线性规划理论在实际问题中的应用.

线性规划理论在实际问题中的应用.
线性规划理论在实际问题中的应用.

线性规划理论在实际问题中的应用

【内容摘要】根据地区自然、经济特点和国民经济需要来调整农业结构,是充分合理利用资源促进农业生产发展的一个关键问题,也是制定农业区划和农业发展规划的重要内容,而农业结构最优化方案的论证,又是其中的一个核心问题。将线性规划应用于农作物布局中,科学地提高了粮食的总产量,对农作物的统筹安排有明显的借鉴意义。

【关健字】线性规划、农作物布局、数学模型

导言

无论是哪一流派的经济专家都不能不承认这样一个事实:中国必须依靠仅占世界可耕地7%的土地上的产品养活几乎占全世界四分之一的人口。但总的来说,从发展角度来看,中国农业的发展状况并没有使中国的国民经济的发展建立在更加稳定的基础上。

从历史和比较的角度来看,新中国的农业取得了了不起的成就,但从人均正长的角度来看,中国的农业发展不能算是成功的,但普遍承认的是中国的合作化运动对提高农业生产率具有潜在的积极的作用:集体化为提高积累、动员大量人力在农闲期间参加水利建设,在个体经营的情况下农民不得不在有限的土地上进行多种经营,即使进一步的分工更为经济,以便满足家庭的多种需要。中国农业产量的周期性变化于农业政策是密切相连的,但政策本身并不能对农业生产能力的增长做出全面的解释,技术进步、土地资源、其它投入的增长都是至关重要的因素。农业政策在技术和投入的有效利用方面产生了影响,对长期增长也有一些影响,但从长远的观点看,投入和技术将发挥基本的作用。

中国是一个劳动力剩余和土地短缺的社会,耕地面积有限任然是中国农业发展面临的一个主要困难。中国绝大多数可耕地均以长期使用和耕种,现存技术允许的范围的亩产量以接近最高水平。进入新世纪后,中国农业面临如下机遇:1中国经济的持续和健康发展为中国农业发展创造了日益宽松的环境,农业即将进入于工业平等的新阶段。2农产品市场需求日益旺盛,给农业发展带来广阔的发展前景。新的农业科技革命将为农业发展提供强大的技术支撑。但中国农业将面临国外优质廉价农产品的冲击,农业生产和农民收入也将受到一定的影响,耕地和水资源日趋紧缺,承受的压力越来越大;农业经济区域发展不公平,地区差距越来越大;农业生态环境压力加大;农业生产成本不断提高,边际效益不断下降,农民增收压力加大,这对实现农业现代化产生不利影响。

针对农业发展问题,就土地资源稀缺分析如何使资源得到最优配置,应用线性规划建立数学模型使得农作物布局得到合理安排,大幅度提高经济收益,以某乡作物种植计划为例:

某乡共有可耕地2000亩,其中沙质土地400亩,粘质土地600亩,中性土地1000亩,主要种植3类作物: 第1类是以水稻为主的粮食类作物,第2类是蔬菜类,第3类是经济作物,以本地特产茉莉花为代表作物。乡政府希望能制定一个使全乡总收益最大的作物种植计划,据此指导个作业小组和农户安排具体生产计划。

研究所面临的困难是缺乏历史统计资料及定量数据,只能靠实地调研及与有经验的老农交谈而获得。因此建立的模型及计算结果只能作为乡政府做决策的参考,但整个思路和运作过程无疑为科学决策起到了良好的示范作用。

为了简化问题,只考虑水稻、茉莉花作为粮食作物和经济作物的代表,蔬菜则以当地出产的主要品种为基础测算出每亩的收益及成本的平均值。

每亩土地的费用主要统计和测算外购化肥、劳力工时、灌溉用水及用电等可以计算的部分,每亩的收益也是根据可能收集到的数据如交公购粮、收购茉莉花以及在农贸市场上出售蔬菜所得销售收入的平均值,均为近似值。通过以上调研和数据处理得到下表。

种植各类作物所需费用及收益表

为防止作物的单一种植倾向,在保证全乡留有足够口粮的基础上,各种作物种植的协调发展。根据前些年的种植情况及取得的效益,乡政府认为水稻、蔬菜、茉莉花三种作物的播种面积比例大致以2:1:1为宜。按全乡2000亩种植面积计算,可设定三种作物种植面积的最高限额分别为1000、500、500亩。目标函数Z取总收益,要求极大化。试通过建立优化模型给出当前条件下的最优种植方案,进行结果分析及进一步讨论。

