毫米波辐射计对金属目标的探测

毫米波辐射计对金属目标的探测
毫米波辐射计对金属目标的探测

毫米波辐射计探测装甲目标立体特性建模与仿真分析

doi:10.3969/j.issn.1001-893x.2016.02.009 引用格式:冯建利,陈博,张效民.毫米波辐射计探测装甲目标立体特性建模与仿真分析[J].电讯技术,2016,56(2):161-165.[FENG Jianli, CHEN Bo,ZHANG Xiaomin.Modeling and simulation analysis of armored target's stereo characteristic detected by millimeter wave radiometer [J].Telecommunication Engineering,2016,56(2):161-165.] 毫米波辐射计探测装甲目标立体特性建模与仿真分析* 冯建利**1,2,陈博3,张效民2 (1.西安石油大学计算机学院,西安710065;2.西北工业大学航海学院,西安710072; 3.西安机电信息技术研究所,西安710065) 摘要:以往的毫米波被动探测系统中为了简单往往将装甲目标等效为平面金属目标,忽视了它的复杂立体特性三针对这一问题,提出了装甲目标立体特性的概念,理论推导了装甲目标立体特性的客观存在,仿真分析了装甲目标的立体特性,并概括总结了装甲目标立体特性的影响因素三文中结论对装甲目标毫米波辐射特性研究及毫米波被动探测领域具有一定的参考价值三 关键词:毫米波被动探测;装甲目标;立体特性;仿真分析 中图分类号:TN015;TP391.9 文献标志码:A 文章编号:1001-893X(2016)02-0161-05 Modeling and Simulation Analysis of Armored Target's Stereo Characteristic Detected by Millimeter Wave Radiometer FENG Jianli1,2,CHEN Bo3,ZHANG Xiaomin2 (1.School of Computer Science,Xi'an Shiyou University,Xi'an710065,China; 2.College of Marine Engineering,Northwestern Polytechnical University,Xi'an710072,China; 3.Xi'an Institute of Electromechanical Information Technology,Xi'an710065,China) Abstract:In the past,for simple,the armored target is often equaled to the plane metal target in the re-search of passive millimeter wave(MMW)detection system,so the complex stereo characteristic is ignored. To solve this problem,this paper presents the concept of armored target's stereo characteristic,derives its objective existence theoretically,simulates and analyzes the stereo characteristic of armored target,and fi-nally summarizes its impact factors.The conclusion of this paper has a certain reference value for the study of MMW radiation characteristics of armored target and the research in passive MMW detection field. Key words:passive millimeter wave detection;armored target;stereo characteristic;simulation analysis 1 引言 在非实验环境中要对大型目标进行仿真或等效测量时通常会使用到缩比模型[1]三以往对于毫米波被动探测装甲目标的研究基本上都是将全尺寸装甲目标(复杂立体金属)按照缩比模型缩小为小尺寸的平面金属目标,然后在低的观测高度下研究装甲目标的辐射特性[2]三但是事实上,由于装甲目标是复杂的立体金属目标,在某种探测条件下,它的一部分面元反射向下大气辐射温度,而另一部分面元则反射地面背景辐射温度[3]三所以,装甲目标的辐射特性和平面金属目标的辐射特性有本质上的区别三鉴于此,要分析装甲目标的辐射特性只是降低探测高度二将装甲目标等比例缩小为平面金属目标是不够的,还需要分析影响装甲目标辐射特性的其 四161四 第56卷第2期 2016年2月电讯技术 Telecommunication Engineering Vol.56,No.2 February,2016 * **收稿日期:2015-07-02;修回日期:2015-10-22 Received date:2015-07-02;Revised date:2015-10-22通信作者:fjlnwpu@https://www.360docs.net/doc/bd13544949.html, Corresponding author:fjlnwpu@https://www.360docs.net/doc/bd13544949.html,

成都理工大学核辐射测量方法复习题(研究生师兄制作良心版)

