立体几何——二面角求法

立体几何——二面角求法
立体几何——二面角求法

二面角求法

1 .定义法

即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.

例1 . 正方体ABCD-A 1B 1C 1D 1中,求 二面角A-BD-C 1的正切值为 .

解析:易知∠COC 1是二面角C-BD-C 1的平面角,且tan ∠COC 1=2。

例2.在锥体P-ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60?

PA PD ==E,F 分别是BC,PC 的中点.

求:二面角P-AD-B 的余弦值.

解:由(1)知PGB ∠为二面角P AD B --的平面角,

在Rt PGA ?中

,2

217

()24

PG =-=;在Rt BGA ?中,

22213

1()24

BG =-=;

在PGB ?

中,222cos 2PG BG PB PGB PG BG +-∠==?.

2 三垂线法

此法最基本的一个模型为:如图3,设锐二面角βα--l ,过面α 内一点P 作PA ⊥α于A ,作AB ⊥l 于B ,连接PB ,由三垂线定理得PB ⊥l ,则∠PBA 为二面角βα--l 的平面角,故称此法为三垂线法.

例3.如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2, 求:二面角A 1-AB -B 1的正弦值.

分析与略解: 作A 1E ⊥AB 1于AB 1于E ,则可证A 1E ⊥平面AB 1B. 过E 作EF ⊥AB 交AB 于F ,连接A 1F ,则得A 1F ⊥AB , ∴∠A 1FE 就是所求二面角的平面角.依次可求得

D B

A

O A

C

B D O

A 图

αβ

P

B

l

B A

α

βA

B l

E

F

G

P

A B

C

D F E

AB 1=B 1B=2,A 1B=3,A 1E=

2

2

,A 1F=23,

则在Rt △A 1EF 中,sin ∠A 1FE=A 1E A 1

F =6

3 .

例4.如图所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD,点E 在线段PC 上,PC ⊥平面BDE.

若PA=1,AD=2,求二面角B-PC-A 的正切值.

解:由(1)得BD ⊥平面PAC, ∴BD ⊥AC.

又四边形ABCD 为矩形,∴四边形ABCD 是正方形.

设AC 交BD 于O 点,∵PC ⊥平面BDE,∴∠BEO 即为二面角B-PC-A 的平面角. ∵PA=1,AD=2,∴AC=2,BO=OC=,∴PC=

=3,

又OE===在直角三角形BEO 中,tan ∠BEO===3,∴二面角B-PC-A 的正切值为3.

例5. 如图, 四棱锥P-ABCD 中, 底面ABCD 为矩形, PA ⊥底面ABCD, PA=AB=, 点E 是

棱PB 的中点. (1) 若AD=

, 求二面角A-EC-D 的平面角的余弦值.

(1) 过点D 作DF ⊥CE, 交CE 于F, 过点F 作FG ⊥CE, 交AC 于G, 则∠DFG 为所求的二面角的平面角.

由(Ⅰ) 知BC ⊥平面PAB, 又AD ∥BC, 得AD ⊥平面PAB, 故AD ⊥AE, 从而DE=

=

. 在Rt △CBE 中, CE=

=

. 由CD=

, 所以△CDE 为等边三角形,

故F 为CE 的中点, 且DF=CD ·sin =

.

因为AE ⊥平面PBC, 故AE ⊥CE, 又FG ⊥CE, 知FG=AE, 从而FG=, 且G 点为AC 的中

点.

连结DG, 则在Rt △ADG 中, DG=AC

==.

所以cos ∠DFG==.

3、向量法

向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。①分别求出α和β的法向量,,则二面角βα--l 的大小为>

例1. 如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC 上,PC⊥平面BDE.

若PA=1,AD=2,求二面角B-PC-A的正切值.

由(1)可知BD⊥面PAC,

∴BD⊥AC,

∴矩形ABCD为正方形,

建立如图所示的坐标系A-xyz,则A(0,0,0),P(0,0,1),C(2,2,0),B(2,0,0).

∴=(0,0,1),=(2,2,0).

设平面PAC的法向量为n

=(x,y,z),

1

则令x=1,

=(1,-1,0).

∴y=-1,z=0. 即n

1

同理求得面PBC的一个法向量n

=(1,0,2).

2

∴cos=

.

