick D . Avery E.Garrod 9. 1902年首次提出“先天性代谢缺陷”概念的学者是: A. Feulgen B . Morgan C . Watson, Crick D . Avery E . Garrod 10. 1949年首先提出“分子病”概念的学者是: A. Mendel B . Morgan C . Darwin D . Paullng E . Boveri , Sutton *11 . 1956年首次证明人的体细胞染色体为46条的学者是: A. Feulgen B . Morgan C .蒋有兴(JH.Tjio)和Levan D . Avery E . Garrod 12. 1966年编撰被誉为医学遗传学的“圣经”--〈〈人类盂德尔遗传》一书的学者是: A. McKusick B . Morgan C . Darwin D . Schleiden , Schwann E . Boveri , Sutton *13 .婴儿出生时就表现出来的疾病称为:A.遗传病B .先天性疾病C. 先大畸形D. 家族性疾病 E. 后天性疾病 *14. 一个家庭中有两个以上成员罹患的疾病一般称为: A.遗传病B .先天性疾病C先大畸形 D.家族性疾病E.后天性疾病 15. 婴儿出生时正常,在以后的发育过程中逐渐形成的疾病称为: A.遗传病B .先天性疾病C.先大畸形D.家族性疾病E.后天性疾病 16. 人体细胞内的遗传物质发生突变所引起的一类疾病称为: A.遗传病B .先天性疾病C.先大畸形D.家族性疾病E.后天性疾病*17.遗传病特指: A.先天性疾病 B .家族性疾病 C .遗传物质改变引起的疾病 D.不可医治的疾病 E .既是先天的,也是家族性的疾病 18. 环境因素诱导发病的单基因病为: A. Huntington 舞蹈病B .蚕豆病C .白化病D .血友病A E .镰状细胞贫血 19. 传染病发病: A.仅受遗传因素控制 B .主要受遗传因素影响,但需要环境因素的调节 C.以遗传因素影响为主和环境因素为辅 D .以环境因素影响为主和遗传因素为辅 E .仅受环境因素影响 20. Down^合征是:

最新分子遗传学考试复习题

分子遗传学考试复习 题

《分子遗传学》考试复习题 一、选择题 1、DNA分子超螺旋盘绕组蛋白八聚体( A )圈 A、1.75 B、2 C、2.75 D、3 2、在真核生物基因表达调控中,( B )调控元件能促进转录的速率。 A、衰减子 B、增强子 C、repressor D、TATA box 3、原核生物RNA聚合酶识别的启动子位于(A ) A、转录起始点上游 B、转录起始点下游 C、转录终点下游 D、无一定位置 4、植物雄性不育与下列( B )有关 A、叶绿体 B、线粒体 C、核糖体 D、高尔基体 5、染色体的某一部位增加了自身的某一区段的染色体结构变异称为( D )。 A、缺失 B、易位 C、倒位 D、重复 6、合成多肽链的第一个氨基酸是由起始密码子决定的。细菌的起始密码子一般 为(B)。 A、 ATG B、AUG C、UAA D、UGA 7、真核生物蛋白质合成的的起始密码子是( D )。 A、 ATG B、UGA C、UAA D、AUG 8、下列哪些密码子不是终止密码子( A ) A、 AUG B、UAA C、UAG D、UGA 9、人的ABO血型受一组复等位基因IA、IB、i控制,IA和IB对i都是显性,IA与IB为共显性。一对夫妻血型均为AB型,则其所生子女的血型不可能是( A )。√ A. O型 B. A型 C. B型 D. AB型 10、通常把一个二倍体生物配子所具有的染色体称为该物种的( B )。√ A. 一个同源组 B. 一个染色体组 C. 一对同源染色体 D. 一个单价体 11、某双链DNA分子中,A占15%,那么C的含量为(C) A、15% B、25% C、35% D、45%

分子遗传学复习题

分子遗传学复习题 名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE 计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段( a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码 RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。 反向遗传学(reverse genetics):是从改变某个感兴趣的基因或蛋白质入手,然后去寻找相关的表型变化。 反转座子(retroposon)或“反转录转座子(retrotransposon)”:先转录为RNA再反转录成DNA 而进行转座的遗传元件。 核酶(ribozyme):具有催化活性的RNA, 即化学本质是核糖核酸(RNA), 却具有酶的催化功能。核酶的作用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。 核心启动子(core promoter):是指在体外测定到的由RNA polⅡ进行精确转录起始所要求的最低限度的一套DNA序列元件。 化学基因组学(chemogenomics):它是作为后基因组时代的新技术,是联系基因组和新药研究的桥梁和纽带。它指的是使用对确定的靶标蛋白高度专一的小分子