(1)决策变量

本问题决策变量为每种作物所用每种土地的亩数。

设:X j i 为作物i所需土地j的亩数(i=F1,F2,F3;j=C1,C2,C3)

(2) 目标函数

本问题的目标是使全乡总收益最大:

MaxZ=300*(X F1-C1+X F1-C2+X F1-C3)+500*

(X F2-C1+X F2-C2+X F2-C3)+450*(X F3-C1+X F3-C2+X F3-C3)

(3) 约束条件

每种土地的实际使用亩数≤每种土地亩数最高限额

每种作物的实际使用亩数≤每种作物亩数最高限额

X i-j≥0 (i=F1,F2,F3;j=C1,C2,C3)

(4)数学模型

MaxZ=300*(X F1-C1+X F1-C2+X F1-C3)+500*

(X F2-C1+X F2-C2+X F2-C3)+450*(X F3-C1+X F3-C2+X F3-C3)

X F1-C1+X F2-C1+X F3-C1≤400

X F1-C2+X F2-C2+X F3-C2≤600

X F1-C3+X F2-C3+X F3-C3≤1000

X F1-C1+X F1-C2+X F1-C3≤1000

X F2-C1 +X F2-C2+X F2-C3≤500

X F3-C1+X F3-C2+X F3-C3≤500

X i-j≥0 (i=F1,F2,F3;j=C1,C2,C3)

建立如下电子表格模型:

利用Excel规划求解

结果为:沙质土地种水稻400亩,粘质土地种水稻600亩,中性土地种蔬菜500亩和茉莉花500亩,全乡最终总收益为775000元

根据规划求解得到敏感性报告,报告表如下:

线性规划案例

附录2 线性规划案例 Appendix 2 Projects of Linear Programming 案例1 食油生产问题(1) 食油厂精炼两种类型的原料油——硬质油和软质油,并将精制油混合得到一种食油产品。硬质原料油来自两个产地:产地1和产地2,而软质原料油来自另外三个产地:产地3,产地4和产地5。据预测,这5种原料油的价格从一至六月分别为: 产品油售价为200元/吨。 硬质油和软质油需要由不同的生产线来精炼。硬质油生产线的每月最大处理能力为200吨,软质油生产线最大处理能力为250吨/月。五种原料油都备有贮罐,每个贮罐的容量均为1000吨,每吨原料油每月的存贮费用为5元。而各种精制油以及产品无油罐可存贮。精炼的加工费用可略去不计。产品的销售没有任何问题。 产品食油的硬度有一定的技术要求,它取决于各种原料油的硬度以及混合比例。产品食油的硬度与各种成份的硬度以及所占比例成线性关系。根据技术要求,产品食油的硬度必须不小于3.0而不大于6.0。各种原料油的硬度如下表(精制过程不会影响硬度):

假设在一月初,每种原料油都有500吨存贮而要求在六月底仍保持这样的贮备。 问题1:根据表1预测的原料油价格,编制逐月各种原料油采购量、耗用量及库存量计划,使本年内的利润最大。 问题2:考虑原料油价格上涨对利润的影响。据市场预测分析,如果二月份硬质原料油价格比表1中的数字上涨X%,则软质油在二月份的价格将比表1中的数字上涨2X%,相应地,三月份,硬质原料油将上涨2X%,软质原料油将上涨4X%,依此类推至六月份。试分析X从1到20的各情况下,利润将如何变化? 案例2 食油生产问题(2) 在案例1中,附加以下条件,求解新的问题: 1.每一个月所用的原料油不多于三种。 2.如果在某一个月用一种原料油,那么这种油不能少于20吨。 3.如果在一个月中用了硬质油1或硬质油2,则在这个月中就必须用软质油5。案例3 机械产品生产计划问题 机械加工厂生产7种产品(产品1到产品7)。该厂有以下设备:四台磨床、两台立式钻床、三台水平钻床、一台镗床和一台刨床。每种产品的利润(元/件,在这里,利润定义为销售价格与原料成本之差)以及生产单位产品需要的各种设备的工时(小时)如下表。表中的短划表示这种产品不需要相应的设备加工。