设二面角B-PC-A的大小为α,则cos α=,∴sin α=,∴tan α=3.

例2. (2014广东,18,13分)如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30,AF⊥PC于点F,FE∥CD,交PD于点E.

(1)求二面角D-AF-E的余弦值.

解法一:设AB=1,则Rt△PDC中,CD=1,∵∠DPC=30°,

∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,

∴CF=,又FE∥CD,

∴==,∴DE=,同理EF=CD=,

解法二:如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),

E,F,P(,0,0),C(0,1,0).

设m=(x,y,z)是平面AEF的法向量,

则又∴

令x=4,得z=,故m=(4,0,),

由(1)知平面ADF的一个法向量为=(-,1,0),设二面角D-AF-E的平面角为θ,可知θ为锐角,

cos θ=|cos|===,故二面角D-AF-E的余弦值为.

例3.(2010天津, 19, 12分) 如图, 在长方体ABCD-A

1B

1

C

1

D

1

中, E, F分别是棱BC, CC

1

上的点, CF=AB=2CE, AB∶AD∶AA

1

=1∶2∶4.

(1) 求二面角A

1

-ED-F的正弦值

(1) 设平面EFD的法向量

u=(x, y, z) , 则即

不妨令x=1, 可得u=(1, 2, -1) .

由(Ⅱ) 可知, 为平面A

1

ED的一个法向量. 于是cos==. 从而sin

>=. 所以二面角A

1

-ED-F的正弦值为.

立体几何二面角问题

立体证明题(2) 1 ?如图,直二而角D-AB-E中,四边形ABCD是正方形,AE二EB, F为CE上的点,且BF丄 平面ACE. (1)求证:AE丄平面BCE: (2)求二面角B - AC - E的余弦值. 2?等腰△ABC中,AC=BC=V5t AB=2, E、F分别为AC、BC的中点,将AEFC沿EF折起,使得C到P,得到四棱锥P-ABFE,且AP=Bpd. (1)求证:平而EFP丄平而ABFE; (2)求二而角B-AP-E的大小?

3?如图,在四棱锥P-ABCD中,底而是正方形,侧面PAD丄底而ABCD,且V2 PA二PD二2 AD,若E、F分別为PC、BD的中点. (I )求证:EF〃平面PAD; (II)求证:EF丄平面PDC. 4?如图:正AABC与RtABCD所在平而互相垂直,且ZBCD二90° , ZCBD二30° . (1)求证:AB丄CD: (2)求二面角D-AB-C的正切值. 5?如图,在四棱锥P-ABCD中,平而PAD丄平而ABCD, APAD是等边三角形,四边形ABCD 是平行四边形,ZADC二120° , AB=2AD? (1)求证:平而PAD丄平而PBD: (2)求二而角A - PB - C的余弦值.

6?如图,在直三棱柱ABC - AxBxCx 中,ZACB=90° , AC二CB二CG二2, E 是AB 中点. (I )求证:AB:±平而AXE: (II)求直线AG与平而A’CE所成角的正弦值. 7?如图,在四棱锥P-ABCD 中,PA丄平而ABCD, ZDAB 为直角,AB〃CD, AD二CD二2AB二2, E, F分别为PC, CD的中点. (I )证明:AB丄平面BEF: 8?如图,在四棱锥P - ABCD中,PA丄平而ABCD. PA=AB=AD=2,四边形ABCD满足 AB丄AD, BC〃AD 且BC=4,点M 为PC 中点. (1)求证:DM丄平而PBC: RF (2)若点E为BC边上的动点,且— = 是否存在实数入,使得二而角P - DE - B的 余弦值为彳?若存在,求出实数入的值:若不存在,请说明理由.

文科立体几何面角二面角专题-带答案

文科立体几何线面角二面角专题 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.如图,在三棱锥中,,,为的中点.(1)证明:平面; (2)若点在棱上,且二面角为,求与平面所成角的正弦值. 2.如图,在三棱锥中,,,为的中点.(1)证明:平面; (2)若点在棱上,且,求点到平面的距离. 3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

(Ⅰ)证明:AB1⊥平面A1B1C1; (Ⅱ)求直线AC1与平面ABB1所成的角的正弦值. 4.如图,在三棱柱中,点P,G分别是,的中点,已知⊥平面 ABC,==3,==2. (I)求异面直线与AB所成角的余弦值; (II)求证:⊥平面; (III)求直线与平面所成角的正弦值. 5.如图,四棱锥,底面是正方形,,,,分别是,的中点.