分子遗传学

第一章
公元前4000年,伊拉克 的古代巴比伦石刻上记 载了马头部性状在5个 世代的遗传。
浙江大学


第一节 遗传学研究的对象 和任务
遗传学第一章
1
浙江大学
遗传学第一章
2
1.遗传学的研究内容: 1.遗传学的研究内容:
(1).是研究生物遗传和变异的科学: 遗传学与生命起源和生物进化有关。 (2).是研究生物体遗传信息和表达规律的科学: 解决问题:物种 代代相传; 性状 遗传。 (3).是研究和了解基因本质的科学: 遗传物质是什么? 遗传物质 性状?
浙江大学 遗传学第一章 3
∴ 遗传学是一门涉及生命起源和生物进化的理论科学, 同时也是一门密切联系生产实际的基础科学,直接指导 医学研究和植物、动物、微生物育种。
浙江大学
遗传学第一章
4
2.遗传和变异的概念: 2.遗传和变异的概念:
(1).遗传(heredity):亲子间的相似现象。 “种瓜得瓜、种豆得豆” (2).变异(variation):个体之间的差异。 “母生九子,九子各别” (3).遗传和变异是一对矛盾。 (4).遗传、变异和选择是生物进化和新品种选育的 三大因素: 遗传 + 变异 + 自然选择 遗传 + 变异 + 人工选择 形成物种 动、植物品种
自然选择
人工选择
(5).遗传和变异的表现与环境不可分割。
浙江大学 遗传学第一章 5 浙江大学 遗传学第一章 6

3.遗传学研究的对象: 3.遗传学研究的对象:
以微生物(细菌、真菌、病毒)、
植物和动物以及人类为对象,研究其 遗传变异规律。
4.遗传学研究的任务: 4.遗传学研究的任务:
(1).阐明:生物遗传和变异现象 (2).探索:遗传和变异原因 (3).指导:动植物和微生物育种 表现规律; 物质基础 内在规律;
提高医学水平。
浙江大学
遗传学第一章
7
浙江大学
遗传学第一章
8
第二节
遗传学的发展
一、现代遗传学发展前
浙江大学
遗传学第一章
9
浙江大学
遗传学第一章
10
1.遗传学起源于育种实践:
人类 生产实践 遗传和变异 选择
2. 18世纪下半叶和19世纪上半叶期间,拉马克和达尔文对
生物界遗传和变异进行了系统的研究: (1).拉马克(Lamarck J. B., 1744~1829): ①.环境条件改变是生物变异的根本原因; ②.用进废退学说和 获得性状遗传学说 如长颈鹿、家鸡翅膀。
育成优良品种。
浙江大学
遗传学第一章
11
浙江大学
遗传学第一章
12

分子遗传学要点整理

Chapter 1: Genomes, Transcriptomes and Proteomes 1. 概述 基因组(Genome):指生物的整套染色体所含有的全部DNA或RNA 序列。基因组是地球上每一物种具有的生物学信息的存储库。 基因组学(Genomics):指研究生物的整个基因组,涉及基因组作图、测序和功能分析的一门学科。 基因组所包含的生物信息的利用需要酶及其他参与基因组表达过程中一系列复杂生化反应的蛋白质的协同活性。 基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。转录组由转录过程来维持。 基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。这是通过翻译过程来完成的。 2.1 Genes are made of DNA 奥地利神父孟德尔1865年根据7个碗豆性状的实验提出了遗传因子假说,认为每个性状由遗传因子控制,并提出了遗传因子的分离与自由组合两大遗传规律。 证明基因由核酸 (DNA或RNA) 组成的3个著名实验: ①肺炎双球菌的转化试验;DNA是遗传物质 ②噬菌体感染实验;只有DNA是联系亲代和子代的物质 ③烟草花叶病毒的感染实验。RNA也是遗传物质 2.2 The structure of DNA A. Nucleotides and polynucleotides B. The model of double helix DNA 晶体X射线衍射图谱?为揭示DNA分子的二级结构提供了重要实验证据 a. Watson and Crick (1953) 提出的 DNA双螺旋结构模型: "?DNA分子通常以右手双螺旋形式存在,两条核苷酸链反向平行,且互为互补链。 "?戊糖-磷酸骨架在分子的外铡,在分子表面形成大沟和小沟,碱基堆积于螺旋内部。 "?碱基间通过氢键相互连接,A 和T 以2个氢键配对, G和C 以3个氢键配对。"?螺旋中相邻碱基间相隔0.34nm ,每10个碱基对螺旋上升一圈,螺距为 3.4nm ,直径为2.37 nm 。 b. DNA双螺旋结构的稳定力: ??碱基间形成的氢键/ ??相邻碱基间的疏水堆积力/ ??碱基相互作用的范德华力 尽管氢键使得双链中的碱基间的配对具有特异性(只有互补的两条链之间才能形成DNA双链),但其对于双螺旋的总体上的稳定性并无太大贡献。 核酸分子的稳定性的根源在于碱基对之间的疏水堆积力。作为芳香族化合物,