运筹学中的线性规划在企业中的应用

线性规划在企业中的运用 摘要:运筹学是一门定量优化的决策科学,而线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中提出的专门问题、为决策者选择最优决策提供定量依据,帮助决策人员选择最优方针和决策,其英文名字为Operational Research.50年代中期,钱学森等教授将其由西方引入我国,并结合我国国情实际运用。线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在帮助企业经营决策、计划优化等方面具有重要的作用。 关键词:运筹学;线性规划;应用;企业 运筹学的特点是利用数学、管理科学、计算机科学技术等研究事物的数量化规律,使得有限的人、财、物、时、空、信息等资源得到合理充分合理的利用。 它以数学为工具,寻找解决各种问题的最优方案,并从系统的观点出发研究全局的规划。运筹学早期应用在军事领域,二战后转为民用,并且在企业中的应用越来越广泛,取得了良好的经济效益。运筹学的思想贯穿了企业发展的始终,运筹学对各种决策方案进行科学评估,为管理决策服务,使得企业管理者更有效合理地利用有限资源。优胜劣汰,适者生存,这是自然界的生存法则,也是企业的生存法则。只有那些能够成功地应付环境挑战的企业,才是得以继续生存和发展的企业。 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,早在1939年苏联的康托洛维奇(H.B.Kahtopob )和美国的希奇柯克(F.L.Hitchcock)等人就在生产组织管理和制定交通运输方案方面首先研究和应用线性规划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划(或非线性规划)问题。从应用范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门它都可以发挥作用。线性规划方法具有适应性强,应用面广,计算技术比较简便的特点。其基本思路是在满足一定的约束条件下,使预定的目标达到最优。它的研究内容可归纳为两个方面:一是系统的任务已定,如何合理筹划,精细安排,用最少

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 . 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则 1 由原问题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

1x ,2x ,3x ≥0 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b 列数字为负,故需进行迭代运算。 换出变量的确定,计算min (-2,-4,-3)=-4,故5x 为换出变量。 换入变量的确定,计算得15,40,80/3,故1x 为换入变量。

由表可知,6x 为换出变量。2x 为换入变量。然后继续画单纯形表: 可得4x 为换出变量,3x 为换入变量。继续做单纯形表:

所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ ’=21y +42y +33y +04y +05y +06y 31y +42y +23y +4y =60 21y +2 y +23y +5y =40 1y +32y +23y +6y =80 1y ,2y ,3y ,4y ,5y ,6y ≥0 然后建立单纯形表,可得 i

第五章运筹学 线性规划在管理中的应用案例

第五章线性规划在管理中的应用 5.1 某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。可用的机器设备是限制新产品产量的主要因素,具体数据如下表: 量,使得公司的利润最大化。 1、判别问题的线性规划数学模型类型。 2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。 3、建立该问题的线性规划数学模型。 4、用线性规划求解模型进行求解。 5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。 6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。 解: 1、本问题是资源分配型的线性规划数学模型。 2、该问题的决策目标是公司总的利润最大化,总利润为: 0.5x1+ 0.2x2+ 0.25x3 决策的限制条件: 8x1+ 4x2+ 6x3≤500 铣床限制条件 4x1+ 3x2≤350 车床限制条件 3x1+ x3≤150 磨床限制条件 即总绩效测试(目标函数)为: max z= 0.5x1+ 0.2x2+ 0.25x3 3、本问题的线性规划数学模型 max z= 0.5x1+ 0.2x2+ 0.25x3 S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x1≥0、x2≥0、x3≥0 4、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。 5、灵敏度分析