(1)求证; (2)求二面角的余弦值. 6.如图,三棱柱中,侧棱底面,且各棱长均相等.,,分别为棱,,的中点. (1)证明:平面; (2)证明:平面平面; (3)求直线与直线所成角的正弦值. 7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF. (Ⅰ)求证:平面ADE⊥平面BDEF; (Ⅱ)若二面角C BF D的大小为60°,求CF与平面ABCD所成角的正弦值. 8.如图,在四棱锥中,平面,,,

,点是与的交点,点在线段上,且. (1)证明:平面; (2)求直线与平面所成角的正弦值. 9.在多面体中,底面是梯形,四边形是正方形,,,,, (1)求证:平面平面; (2)设为线段上一点,,求二面角的平面角的余弦值. 10.如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,. (1)证明:平面,平面平面;

立体几何_二面角问题方法归纳

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 例1(全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 练习1(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=?,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最 大角的正切值为 2 E —A F —C 的余弦值. 二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 例2.(山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。 (1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。 练习2(天津)如图,在四棱锥ABCD P -中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3(湖南)如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ; (Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. 练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600 的角,侧面BCC 1B 1⊥底面ABC 。 A B C E D P E A B C F E A B C D D

立体几何二面角问题

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使 得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

(完整)高中立体几何二面角的几种基本求法例题.doc

二面角的基本求法例题 一、平面与平面的垂直关系 1.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 例 1.在空间四边形ABCD 中, AB=CB ,AD=CD ,E、F、G 分别是 AD 、 DC、CA 的中点。 求证:平面 BEF ^ 平面 BDG 。 A A F E E G D B F D B C C 例 2. AB ^ 平面 BCD,BC = CD ,? BCD 90°,E、F分别是AC、AD的中点。 求证:平面 BEF ^ 平面 ABC 。D1 C1 A1 B1 2.性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线 垂直于另一个平面。中,求和平面所成的角。 例 3.在正方体 ABCD—A1 1 1 1 1 1 1 B C D A B A B CD . D C A B 二、二面角的基本求法D1 C1 1.定义法:在棱上取点,分别在两面内引两条射线与棱垂直。A1 B1 例4.在正方体 ABCD—A1B1 C1D1中, 求( 1)二面角A- B1C - A1的大小; ( 2)平面A1DC1与平面 ADD1 A1所成角的正切值。 D C A B P 练习:过正方形ABCD 的顶点 A 作 PA ^ 平面 ABCD ,设 PA=AB= a,求 二面角 B - PC - D 的大小。 A D 2.三垂线法 B C 例 5 .平面ABCD ^平面ABEF,ABCD是正方形, ABEF 是矩形且 D C AF= 1 AD= a,G 是 EF 的中点, 2 ( 1)求证:平面AGC ^平面BGC; ( 2)求 GB 与平面 AGC 所成角的正弦值;A B 1 G E

立体几何二面角5种常见解法

立体几何二面角大小的求法 二面角的类型和求法可用框图展现如下: 一、定义法: 直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。 A P H

二、三垂线定理法: 已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。 例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. p A B L H A B C D A 1 B 1 C 1 D 1 E O

例、ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。求(1)二面角P—BC—A的大小;(2)二面角C—PB—A的大小 例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=2,求:二面角A1-AB-B1的大小. 图4 B1 A α β A1 B L E F