分子遗传学重点讲义资料

1.分子遗传学:是研究遗传信息大分子的结构和功能的科学。它依据物理、化学的原理来解 释生命遗传现象,并在分子水平上研究遗传机制及遗传物质对代谢过程的调控。 2. 分子遗传学研究对象:从基因到表型的一切细胞内与遗变异有关的分子事件。不仅仅包括中心法则中从DNA到蛋白质的过程。 分子遗传学研究内容:遗传信息大分子在生命系统中的储存、复制、表达及调控过程。 分子遗传学研究目标:明确遗传信息大分子对生物表型形成的作用机制。 第二章基因 1.从遗传学史的角度看,基因概念大致分以下几个阶段: 泛基因(或前基因)→孟德尔(遗传因子) →摩尔根(基因):基因是功能单位(决定性状),基因是突变单位(基因是突变的最小结构),交换单位(交换的最小结构)三位一体的组合。 →顺反子:在一个等位基因内部发生两个以上位点的突变,如两个突变位点位于同一染色体上,为顺式结构,生物个体表现为野生型;突变位点分别位于两个同源染色体上,为反式结构,生物个体表现为突变型。即其顺式和反式结构的表型效应是不同的。一个具有顺反效应的DNA片段就是一个顺反子,代表一个基因。(或者具有顺反效应的DNA片段就是一个基因) (基因内部这些不同位点之间还可以发生交换和重组:一个基因不是一个突变单位,也不是一个重组单位) →操纵子:基因是一个转录单位,是一个以不同来源的外显子为构件的嵌合体,处于沉默的DNA介质(内含子)中 →现代基因 2.鉴定基因的5个标准 1)基因具有开放性阅读框ORF。 2)基因往往具有一定的序列特征。 3)基因序列具有一定的保守特性。 4)基因能够进行转录。 5)通过基因失活产生的功能改变鉴定基因。(能排除假基因的干扰) 3.蛋白质基因:能够自我复制的蛋白质病毒因子。 朊病毒:一类不含核酸而仅由蛋白质构成的可自我复制并具有感染性的因子。 4.基因组印记(genomic imprinting):由于一些可遗传的修饰作用(如DNA、组蛋白甲基化作用)控制着亲本中某个单一的等位印记基因活性,从而导致个体在发育上的功能差异,使个体具有不同的性状特征。 5.印记基因(imprinted gene):表达特性取决于它们是在父源染色体上还是在母源染色体上的等位基因。 6.组蛋白上的共价键修饰:包括甲基化、乙酰化、磷酸化等在组蛋白上以组合形式。这些修饰的组合能改变染色质的结构,进而影响基因的表达。属于一种表观遗传学现象(epigenetics )。 7.组蛋白密码含义: 1)组蛋白末端不同的修饰作用将诱导与染色质相连蛋白之间的相互亲和力。 2)一个核小体中同一末端的修饰可能是相互依赖的,产生不同组合。 3)染色质高级结构的不同性质极大地依赖于具有不同修饰的核小体共价修饰的局部浓度和