目标函数最优值为 : 30 变量最优解相差值 x1 50 0 x2 25 0 x3 0 .083 约束松弛/剩余变量对偶价格 1 0 .05 2 75 0 3 0 .033 目标函数系数范围 : 变量下限当前值上限 x1 .4 .5 无上限 x2 .1 .2 .25 x3 无下限 .25 .333 常数项数范围 : 约束下限当前值上限 1 400 500 600 2 275 350 无上限 3 37.5 150 187.5 (1)最优生产方案: 新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。最大利润值为30元。 (2)x3 的相差值是0.083意味着,目前新产品Ⅲ不安排生产,是因为新产品Ⅲ的利润太低,若要使新产品Ⅲ值得生产,需要将当前新产品Ⅲ利润0.25元/件,提高到0.333元/件。 (3)三个约束的松弛/剩余变量0,75,0,表明铣床和磨床的可用工时已经用完,而车床的可用工时还剩余75个工时; 三个对偶价格0.05,0,0.033表明三种机床每增加一个工时可使公司增加的总利润额。 (4)目标函数系数范围 表明新产品Ⅰ的利润在0.4元/件以上,新产品Ⅱ的利润在0.1到0.25之间,新产品Ⅲ的利润在0.333以下,上述的最佳方案不变。 (5)常数项范围 表明铣床的可用条件在400到600工时之间、车铣床的可用条件在275工时以上、磨铣床的可用条件在37.5到187.5工时之间。各自每增加一个工时对总利润的贡献0.05元,0元,0.033元不变。 6、若产品Ⅲ最少销售18件,修改后的的数学模型是: max z= 0.5x1+ 0.2x2+ 0.25x3 S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x3≥18 x1≥0、x2≥0、x3≥0 这是一个混合型的线性规划问题。 代入求解模板得结果如下: 最优解(44,10,18),最优值:28.5元。 灵敏度报告: 目标函数最优值为 : 28.5 变量最优解相差值 x1 44 0 x2 10 0

线性规划的实际应用

线性规划的实际应用 摘 要:线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 关键词:研究性学习;线性规划,教学改革 随着当前基础教育的改革的深入,研究性学习成为当前基础教育的一个热点,引起了教育界和社会的广泛关注,也成为当前培养学生能力的一个崭新的课题。我们本着教学过程始于课内,终于课外的原则对线性规划的实际应用进行研究。主要是把实际问题抽象为数学模型,使其在约束条件下,找到最佳方案。也就是说求线性目标函数在线性约束条件下的最大值和最小值问题。 一. 线性规划问题 在实际社会活动中遇到这样的问题:一类是当一项任务确定后,如何统筹 安排,尽量做到最少的资源消耗去完成;另一类是在已有的一定数量的资源条件下,如何安排使用它们,才能使得完成的任务最多。 例如1-1:某工厂需要使用浓度为的硫酸10,而市场上只有浓度为,0080kg 00600 070和的硫酸出售,每千克价格分别为8元,10元,16元,问应购买各种浓度的硫酸各多0090少?才能满足生产需求,且所花费用最小? 设取浓度为,,的硫酸分别为千克,总费用为,则 006000700090321,,x x x Z s.t ?? ?=++=++8 9.07.06.010 321321x x x x x x ) 3,2,1,0(16108321=≥++=j x x x x Z j 例如1-2:某工厂生产甲,乙两种产品,已知生产甲产品需要种原料不超过3千克,但 A 每千克甲产品需要种原料为2千克;生产乙产品需要种原料不超过4.5千克,但每千克C B 乙产品需要种原料为3千克。每千克甲产品的利润为3元,每千克乙产品的利润为4元, C 工厂生产甲,乙两种产品的计划中要求所耗的种原料不超过15千克,甲,乙两种产品各应C 生产多少,能使的总利润最大? 设生产甲,乙两种产品分别为千克,利润总额为元,则 21,x x Z s.t ???????≥≤+≤≤0 ,15325.43212121x x x x x x 2143x x Z +=二. 线性规划问题的模型 1.概念 对于求取一组变量使之既满足线性约束条件,又使具有线 ),,3,2,1(n j x j ???=性目标函数取得最值的一类最优问题称为线性规划问题。

考虑如下线性规划问题

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 s.t. 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则由原问 1 题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 s.t 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 s.t -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

x,2x,3x≥0 1 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b列数字为负,故需进行迭代运算。 换出变量的确定,计算min(-2,-4,-3)=-4,故 x为换出变量。 5 换入变量的确定,计算得15,40,80/3,故 x为换入变量。 1 由表可知, x为换出变量。2x为换入变量。然后继续画单纯形表: 6

可得 x为换出变量,3x为换入变量。继续做单纯形表: 4 所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ’=2 y+42y+33y+04y+05y+06y 1 s.t 3 y+42y+23y+4y=60 1 2 y+2y+23y+5y=40 1 y+32y+23y+6y=80 1 y,2y,3y,4y,5y,6y≥0 1 然后建立单纯形表,可得