立体几何——二面角问题方法归纳

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就就是二面角的平面角。 例1(全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面 ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I)证明:M 在侧棱SC 的中点 (II)求二面角S AM B --的大小。 练习1(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=?,E ,F 分别就是BC , PC 的中点、(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为 6 2 ,求二面角E —AF —C 的余弦值、 二、三垂线法 三垂线定理:在平面内的一条直线,如果与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 例2.(山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别就是棱AD 、AA 1、AB 的中点。 (1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。 练习2(天津)如图,在四棱锥ABCD P - 中,底面ABCD 就是矩形. 已知ο 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法就是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3(湖南)如图所示,四棱锥P -ABCD 的底面ABCD 就是边长为1的菱形,∠BCD =60°,E 就是CD 的中点,P A ⊥底面ABCD ,P A =2、 (Ⅰ)证明:平面PBE ⊥平面P AB ; (Ⅱ)求平面P AD 与平面PBE 所成二面角(锐角)的大小、 练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都就是a,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。 (1)求证:AC 1⊥BC; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 四、射影面积法(cos s S q = 射影) 凡二面角的图形中含有可求原图形面积与该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜 射S S = θ )求出二面角的大小。 例4.(北京理)如图,在三棱锥P ABC -中, 2AC BC ==,90ACB ∠=o , AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 练习4: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 与底面A 1B 1C 1D 1所成锐角的余弦值、 五、向量法 向量法解立体几何中就是一种十分简捷的也就是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。 例4:(天津卷理)如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE,AB ⊥AD,M 为EC 的 A B C E D P A C B P E A B C F E A B C D D A D B C E D B C A 图

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 ? 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, · ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

立体几何——二面角问题方法归纳

1文档来源为:从网络收集整理.word 版本可编辑. 二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 例1(全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面 ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 练习1(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=?,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为 6 2 ,求二面角E —AF —C 的余弦值. 二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 例2.(山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。 (1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。 练习2(天津)如图,在四棱锥ABCD P - 中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3(湖南)如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是 CD 的中点,P A ⊥底面ABCD ,P A =2. (Ⅰ)证明:平面PBE ⊥平面P AB ; (Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)的大小. 练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。 (1)求证:AC 1⊥BC ; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 四、射影面积法(cos s S 射影) 凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜 射S S =θ )求出二面角的大小。 例4.(北京理)如图,在三棱锥P ABC -中,2AC BC ==,90 ACB ∠=, AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 练习4: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值. 五、向量法 向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。 例4:(天津卷理)如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD , A B C E D P A C B P E A B C F E A B C D D A D B C E D B C A 图

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l AO ⊥,β--l 的平面角。 α β (二)、二面角的通常求法 1、由定义作出二面角的平面角; 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, аα ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA 平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. O A B O A B l P O B A

在四边形PAOB 中, ∠AOB=120°,. ∠PAO=∠POB=90°, 所以∠APB=60° 2、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: CD CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P A B C D A 1 B 1 C 1 D 1 E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD ΘCO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC Θ又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。 α β (二)、二面角的通常求法 1、由定义作出二面角的平面角; * 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, аα ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA 平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. O A B ) A B l P . B A

∠PAO=∠POB=90°, 所以∠APB=60° 2、 ( 3、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: CD CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 \ 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P 又CD ⊥AD ,故CD ⊥平面PAD . A D 而CD 平面PCD , B C 所以 平面PCD ⊥平面PAD . A B C D A 1 B 1 C 1 ( E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD CO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC 又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

全国高中数学必修2立体几何专题二面角典型例题解法总结

1 / 7 二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。例1如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角.∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)3 6arccos(- F G F G

立体几何二面角问题

立体证明题(2 ) 1.如图,直二面角D - AB - E中,四边形ABCD是正方形,AE=EB , BF丄平面ACE. (1 )求证:AE丄平面BCE; (2 )求二面角B - AC - E的余弦值. 2.等腰△ ABC 中,AC=BC= - ", AB=2 , E、F分别为AC、BC 的中点, 起,使得C到P,得到四棱锥P- ABFE,且AP=BP= 「;. (1 )求证:平面EFP丄平面ABFE ; (2 )求二面角B - AP - E的大小. F为CE上的点,且 将厶EFC沿EF折

3.如图,在四棱锥P-ABCD中,底面是正方形,侧面PAD丄底面ABCD,且 AD,若E、F分别为PC、BD的中点. (I) 求证:EF//平面PAD ; (H) 求证:EF丄平面PDC . 4.如图:正厶ABC与Rt少CD所在平面互相垂直,且/ BCD=90 °,z CBD=30 (1 )求证:AB丄CD ; (2 )求二面角D - AB - C的正切值.

5.如图,在四棱锥P-ABCD中,平面PAD丄平面ABCD , APAD是等边三角形,四边形ABCD 是平行四边形,/ ADC=120 ° , AB=2AD . (1 )求证:平面PAD丄平面PBD ; (2 )求二面角A - PB - C的余弦值. B 6.如图,在直三棱柱ABC - A i B i C i 中,/ ACB=90 ° ,AC=CB=CC 1=2 , E是AB 中点. (I)求证:AB i丄平面A i CE; (H)求直线A i C i与平面A i CE所成角的正弦值.