细胞和分子细胞遗传学技术

细胞和分子细胞遗传学技术 发表时间:2012-08-10T08:14:01.827Z 来源:《中外健康文摘》2012年第19期供稿作者:张亚丽[导读] 经典的细胞遗传学技术是指通过制备染色体标本,分析染色体数目和结构改变与人类疾病之间的关系。张亚丽(黑龙江省森工总医院 150040)【中图分类号】R394.2【文献标识码】A【文章编号】1672-5085(2012)19-0151-02 经典的细胞遗传学技术是指通过制备染色体标本,分析染色体数目和结构改变与人类疾病之间的关系。近代分子生物学技术与细胞遗传学技术相结合,形成了细胞和分子遗传学技术。其中比较成熟、具有实用价值的技术是:①荧光原位杂交;②比较基因组杂交。 1 人外周血淋巴细胞染色体检测技术 人外周血淋巴细胞染色体检测属于经典的细胞遗传学技术。用作染色体分析的标本包括外周血、脐带血、羊水、胎盘绒毛组织和肿瘤组织等。外周血是应用最多的材料。其他组织样本染色体制备方法与制备人外周血淋巴细胞的方法基本类同,只是标本的处理和培养条件有所调整。 1.1 基本原理 体外培养的外周血淋巴细胞,在植物凝集素(PHA)的刺激下转化成为能进行有丝分裂的淋巴母细胞;在秋水仙素(纺锤体抑制剂)作用下,淋巴母细胞有丝分裂停滞,从而获得处于有丝分裂中期的淋巴细胞染色体标本。 1.2 基本操作程序 (1)取血3ml(空针用0.1~0.2ml肝素抗凝)。 (2)用7号针头向每瓶培养液(内装有5ml培养液)接种血液标本15~16滴,摇匀后,静置于37℃的隔水式恒温培养箱中培养72h。 (3)终止培养前3h,用7号针头向培养瓶中加入秋水仙素3滴(浓度为20μg/ml)并混匀。 (4)按以下程序制片。 ①收集细胞:由培养瓶中吸取培养物10ml置于离心管中,离,l~,10min(1 500~2 000r/min)离心后,弃上清液,留下沉淀物。 ②低渗处理沉淀物:向沉淀物中加入已预温(37℃)的KCI(0.075mol/L)8ml,充分吹打,以使细胞分散,并将离心管置于37℃水浴中20~30min。 ③固定沉淀物:向每只离心管中加入新鲜配制的甲醇一冰醋酸(3:1)固定液1~2ml(预固定),轻轻混匀后离心10min(2 500r/min),去上清液,留沉淀物;向每只离心管中再加上述固定液8ml,轻轻混匀后静置30min以上,离心10min(2500r/min);然后,再重复固定、离心1次。 ④制作标本片:尽量弃去离心管中的上清液,用吸管轻轻吹打其中的沉淀物,再加入6~7滴新鲜的固定液并混匀,然后,将该沉淀物滴加于已经预冷的载玻片上(预冷载玻片:将清洁载玻片放在盛有蒸馏水的小搪瓷盆中置于4℃冰箱中数小时以上);将标本片晾干后,置于75℃烤箱中烘烤2.5h,然后自然冷却,也可将标本片吹干后用火焰烘干。 ⑤标本片染色:用Giemsa染液(以pH7.4的磷酸缓冲液配制,1.10)染色10min,自来水冲净并晾干。 ⑥显微镜观察:低倍镜下,选择标本片中染色体分散好、无细胞质背景、处于中期核分裂的培养细胞;然后,在高倍镜、油镜下观察染色体形态,进行计数、分组和性别鉴定;拍摄照片以进行正确的核型分析,并将典型图片存档。可根据需要进行染色体的Q显带、G显带、C显带、R显带和T显带。 1.3 注意事项 PHA是体外细胞培养成败的关键因素,其应用浓度应根据各批号PHA的效价作适当调整。秋水仙素的浓度和作用时间影响标本的分析。浓度低或作用时间短,会使标本中的分裂细胞减少;浓度高或作用时间长,会使染色体过于缩短,以致形态特征模糊。采血和接种培养时,不要加入过多肝素,肝素过多可抑制淋巴细胞转化。显带检测,以存放3d左右的标本片效果较好。观察G显带时,检材要用胰酶液消化。消化液的配制和消化条件的控制要认真探索,以获得最佳结果。 2 荧光原位杂交技术(FISH) 2.1 基本原理 2.1.1 原位杂交是用标记了已知序列的核苷酸片段作为探针,通过核酸杂交,直接在组织切片(冷冻切片或石蜡切片)、细胞涂片、染色体制备标本或培养细胞爬片上,检测或定位某一特定的目的DNA或目的RNA的存在。 2.1.2 FISH是以荧光素标记已知序列的核苷酸片段(探针),通过检测荧光来定性和定位目的核酸片段,具有敏感、快速、能同时显示多种颜色等优点,不但能显示中期核分裂象的染色体,还能检测间期细胞核的DNA。 (1)FISH的直接法:以荧光素直接标记DNA探针,特异性强,方法简便。随着荧光标记技术的改进,直接法的敏感性不断提高,是目前常用的方法。 (2)FISH的间接法:以非荧光素标记物标记DNA探针,再桥连一个荧光标记抗体。 2.2 基本方法 2.2.1 探针和试剂。用于FISH的探针有不同类型。已有商品化的探针用于 FISH。avidin-FITC、anti-avidin和PI等检测试剂均可购得。 2.2.2 原位杂交。杂交前标本和探针应经变性处理。 2.2.3 检测。杂交后的标本除去封胶,置2×SSC中洗去盖片。经多步骤漂洗后依次在亲和素一荧光素、抗亲和素抗体和亲和素一荧光素中各孵育20min(生物素标记探针),其间及其后各用1×PBD洗3次,每次2min。若用直接法FISH进行检测,后续免疫结合反应可省略,最后应加抗荧光衰变剂和DNA复染剂后封片。 2.3 注意事项 实验室必须优化FISH操作过程的各项条件。整个杂交和杂交后检测过程要始终保持标本片的湿润,以防载玻片干燥后引起非特异性染色。复染时要避光。根据荧光染料的不同选择相关的荧光显微镜滤色片。 3 比较基因组杂交(CGH)