线性规划案例分析

2.某市柴油机厂年度产品生产计划的优化研究 1)问题的提出 某市柴油机厂是我国生产中小功率柴油机的重点骨干企业之一,主要产品有2105柴油机、 X2105柴油机、X4105柴油机、X4110柴油机、X6105柴油机、X6110柴油机,产品市场占 有率大,覆盖面广,广泛用于农业机械、工程机械、林业机械、船舶、发电机组等。在同行 业中占有一定的优势。但另一方面,也确实存在管理方法陈旧、管理手段落后的实际问题, 尤其是随着经济体制改革的深入,以前在计划经济体制下生存的国营企业越来越不适应市场 经济的要求。为改变这种不利局面,厂领导决定实行科学管理,其中努力提高企业编制产品 生产计划的科学性是一个重要的目标。 2)生产现状及资料分析 柴油机的主要生产过程为原材料经过锻造、铸造或下料,再进行热处理、机加工工序,进入 总装,最后试车、装箱、入成品库。该厂将毛坯生产工艺,即锻造、铸造或下料过程渐渐向 外扩散,形成专业化生产,以达到规模效益,故该厂柴油机生产过程主要可以分三大类:热 处理、机加工、总装。与产品生产有关的数据资料如下: 每种产品的单位产值如下表: 序号产品型号及产品名称单位产值(元) 1 2105柴油机5400 2 X2105柴油机6500 3 X4105柴油机12000 4 X4110柴油机14000 5 X6105柴油机18500 6 X6110柴油机20000 每件产品所需的热处理、机加工、总装工时及全厂能提供的三种总工时如下表:序号产品型号及产品名称热处理(工时) 机加工(工时) 总装(工时) 1 2105柴油机10.58 14.58 17.08 2 X2105柴油机11.0 3 7.05 150 3 X4105柴油机20.11 23.96 29.37 4 X4110柴油机32.26 27.7 33.38 5 X6105柴油机37.68 29.3 6 55.1 6 X6110柴油机40.84 40.43 53.5 全年提供总工时120000 95000 180000 产品原材料主要是生铁、焦碳、废钢、钢材四大类资源,供应科根据历年的统计资 料及当年的原材料市场情况,给出了各种原材料的最大供应量如下表: 原材料名称生铁(吨) 焦碳(吨) 废钢(吨) 钢材(吨) 最大供应量1562 951 530 350 单位产品原材料消耗情况如下表: 序号产品型号及名称生铁(吨) 焦碳(吨) 废钢(吨) 钢材(吨) 1 2105柴油机0.18 0.11 0.06 0.04 2 X2105柴油机0.19 0.12 0.06 0.04 3 X4105柴油机0.35 0.22 0.12 0.08 4 X4110柴油机0.36 0.23 0.13 0.09 5 X6105柴油机0.54 0.33 0.18 0.12

对偶线性规划理论及其在经济中的应用开题报告

开题报告 信息与计算科学 对偶线性规划理论及其在经济中的应用 一、选题的背景、意义[1] 21世纪中国进入到了一个新的时代,随着经济的快速发展和社会的进步,整个社会运行的各个方面——无论是在政治、经济、文化、科技、军事、外交方面,还是在环境、生态、资源问题方面,都将着眼于解决能否实现的问题扩充到更加重视解决如何优化实现的问题,从解决局部的简单问题扩充到解决系统的复杂问题,从静态地解决问题到动态地解决问题,从解决涉及单一领域的独立发展问题扩充到解决涉及多个领域的协同发展的问题,从通过直接办法解决问题扩充到通过间接的办法解决问题等,都迫切需要线性规划理论及其应用。随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们合理利用有限资源制定最佳决策的有利工具。 二、研究的基本内容与拟解决的主要问题 2.1 对偶线性规划理论概述 2.1.1 对偶线性规划理论的发展历程及现状[2] [3] 线性规划理论产生于20世纪30年代。1939年,苏联数学家康托罗维奇在《生产组织与计划中的数学方法》一书中,最早提出和研究了线性规划问题。 1947年,美国数学家丹齐克提出线性规划的一般数学模型和求解线性规划问题的通用方法─单纯形法,为这门学科奠定了基础。1947年,美国数学家诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。 1951年,美国经济学家库普曼斯把线性规划应用到经济领域;1960年,康托罗维奇再次发表《最佳资源利用的经济计算》,创立了享誉全球的线性规划要点,对资源最优分配理论做出了贡献。为此,库普曼斯与康托罗维奇一起获1975年诺贝尔经济学奖。1984年,美国贝尔电话实验室的印度数学家卡马卡提出求解线性规划问题的投影尺度法,这是一个有实用意义的新的多项式时间算法。这个算法引起了人们对内点算法的关注,此后相