7.如图,在四棱锥P-ABCD中,PA丄平面ABCD,/DAB为直角,AB //CD , AD=CD=2AB=2 ,E, F 分别为PC,CD 的中点. (I)证明:AB丄平面BEF; (n)若PA=^—,求二面角E- BD - C. 5 8.如图,在四棱锥P- ABCD 中,PA丄平面ABCD , PA=AB=AD=2 ,四边形ABCD 满足 AB 丄AD , BC //AD 且BC=4,点M 为PC 中点. (1)求证: DM丄平面PBC ; 的中点 (I)求证:AM丄平面BEC; (II)求三棱锥B - ACE的体积; (2 )若点E为BC边上的动点,且 BE EC , 是否存在实数入,使得二面角P - DE - B的余 请说明理由. ABED是长方形,平面ABED丄平面ABC, AB=AC=5 , BC=BE=6,且M 是BC 若不存在, 9.如 图,

立体几何中的存在性问题

高中数学 立体几何 存在性问题专题 1.(天津理17) 如图,在三棱柱中, 是正方形的中心, 平面,且 (Ⅰ)求异面直线AC 与A1B1所成角的余弦值; (Ⅱ)求二面角的正弦值; (Ⅲ)设为棱的中点,点在平面内,且 平面,求线段的 长. 本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分. 方法一:如图所示,建立空间直角坐标系,点B 为坐标原点. 依题意得 (I )解:易得, 于是 所以异面直线AC 与A1B1 所成角的余弦值为 (II )解:易知 设平面AA1C1的法向量, 则即 不妨令可得 , 同样地,设平面A1B1C1的法向量 , 11 1ABC A B C -H 11AA B B 1AA =1 C H ⊥11AA B B 1 C H = 111A AC B --N 1 1B C M 11AA B B MN ⊥11A B C BM (0,0,0),A B C 111 A B C 1 1((AC A B ==- 111111cos ,|||| AC A B A C A B AC A B ?= ==? 3111(AA AC = = (,,)m x y z =11100m AC m AA ??=???=?? 0,0.?=??=??x =m =(,,)n x y z =

则即不妨令 可得 于是 从而 所以二面角A —A1C1 —B 的正弦值为 (III )解:由N 为棱B1C1的中点, 得设M (a ,b , 0), 则 由平面A1B1C1,得 即 解得故 因此,所以线段BM 的长为 方法二: (I )解:由于AC//A1C1,故是异面直线AC 与A1B1所成的角. 因为平面 AA1B1B ,又H 为正方形AA1B1B 的中心, 可得 111 10,0.n AC n A B ??=? ??=?? 0,0. ? =??-=??y =n =2cos ,,|| ||7 m n m n m n ?= ==? sin , m n =7N MN a b =-- MN ⊥11110,0. MN A B MN A C ? ?=???=?? )(0, )(()(0.222a a b ?-?-=????-?+-?+=??4a b ?=????=?? M (,0)24BM = ||4BM = 111C A B ∠1C H ⊥11AA C H ==1111 3.AC B C ==

立体几何中的存在性问题

高中数学立体几何存在性问题专题 1.(天津理17)如图,在三棱柱中, 是正方形的中心,,平面,且 (Ⅰ)求异面直线AC与A1B1所成角的余弦值; (Ⅱ)求二面角的正弦值; (Ⅲ)设为棱的中点,点在平面内,且平面,求线段的 长. 本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分. 方法一:如图所示,建立空间直角坐标系,点B为坐标原点. 依题意得 (I)解:易得, 于是 所以异面直线AC与A1B1所成角的余弦值为 (II)解:易知 设平面AA1C1的法向量, 则即 不妨令可得, 同样地,设平面A1B1C1的法向量, 则即不妨令, 可得 于是 从而 所以二面角A—A1C1—B的正弦值为 (III)解:由N为棱B1C1的中点, 得设M(a,b,0), 则 由平面A1B1C1,得 即 解得故 因此,所以线段BM的长为 方法二: (I)解:由于AC因为平面AA1B1B,又H为正方形AA1B1B的中心, 可得 因此