分子遗传学

1.分子遗传学含义:是研究遗传信息大分子的结构与功能的科学,在分子水平上研究遗传 机制及遗传物质对代谢过程的调控。 2.0 3.分子生物学:是研究生物大分子结构与功能的一门学科。注重的生物在分子水平上的一 些特征和现象 分子遗传学:侧重从分子水平对生物遗传规律和遗传现象的研究。 4.遗传物质特征:①在体细胞中含量稳定,贮存并表达遗传信息;②在生殖细胞中含量减 半,能把遗传信息传给子代;③能精确地自我复制,物理和化学性质稳定;④有遗传变异的能力。 5.双螺旋模型double helix model特点:①DNA分子由两条反相平行的多核苷酸组成,形 成右手双螺旋;②两条链反相平行,即两条链方向相反;③糖-磷酸键是在双螺旋的外侧,碱基对与轴线垂直;④糖与附着在糖上的碱基近于垂直;⑤碱基配对时,必须一个是嘌呤,另一个是嘧啶;⑥DNA双螺旋有大沟major or wide groove和小沟minor or narrow groove;⑦这个模型合理地解释了DNA自我复制和转录问题,巩固了DNA作为遗传物质的地位。 6.模型中的碱基配对重要性:①AT,GC配对可形成良好的线性氢键;②AT对和GC对的 几何形状一样,使双链距离相近,使双螺旋保持均一;③碱基对处于同一平面。不论核苷酸顺序如何,都不影响双螺旋结构;④为DNA半保留复制奠定了基础。 7.阮病毒:是一种能够决定细胞性状的非孟德尔遗传因子,具有传染能力的蛋白质病毒。 8.顺反效应:在顺反两种排列情况下所表现的遗传效应统称为顺反效应。 9.ORF开放读框:一个开放读框是被起始密码与终止密码所界定的一串密码子。 10.密码子偏爱:在基因组中经常为某种氨基酸编码的只是其中的一种密码子,这种现象。 11.高度保守:不同类型生物中广泛存在非常相似的DNA序列。在进化过程中保留了这些 序列,是生命活动所必须的,很少突变。其突变常常导致死亡,表现为高度保守。12.表观遗传学:对基因的功能变化的研究,这种变化可以通过体细胞有丝分裂或生殖细胞 成熟分裂二遗传并不需要DNA序列发生变化。 13.基因组印记:就是由于一些可遗传的修饰作用(甲基化),控制着亲本中某一等位印记 基因的活性,从而导致它们在发育中的功能上的差异,使个体具有不同的性状特征。14.组蛋白密码:组蛋白的共价键修饰,如甲基化,乙酰化,磷酸化等在组蛋白上是以组合 形式进行的,Allis把这种组合形式称为“组蛋白密码”。 15.物种的C值:一个单倍体基因组的全部DNA含量是恒定的,这是物种的一个特征,通 常称为该物种的C值。 16.C值佯谬:在遗传学上最高级最复杂的一群性状的表现与DNA的C值大相径庭。这种 现象称为C值佯谬/C值矛盾/C值悖理。 17.N值佯谬:把这种基因数目与生物进化程度或生物复杂性的不对称性,称之为N值佯谬 (N表示基因数目)。 18.唯蛋白质假说:阮病毒PrPSc是一种蛋白质病毒,它的自我繁殖是以其本身为模板对其 同一基因所编码的正常蛋白PrPc进行翻译后修饰作用,使后者转变为与其同一构想。 19.重复序列及重复基因的起源:①滚环模型;②不等交换unequal crossing over假说:Smith 提出可以产生并维持重复序列。减数分裂时同源染色体联合,相同部分可发生交换。如果发生不等交换,可导致一条染色单体重复,另一条染色单体缺失。-在果蝇中发现;③突然复制假说:高度重复DNA的产生,是由于某一特异的DNA序列突然间产生数千拷贝结果。重复序列主要存在于异染色质区。 20.重叠基因overlapping gene:在同一段DNA序列上,忧郁阅读框架不同或终止位点不同,