线性规划理论在实际问题中的应用

Ⅰ线性规划理论在实际问题中的应用 ⅰ问题背景描述 线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中的问题,帮助决策人员选择最优方针和决策。把线性规划的知识运用到企业中,企业就有必要利用线性规划的知识对战略计划,生产,销售的各个环节进行优化,从而降低生产成本,提高企业的生产效率,通过建立模型并利用相关软件,对经济管理中有限资源进行合理分配,从而获得最佳经济效益。根据美国《财富》杂志对全美前500家大公司的调查表明,线性规划的应用程度名列前矛,有85%的公司频繁地使用线性规划,并取得了显著提高经济效益的效果。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本内容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其

有利的条件。线性规划已经成为现代化管理的一种重要的手段。 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际内容,要明确目标函数和约束条件,通过表格的形式把问题中的已知条件和各种数据进行整理分析,从而找出约束条件和目标函数。 从实际问题中建立数学模型一般有以下三个步骤; 1.根据影响所要达到目的的因素找到决策变量; 2.由决策变量和所在达到目的之间的函数关系确定目标函数; 3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。 所建立的数学模型具有以下特点: 1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。 2、目标函数是决策变量的线性函数根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。 3、约束条件也是决策变量的线性函数。 当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。 线性规划模型的基本结构:

线性规划的实际应用举例

线性规划的实际应用举例 即两为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划( 的实际应用举例加以说明。个变量的线性规划) 1 物资调运中的线性规划问题 万个40万个和30万个,由于抗洪抢险的需要,现需调运1 A,B两仓库各有编织袋50例/元万个、180/万个到乙地。已知从A仓库调运到甲、乙两地的运费分别为120元到甲地,20元/万个。问如何调运,能150/万个、万个;从B仓库调运到甲、乙两地的运费分别为100元? ?总运费的最小值是多少使总运费最小仓库调Bz元。那么需从x万个到甲地,y万个到乙地,总运费记为解:设从A仓库调运40-x万个到甲 地,调运运万个到乙地。20-y 从而有 。z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000 1)(图,即可行域。作出以上不等式组所表示的平面区域 z'=z-7000=20x+30y. 令 :20x+30y=0,作直线l 且与原点距离最小,0),,l的位置时,直线经过可行域上的点M(30l把直线向右上方平移至l y=0时,即x=30,亦取得最小值,取得最小值,从而z=z'+7000=20x+30y+7000z'=20x+30y 元)。30+30×z=20× 0+7000=7600(min 万个到乙地,可使总万个到甲地,20B30万个到甲地,从仓库调运10A答:从仓库调运元。运费最小,且总运费的最小值为7600 2 产品安排中的线性规划问题 吨,麦麸0.4吨需耗玉米某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料2例1O.4

吨,其余添加剂0.2. 吨甲种1吨,其余添加剂0.2吨。每吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3元。可供饲料厂生产的玉米供应500元,每1吨乙种饲料的利润是饲料的利润是400吨。问甲、乙300吨,麦麸供应量不超过500吨,添加剂供应量不超过量不超过600 ? ?最大利润是多少两种饲料应各生产多少吨(取整数),能使利润总额达到最大 1。分析:将已知数据列成下表 2表1例表 元,那么吨、y吨,利润总额为z解:设生产甲、乙两种饲料分别为x z=400x+500y。 即可行域。(图2)作出以上不等式组所表示的平面区域 平行,所以线段l4x+5y=6000与。并把400x+500y=0l向右上方平移,由于l:作直线l:1。,N(0,1200)M(250MN上所有坐标都是整数的点(整点)都是最优解。易求得,1000) ,y=1000时,1000)取整点M(250,,即x=250 。元1000=600000()=60(万元)=400×z250+500×max 吨,能使利润总额达到最大。最大利润为1000可安排生产甲种饲料250吨,乙种饲料答:万元。60 使我们认识到最优解的个数还例2课本题中出现的线性规划问题大都有唯一的最优解。注:有其他可能,这里不再深入探究。