(II)解:连接AC1,易知AC1=B1C1, 又由于AA1=B1A1,A1C1=A1=C1, 所以≌,过点A作于点R, 连接B1R,于是,故为二面角A—A1C1—B1的平面角. 在中, 连接AB1,在中, , 从而 所以二面角A—A1C1—B1的正弦值为 (III)解:因为平面A1B1C1,所以 取HB1中点D,连接ND,由于N是棱B1C1中点, 所以ND又平面AA1B1B, 所以平面AA1B1B,故 又 所以平面MND,连接MD并延长交A1B1于点E, 则 由 得,延长EM交AB于点F, 可得连接NE. 在中, 所以 可得 连接BM,在中, 2.(浙江理20) 如图,在三棱锥中,,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP⊥BC; (Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-B为直二面角?若存在,求出AM的长;若不存在,请说明理由。 本题主要考查空是点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。满分15分。 方法一: (I)证明:如图,以O为原点,以射线OP为z轴的正半轴, 建立空间直角坐标系O—xyz 则, ,由此可得,所以 ,即 (II)解:设

立体几何二面角问题

立体证明题(2)?1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小. 3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=P

D=AD,若E、F分别为PC、BD的中点. (Ⅰ) 求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值. 6.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=CB=CC1=2,E是AB中点.

(Ⅰ)求证:AB1⊥平面A1CE ; (Ⅱ)求直线A 1C1与平面A 1C E所成角的正弦值. 7.如图,在四棱锥P ﹣ABC D中,PA ⊥平面A BCD,∠DAB 为直角,AB∥C D,AD=CD=2AB =2,E,F分别为PC,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF; (Ⅱ)若PA=,求二面角E ﹣BD ﹣C. 8.如图,在四棱锥P ﹣ABCD 中,PA⊥平面AB CD,PA=AB=A D=2,四边形ABCD 满足AB⊥AD,BC∥AD 且BC=4,点M 为PC 中点. (1)求证:DM⊥平面PBC; (2)若点E 为BC边上的动点,且 λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为3 2?若存在,求出实数λ的值;若不存在,请说明理由.

立体几何中的探索性问题 (2)

立体几何中的探索性问题立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.这类试题的一般设问方式是“是否存在?存在给出证明,不存在说明理由”.解决这类试题,一般根据探索性问题的设问,首先假设其存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾就否定假设. 8如图,在四棱锥P–ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=√3,点F是PB的中点,点E在边BC上移动. (1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由. (2)求证:无论点E在BC边的何处,都有PE⊥ AF. (3)当BE为何值时,PA与平面PDE所成角的大 小为45。? 拓展提升 (1)开放性问题是近几年高考的一种常见题型.一般来说,这种题型依据题目特点,充分利用条件不难求解. (2)对于探索性问题,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在. 9如图,四棱锥S-ABCD的底面是正方形,每条

侧棱的长都是底面边长的√2倍,P为侧棱SD上的点. (1)求证:AC⊥SD. (2)若SD⊥平面PAC,求二面角P-AC-D的大小. (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由. 如图所示,在正方体ABCD—A l B l C1D l中,M,N分别是 AB,BC中点. (1)求证:平面B 1MN⊥平面BB1D1D; (2)在棱DD1上是否存在点P,使BD1∥平面PMN,若 有,确定点P的位置;若没有,说明理由. 如图所示,在四棱锥P—ABCD中,侧面PAD⊥底面 ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中 BC∥AD,AB⊥AD,AD=2AB=2BC=2,0为AD中点. (1)求证:PO⊥平面ABCD; (2)求异面直线PB与CD所成角的大小: (3)线段AD上是否存在点Q,使得它到平面PCD3若存在,求出AQ:DQ的值;若不存在,请说明理由. 立体几何中探索性问题的向量解法 高考中立体几何试题不断出现了一些具有探索性、开放性的试题。对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决。立体几何引入空间向量后,可以借助向量工具,使几何问题代数化,降低思维的难度.尤其是在解决一些立体几何中的探索性问题时,更可以发挥这一优势. 本节课主要研究:立体几何中的存在判断型和位置探究型问题等探索性问题。 一、存在判断型 1、已知空间三点A(-2,0,2),B(-2,1,2),C(-3,0,3).

相关文档
最新文档