分子遗传学考试资料

RNA 的3种剪接方式 内含子从mRNA前体中移走的过程称为RNA剪接。 RNA 的3种剪接方式分别是: 自我剪接内含子(Ⅰ型和Ⅱ型):能够自发地进行剪接,分为Ⅰ型内含子和Ⅱ型内含子两个亚类。Ⅰ型内含子:四膜虫35S rRNA前体的剪接反应是Ⅰ型的典型代表,特点是需要鸟苷 参与;Ⅱ型内含子:不需要鸟苷参与,而由其自身结构决定,特点是形成套索内含子。 蛋白质(酶)参与剪接的内含子(tRNA):主要在tRNA前体中发现。tRNA前体在内切酶作 用下,把发夹形的内含子切除,然后在连接酶的作用下,连接形成成熟的tRNA。 糖核蛋白体(snRNP)参与剪接的内含子:存在于绝大多数真核细胞的蛋白质基因中。在 真核生物的细胞核中,含有大量的小分子RNA,在天然状态下,以核糖核蛋白粒子形式存在,称为snRNP。参与剪接反应的snRNP至少有5种:U1、U2、U5和U4/U6。 U1结合于内含子的5’端; U2结合到内含子的分支点上; U5结合到内含子的3’端,U4/U6结合于U5; U1和U2结合,形成套索RNA结构; U4释放,内含子左侧切断,5’外显子作为独立片段释放; 内含子的3’剪接点切断,形成套索内含子,游离出来; 5’外显子和3’外显子连接形成成熟mRNA。 RNA编辑 一种依赖于特异编辑酶对基因编码的mRNA进行重新修饰的过程,包括对核苷酸进行添加、删除或修饰,从而可能改变了开放阅读框,产生了新的终止密码子或起始密码子,翻译出 氨基酸序列不同的多种蛋白质。 分为两类:一是单碱基的突变;二是碱基的缺失和添加。如U插入/删除;C→U替换;A →I替换;C插入;G插入。 机制: RNA编辑是由3’-5’方向进行,gRNA-Ⅰ的5’端与前体mRNA的未编辑的mRNA的一小段 锚定序列互补,形成短的(10-15bp)锚定双螺旋;

分子遗传学要点总结

第一章 1.理解Genomes, Transcriptomes 和Proteomes三个名词,并阐明它们在基因组表达过程中是如何联系在一起的; Genomes:基因组(Genome):由德国汉堡大学威克勒教授于1920年首创,指生物的整套染色体所含有的全部DNA或RNA序列。基因组是地球上每一物种具有的生物学信息的存储库。 基因组学(Genomics):由罗德里克于1986年首创,指研究生物的整个基因组,涉及基因组作图、测序和功能分析的一门学科。 Transcriptomes:基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。 ?转录组中的RNA分子以及其他来自非编码基因的RNA都由转录过程产生。 ?Proteomes:基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。 ?这些蛋白质是通过翻译那些组成转录组的mRNA分子而合成的。 ?蛋白质组包括了在特定时间存在于细胞中的所有蛋白质。 阐明三者在基因组表达过程中是如何联系在一起的? ?基因组所包含的生物信息的利用需要酶及其他参与基因组表达过程中一系列复杂生化反应的蛋白质的协同活性。 ?基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。转录组由转录过程来维持。 ?基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。这是通过翻译过程来完成的。 ?The genome tells you what could be happened theoretically in the cell. ?Transcriptome tells you what might be happened. ?And the proteome tells you what is happening. 2.掌握双螺旋结构的关键特征; Watson and Crick (1953) 提出的DNA双螺旋结构模型: DNA分子通常以右手双螺旋形式存在,两条核苷酸链反向平行,且互为互补链; 戊糖-磷酸骨架在分子的外铡,在分子表面形成大沟和小沟,碱基堆积于螺旋内部; 碱基间通过氢键相互连接,A和T以2个氢键配对,G和C以3个氢键配对; 螺旋中相邻碱基间相隔0.34nm,每10个碱基对螺旋上升一圈,螺距为3.4nm,直径为2.37 nm。 3.正确区分编码RNA和功能性RNA;

遗传学(考试重点)