线性规划应用案例

线性规划应用案例

市场营销应用 案例一:媒体选择 在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。 REL发展公司正在私人湖边开发一个环湖社区。湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。REL公司已经聘请BP&J 来设计宣传活动。 考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。质量评定是通过宣传质量单位来衡量的。宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。表4-1列出了收集到的这些信息。 表4-1 REL发展公司可选的广告媒体

REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。应当推荐何种广告媒体选择计划呢? 案例二:市场调查 公司开展市场营销调查以了解消费者个性特点、态度以及偏好。专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。市场营销调查公司的目标是以最小的成本满足客户要求。 市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。而且MSI还同意同时开展日间和晚间调查。尤其是,客户的合同要求依据以下限制条款进行1000个访问: ●至少访问400个有儿童的家庭; ●至少访问400个无儿童的家庭; ●晚间访问的家庭数量必须不少于日间访问的家庭数量; ●至少40%有儿童的家庭必须在晚间访问; ●至少60%无儿童的家庭必须在晚间访问。 因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。基于以往的调查研究,预计的访问费用如下表所示: 以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的

线性规划理论及其应用[开题报告]

毕业论文开题报告 信息与计算科学 线性规划理论及其应用 一、选题的背景、意义[1][2] 1.选题的背景 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大化或最小化的问题,最大化问题是要在一个集合上使一个函数达到最大,最小化问题是要在一个集合上使一个函数达到最小。统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们为合理利用有限资源制定最佳决策的有力工具。 2.选题的意义 随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们为合理利用有限资源制定最佳决策的有力工具。随着经济全球化的不断发展,企业面临更加激烈的市场竞争。企业必须不断提高盈利水平,增强其获利能力,在生产、销售、新产品研发等一系列过程中只有自己的优势,提高企业效率,降低成本,形成企业的核心竞争力,才能在激烈的竞争中立于不败之地。过去很多企业在生产、运输、市场营销等方面没有利用线性规划进行合理的配置,从而增加了企业的生产,使企业的利润不能达到最大化。在竞争日益激烈的今天,如果还按照过去的方式,是难以生存的,所以就有必要利用线性规划的知识对战略计划、生产,销售各个环节进行优化从而降低生产成本,提高企业的效率。在各类经

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益. 8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资

源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.

线性规划的应用(简介和案例)

线性规划的应用 线性规划是运筹学中一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。广泛应用于军事作战、经济分析、经营管理和工程技术等方面。如:经济管理、交通运输、工农业生为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 线性规划作为运筹学的一个研究较早、发展较快、应用广泛、方法较成熟的重要分支,它在日常生活中的典型应用主要有:1合理利用线材问题:如何下料使用材最少 2配料问题:在原料供应量的限制下如何获取最大利润 3投资问题:从投资项目中选取方案,使投资回报最大 4产品生产计划:合理利用人力、物力、财力等,使获利最大 5劳动力安排:用最少的劳动力来满足工作的需要 6运输问题:如何制定调动方案,使总运费最小 其实,也就是说,线性规划在运筹学中的研究对象主要是在有一定的人力、财力、资源条件下,如何合理安排使用,效益最高和在某项任务确定后,如何安排人、财、物,使之最省。 例如: 某公司现有三条生产线来生产两种新产品,其主要数据如表1.1所示。请问如何生产可以让公司每周利润最大?

表1 产品组合问题的数据表 此问题是在生产线可利用时间受到限制的情形下寻求每周利润最大化的产品组合问题。 在建立产品组合模型的过程中,以下问题需要得到回答: (1)要做出什么决策? (2)做出的决策会有哪些条件限制? (3)这些决策的全部评价标准是什么? (1)变量的确定 要做出的决策是两种新产品的生产水平,记x1为每周生产产品甲的产量,x2为每周生产产品乙的产量。一般情况下,在实际问题中常常称为变量(决策变量)。 (2)约束条件 求目标函数极值时的某些限制称为约束条件。如两种产品在相应生产线上每周生产时间不能超过每条生产线的可得时间,对于生产线一,有x1≤4,类似地,其它生产线也有不等式约束。 (3)目标函数 对这些决策的评价标准是这两种产品的总利润,即目标函数是要求每周的生产利润(可记为z,以百元为计量单位)为最大 这样,可以把产品组合问题抽象地归结为一个数学模型: max z = 3x1+5x2 s.t. x1 ≤4 2x2 ≤12 3x1+ 2x2 ≤18 x1≥0,x2 ≥0