一、名词解释(每名词3分,共24分) 半衰期:放射性核素数目衰减到原来数目一半所需要的时间的期望值。 放射性活度:表征放射性核素特征的物理量,单位时间内处于特定能态的一定量的核素发生自发核转变数的期望值。A=dN/dt。 射气系数:在某一时间间隔内,岩石或矿石析出的射气量N1与同一时间间隔内该岩石或矿石中由衰变产生的全部射气量N2的比值,即η*= N1/N2×100%。 原子核基态:处于最低能量状态的原子核,这种核的能级状态叫基态。 核衰变:放射性核素的原子核自发的从一个核素的原子核变成另一种核素的原子核,并伴随放出射线的现象。 α衰变:放射性核素的原子核自发的放出α粒子而变成另一种核素的原子核的过程成为α衰变 衰变率:放射性核素单位时间内衰变的几率。 轨道电子俘获:原子核俘获了一个轨道电子,使原子核内的质子转变成中子并放出中微子的过程。 衰变常数:衰变常数是描述放射性核素衰变速度的物理量,指原子核在某一特定状态下,经历核自发跃迁的概率。线衰减系数:射线在物质中穿行单位距离时被吸收的几率。 质量衰减系数:射线穿过单位质量介质时被吸收的几率或衰减的强度,也是线衰减系数除以密度。 铀镭平衡常数:表示矿(岩)石中铀镭质量比值与平衡状态时铀镭质量比值之比。 吸收剂量:电力辐射授予某一点处单位质量物质的能量的期望值。D=dE/dm,吸收剂量单位为戈瑞(Gy)。 平均电离能:在物质中产生一个离子对所需要的平均能量。 碰撞阻止本领:带电粒子通过物质时,在所经过的单位路程上,由于电离和激发而损失的平均能量。 核素:具有特定质量数,原子序数和核能态,而且其平均寿命长的足以已被观察的一类原子 粒子注量:进入单位立体球截面积的粒子数目。 粒子注量率:表示在单位时间内粒子注量的增量 能注量:在空间某一点处,射入以该点为中心的小球体内的所有的粒子能量总和除以该球的截面积 能注量率:单位时间内进入单位立体球截面积的粒子能量总和 比释动能:不带电电离粒子在质量为dm的某一物质内释放出的全部带电粒子的初始动能总和 剂量当量:某点处的吸收剂量与辐射权重因子加权求和 同位素:具有相同的原子序数,但质量数不同,亦即中子数不同的一组核素 照射量:X=dq/dm,以X射线或γ射线产出电离本领而做出的一种量度 照射量率:单位质量单位时间内γ射线在空间一体积元中产生的电荷。 剂量当量指数:全身均匀照射的年剂量的极限值 同质异能素:具有相同质量数和相同原子序数而半衰期有明显差别的核素 平均寿命:放射性原子核平均生存的时间.与衰变常熟互为倒数。 电离能量损耗率:带电粒子通过物质时,所经过的单位路程上,由于电离和激发而损失的平均能量 平衡含量铀:达到放射性平衡时的铀含量 分辨时间: 两个相邻脉冲之间最短时间间隔 康普顿边:发生康普顿散射时,当康普顿散射角为一百八十度时所形成的边 康普顿坪:当康普顿散射角为零到一百八十度时所形成的平台 累计效应:指y光子在介质中通过多次相互作用所引起的y光子能量吸收 边缘效应: 次级电子产生靠近晶体边缘,他可能益处晶体以致部分动能损失在晶体外,所引起的脉冲幅度减小 和峰效应: 两哥y光子同时被探测器晶体吸收产生幅度更大的脉冲,其对应能量为两个光子能量之和 双逃逸峰:指两个湮没光子不再进行相互作用就从探测器逃出去 响应函数: 探测器输出的脉冲幅度与入射γ射线能量之间的关系的数学表达式 能量分辨率: 表征γ射线谱仪对能量相近的γ射线分辨本领的参数 探测效率:表征γ射线照射量率与探测器输出脉冲1. 峰总比:全能峰的脉冲数与全谱下的脉冲数之比 峰康比:全能峰中心道最大计数与康普顿坪内平均计数之比

红外线测距仪测量原理

红外线测距仪测量原理 测距仪是一种航迹推算仪器,用于测量目标距离,进行航迹推算。测距仪的形式很多,通常是一个长形圆筒,由物镜、目镜、测距转钮组成,用来测定目标距离。测距仪是根据光学、声学和电磁波学原理设计的,用于距离测量的仪器。 红外测距仪的分类有激光红外,红外和超声波三种,目前测距仪主要是指的激光红外测距仪,红外测距仪和超声波测距仪由于测量距离有限,测量精度很低目前已经被淘汰。激光红外测距仪是利用激光对目标的距离进行准确测定的仪器。激光红外测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 测距仪有测量距离和测量精度,同时又是电子设备,所以品牌的选择非常重要,国际知名品牌的测距仪,在性能上会远优于杂牌的激光红外测距仪。 一.测距仪分类 测距仪从测距基本原理,可以分为以下三类: 1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-20000米)。 目前市面上主流的都是激光测距仪,手持式激光测距仪全球前两大品牌是徕卡和博世,右图就是一款主流的手持式激光测距仪。 望远镜激光测距仪,为远距离激光测距仪,目前在户外使用相当广泛,望远镜激光测距仪全球前四大品牌是图雅得、博士能、奥尔法和尼康。四个品牌在产品上各有特点,2013年,美国激光技术杂志公布的数据,2013年全球单品销售冠军是图雅得SP1500,这款测距仪测量精准,反应速度快捷。 2. 超声波测距仪