第一章绪论 名词解释 1,遗传:指亲代与子代间相似的现象。 2,变异:指亲代和子代,子代和子代间具有差异的现象。 3,遗传学:是一门研究生物遗传和变异规律的学科。 简答: 1,遗传学的发展历史 (1)遗传学的萌芽: ①公元前5世纪到公元前4世纪,古希腊的亚里士多德推动“泛生说”的形成 ②18世纪下半叶和19世纪上半叶,拉马克提出“用进废退”学说和“获得性状遗传” ③魏斯曼的“种质连续论”④达尔文的自然选择学说和进化论 (2)遗传学诞生: ①孟德尔通过豌豆杂交实验系统地研究了生物的遗传和变异,并提出孟德尔遗传定律 ②狄·弗里斯,柯伦斯和冯·切尔迈克三人都证实了孟德尔遗传定律。 (3)细胞遗传学时期: ①1903年萨顿发现染色体行为与与遗传因子一致,提出染色体是遗传因子的载体,促进了细胞学和遗传学的结合。 ②1906年贝特逊等在香豌豆杂交试验中发现性状连锁现象。 ③1909年约翰逊发表了“纯系学说”,并最先提出“基因”一词 ④1910年摩尔根通过对果蝇进行遗传研究,提出连锁基因遗传定律。 (4)从细胞向分子水平过渡时期: ①1944年埃弗里等用肺炎双球菌的转化实验证明了遗传物质是DNA而非蛋白质 ②1952年赫尔歇和蔡斯等用同位素示踪法于噬菌体感染细菌的实验中,再次确证了DNA是遗传物质。 (5)现代分子遗传学时期: ①1953年沃森和克里克提出了DNA双螺旋结构模型,标志着遗传学以及整个生物学进入分子水平的新时代。 ②1961年克里克等证明了他于1958年提出的关于遗传三联密码的推测。 ③1992年“人类基因组计划”开始实施。并出现第一只克隆动物,克隆羊“多莉”。 2,经典遗传学和分子遗传学对基因的不同认识? 经典遗传学基因的概念: 基因具有下列共性:(1)基因具有染色体的重要特征(即基因位于染色体上),能自我复制,相对稳定,在有私分裂和减数分裂时,有规律地进行分配; (2)基因在染色体上占有一定的位置(即位点),并且是交换的最小单位,即在重组时不能再分割的单位 (3)基因是以一个整体进行突变的,故它是一个突变单位; (4)基因是一个功能单位,它控制正在发育有机体的某一个或某些性状,如白花、红花等。总之,经典遗传学认为基因是一个最小的单位,不能分割,既是结构单位,又是功能单位。分子遗传学关于基因的概念:分子遗传学的发展揭示了遗传密码的秘密,使基因的概念落实到具体的物质上,即基因在DNA分子上,一个基因相当于DNA分子上的一定区段,它携带有特定的遗传信息。这类遗传信息或被转录为RNA,包括信使RNA、转移RNA、核糖体RNA;或者信使RNA被翻译成多肽链。

分子遗传学试题

博士研究生入学考试试题 一九九六年分子遗传学 一、请说明高等动植物的基因工程与大肠杆菌基因工程的异同。什么是当前真核生物基因工 程的前沿?你认为目前动植物基因工程进一步发展的瓶颈是什么?(20分) 二、在遗传学的发展中模式生物的应用起了重要的作用,请用一种你最熟悉的模式生物,较 为系统地阐述应用该模式生物进行研究对分子遗传学的贡献。(15分) 三、从突变产生的机制看能否实现定向突变?试从离体和活体两种情况予以说明。(15分) 四、什么是基因组大小与C值的矛盾?造成这种矛盾的因素有哪些?如何估计真核生物基因 组的基因数目?在进化过程中自然选择是否作用于基因组的大小,请阐述你的观点。(15分) 五、水稻黄矮病毒含有负链RNA基因组,在完成对该病毒核衣壳蛋白基因(N)序列测定的 基础上,将N的编码序列置于水稻Actl基因(是一种组成性表达的基因)的启动子下游,通过基因枪方法导入一个水稻的粳稻品种,研究结果表明转基因的水稻植株在攻毒试验中表现出对黄矮病毒的抗性。请你进一步设计实验,证明以下两点: 1.转基因水稻的抗性确实是由于N基因导入水稻基因组表达的结果,而不是在转化过程中由于突变造成的; 2.转基因水稻的抗性是由于N基因的转录产物造成的,而不是该基因的翻译产物造成的。(20分) 六、限制性核酸内切酶在分子遗传学中广泛地用于各类研究,请具体地说明限制性内切酶在 研究工作中的应用范围。 (15分)