《运筹学》习题线性规划部分练习题及答案

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2.线性规划问题的一般形式有何特征? 3.建立一个实际问题的数学模型一般要几步? 4.两个变量的线性规划问题的图解法的一般步骤是什么? 5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7.试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8.试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1.线性规划问题的最优解一定在可行域的顶点达到。 2.线性规划的可行解集是凸集。 3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5.线性规划问题的每一个基本解对应可行域的一个顶点。 6.如果一个线性规划问题有可行解,那么它必有最优解。 7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都 可以被选作换入变量。 8.单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9.单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目标函数值得到最快的减少。 10.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

线性规划理论在实际问题中的应用

线性规划理论在实际问 题中的应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

线性规划理论在实际问题中的应用 内容摘要: 企业是一个复杂的系统,要研究它必须将其抽象出来形成模型。如果将系统内部因素的相互关系和它们活动的规律用数学的形式描述出来,就称之为数学模型。线性规划是运用数学模型,对人力、设备、材料、资金等进行系统和定量的分析,使生产力得到最为合理的组织,以获得最佳的经济效益。应用线性规划问题解决实际问题,最重要的一个步骤就是首先要建立实际问题的线性规划问题的数学模型。 一、线性规划问题及其数学模型 二、线性规划模型的具体分析及应用Excel求解线性规划问题 三、线性规划的局限性

一、线性规划问题及其数学模型 (一)线性规划的模型决定于它的定义,线性规划的定义是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解。根据这个定义,就可以确定线性规划模型的基本结构。 (1)变量变量又叫未知数,它是实际系统的未知因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如X l,X2,X3,X mn等。 (2)目标函数将实际系统的目标,用数学形式表现出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值,如产值极大值、利润极大值或者极小值,如成本极小值、费用极小值、损耗极小值等等。 (3)约束条件约束条件是指实现系统目标的限制因素。它涉及到企业内部条件和外部环境的各个方面,如原材料供应、设备能力、计划指标、产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件。约束条件的数学表示形式为三种,即≥、=、≤。线性规划的变量应为正值,因为变量在实际问题中所代表的均为实物,所以不能为负。 (二)在经济管理中,线性规划使用较多的是下述几个方面的问题: (1) 投资问题—确定有限投资额的最优分配,使得收益最大或者见效快。 (2) 计划安排问题—确定生产的品种和数量,使得产值或利润最大,如资源配制问题。 (3) 任务分配问题—分配不同的工作给各个对象(劳动力或机床),使产量最多、效率最高,如生产安排问题。 (4) 下料问题—如何下料,使得边角料损失最小。 (5) 运输问题—在物资调运过程中,确定最经济的调运方案。

线性规划的实际应用

密封线 线性规划的实际应用 摘要线性规划模型是科学与工程领域广泛应用的数学模型。本文应用线性规划模型,以 某水库输水管的选择为研究对象,以实现输水管的选择既能保证供水,又能使造价最低为 目标,根据水库的特点和实际运行情况,分析了其输水管选择过程中线性规划模型的建立 方法,并分别通过单纯形法和MATLAB软件进行求解。 关键词线性规划模型单纯形法 MATLAB 一、专著背景简介 《最优化方法》介绍最优化模型的理论与计算方法,其中理论包括对偶理论、非线性规划的最优性理论、非线性半定规划的最优性理论、非线性二阶锥优化的最优性理论;计算方法包括无约束优化的线搜索方法、线性规划的单纯形方法和内点方法、非线性规划的序列二次规划方法、非线性规划的增广Lagrange方法、非线性半定规划的增广Lagrange方法、非线性二阶锥优化的增广Lagrange方法以及整数规划的Lagrange松弛方法。《最优化方法》注重知识的准确性、系统性和算法论述的完整性,是学习最优化方法的一本入门书。 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。本章将介绍最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用。主要是线性规划问题的模型、求解(线性规划问题的单纯形解法)及其应用-运输问题;以及动态规划的模型、求解、应用-资源分配问题。 二、专著的主要结构内容 《最优化方法》是一本着重实际应用又有一定理论深度的最优化方法教材,内容包括线

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

相关文档
最新文档