1997年博士研究生入学试题 分子遗传学(A卷) 一、在通过测序获得一个基因组克隆的DNA序列后,怎样才能了解该序列可能具有的基因功能,请提出你的研究方案。(20分) 二、请简单介绍你的硕士论文研究(或相当于硕士论文研究)的工作。如果这些工作涉及分子遗传学,请提出你深入研究的设想;如果你以前的工作与分子遗传学无关,也请你提出深入到分子水平的设想。(20分) 三、请指出目前阶段基因工程技术的局限性,并分析这些局限性的原因(你可以在人类基因冶疗,动物基因工程和植物基因工程三个方面任选一个来回答,也可以都回答)。(20分) 四、请说明基因组计划与生物技术的关系。(20分) 五、请说明真核生物染色体的结构和组成在分子水平上的特征。(20分) 1997年博士研究生入学试题 分子遗传学(B卷) 一、请简单介绍你的硕士论文研究(或相当于硕士论文研究)的工作。如果这些工作涉及分子遗传学,请提出你深入研究的设想,如果你以前的工作与分子遗传学无关,也请你提出深入到分子水平的设想。(20分) 二、请说明真核生物染色体的结构和组成在分子水平上的特征。(20分) 三、目前在遗传图谱和物理图谱的研究中使用哪些分子标记?请说明每种标记的

分子遗传学教学大纲

GDOU-B-11-213 《分子遗传学》课程教学大纲 课程简介 课程简介: 在分子水平上研究生物遗传和变异机制的遗传学分支学科。经典遗传学的研究课题主要是基因在亲代和子代之间的传递问题;分子遗传学则主要研究基因的本质(包括基因的化学性质、结构和组织)、基因的功能以及基因的变化等问题。分子遗传学是从微生物遗传学发展起来的。虽然分子遗传学研究已逐渐转向真核生物方面,但是以原核生物为材料的分子遗传学研究还占很大的比重。此外,由于微生物便于培养,所以在分子遗传学和重组DNA技术中微生物遗传学的研究仍将占有重要的位置。分子遗传学方法还可以用来研究蛋白质的结构和功能。 课程大纲 一、课程的性质与任务: 本课程为生物学学科各专业本科生的学科基础课。本课程的主要内容为基因的结构、复制和转录以及和转录后调控、翻译,基因突变,DNA的复制、修复,原核与真核生物的基因表达调控。 二、课程的目的与基本要求: 通过对本课程的学习,希望学生掌握现代分子遗传学的基本原理和概念,了解目前 生命科学的主要热点和发展趋势,为独立地阅读分析原始文献和从事专业研究打下基础。 三、面向专业:生物技术 四、先修课程: 生物化学、遗传学 五、本课程与其它课程的联系: 本课程设计为遗传学之后续课程。通过对本课程的学习,希望学生掌握现代分子遗传学的基本原理和概念,了解目前分子遗传学的主要热点和发展趋势,为以后的基因工

程、基因组学等学科打下基础。 六、教学内容安排、要求、学时分配及作业: 第一章遗传的物质基础——DNA(6学时) 第一节DNA携带着两类不同的遗传信息(A) 第二节DNA的一级结构(A) 第三节DNA的二级结构(B) 一、Watson-Crick右手双螺旋结构 二、决定双螺旋结构的因素 第四节DNA物理结构的不均一性(B) 一、反向重复序列 二、富含A/T的序列 三、嘌呤和嘧啶的排列顺序对双螺旋结构稳定性的影响 第五节DNA双螺旋结构的呼吸作用(A) 第六节DNA的变性、复性、杂交和Cot曲线(A) 一、变性 二、复性 三、杂交 四、Cot曲线 第二章有机体、染色体和基因(6学时) 第一节原核生物和真核生物(A) 第二节基因组大小与C值矛盾(B) 第三节原核生物染色体及其基因(B) 一、大肠杆菌染色体 二、噬菌体 第四节真核生物的染色体(B) 一、真核生物DNA复性动力学 二、真核生物染色体上的单一序列和重复序列以及卫星DNA 三、卫星DNA的等级结构及其起源和进化 四、染色质和核小体 五、着丝点 六、端粒 第五节真核生物的基因(A) 一、不连续基因 二、基因家族与基因簇 三、串联重复基因 四、细胞器基因 第六节基因定位(C) 一、遗传交换定位法 二、接合定位法 三、染色体步行和染色体跳跃 第七节基因的分子进化(C) 第八节早期生命进化的三界系统理论(C) 一、原核生物之间的巨大差异

相关文档
最新文档