光学辐射探测

光学辐射探测的应用 ——基于红外成像的生命探测仪1光学辐射探测简介 光学辐射是波长10nm~1mm之间的电磁辐射,包括紫外光、红外光以及可见光,可见光波长380~780nm,由于光波是电磁波的一种,因而它具有电磁波的基本特性。以电磁波形式或粒子(光子)形式传播的能量,可以用平面镜、透镜或棱镜之类的光学元件反射、成像或色散,这种能量传播的过程称为辐射。辐射度学:是一门测量电磁辐射的科学和技术。在整个电磁辐射波谱范围内,不同波段的辐射能可以用不同的测量方法进行测量[1]。 光辐射探测器是一种用来探测光辐射的器件(军用光学中最常用的是可见光和红外辐射),它通过把光辐射转换成易于测量的电量来实现对光辐射的探测,是光探测系统的重要组成部分。为了深入研究光辐射的探测过程以及对光探测系统的性能进行正确的分析计算,首先要了解光辐射探测器赖以工作的物理效应、光电转换的基本规律和光辐射探测器的特性参数。 从不同的角度出发可以将光辐射探测器分为不同的类型。按其是否成像可以分为成像型和非成像型辐射探测器,按工作方式可以分为相干探测和非相干探测,按其反应机理可以分为光子探测器和热探测器,按其结构可分为单元和多元探测器,下面就部分类型进行介绍: 热探测器是基于光辐射与物质相互作用的热效应制成的器件。这是一类研究最早并且较早得到实际应用的探测器。由于其中的相当多探测器不需制冷,以及在全部波长上具有平坦响应两大特点,一直有广泛的应用。而另外由于其在红外热辐射领域具有较好的大气传输特性,因此,红外热辐射的探测近年已经成为军事及民用发展的重要方向。 2红外热成像技术 红外热成像技术最早在军事领域得到广泛应用,并且已经成为军事应用中具有重要战略地位的高新技术手段。除此之外,红外成像技术还应用于各个方面,比如:应用于卫星的侦查、遥感和预警,对国家安全和经济利益有重大的影响;应用于战场系统中,避免电磁干扰,获取战场信息优势,成为获得胜利的主要技术;服务于飞机、舰艇、车辆的夜间导航与侦查,现代装备大部分装有红外仪器;应用于导弹的精确制导方面,成为重要反坦克导弹和肩射地空导弹发射的热瞄具;广泛应用于海上巡逻与救援、编队航行等方面。 红外热成像技术还应用于国民经济领域。航天系统中,利用气象卫星等设备进行天气预报,对国民经济有重大影响。热成像技术不仅能够在灾难发生后进行生命的探测,而且还可以预报地震的发生,利用卫星的红外云图可以发现,地震之前,震区的上空空气的温度会急剧升高,可以判断出这片区域的异常以进行预测。在工业领域,已应用于输电线、变压器等装置的带电检测和检查炉体的温度分布。在飞机、轮船、汽车方面的安装,避免了雾天的相撞事故的发生,保证了夜间的行车安全。随着热成像技术水平的不断提高和科学技术不断发展,必将能应用于更多新领域[2]。 灾后现场环境极为复杂,传统的光学探生仪和声波/振动探生仪极易受到现

核辐射探测习题解答2

第七章作业答案 1.设测量样品的平均计数率是5计数/s,使用泊松分布公式确定在任1s 内得到计数小于或等于2个的概率。 解: 5152 5(,)!5(0;5)0.00670!5(0;5)0.03371! 5(0;5)0.08422! N N r r r r N P N N e N P e P e P e ----=?=?==?==?= 在1秒内小于或等于2的概率为: (0;5)(1;5)(2;5)0.00670.03370.08420.1246r r r P P P ++=++= 2.若某时间内的真计数值是100,求得到计数为104的概率。 解: 高斯概率密度函数为: 2 22220.012102()2(100104)4(;,)100,10 104 (104;100;10)0.0145 N N P N N e N N P e e σσσ?-----======== 5.本底计数率n b =15计数/min,测量样品计数率n 0=60计数/min,试求对给定的测 量时间t b +t s 来说净计数率精确度最高时的最优比值t b /t s ;若净计数率的误差为 5%,t b 和t s 的最小值是多少? 解: 2:2:1 s b s b t t t t ==== 若要使净计数率的误差为5% 1122222211222222()60(6015)17.778().(6015).(5%) ()15(6015)8.889().(6015).(5%)s s s s b s s b n b s b b s b n n n n t n n n n n t n n δδ+?+?===--+?+?= ==-- 6.为了探测α粒子,有两种探测器可以选择,一种的本底为7计数/min,效率为0.02;另一种的本底为3计数/min,效率为0.016,对于低水平测量工作,应选用

24G毫米波雷达在机车测距及避撞应用的探索

24G毫米波雷达在机车测距及避撞应用的探索 最近接到一个项目,需要在机车上设计一款雷达产品,主要用于轨道交通 方面的机车测距和避撞。在网上搜寻了一段时间,可以选择的有激光雷达、超 声波雷达、红外雷达和毫米波雷达。对比了各个雷达的特点,激光雷达具有探 测距离远,探测精确的特点,但是容易受到雨雾,特别是下雪和粉尘的干扰, 这个在轨道交通行业中适应性不是很好。超声和红外雷达,具有价格低,设计 简单的优点,但是同样容易受到温度变化的影响,在南方和北方会有很大的差别,另外探测的距离也有限。毫米波雷达探测的介质是电磁波,具有探测距离远、穿透能力强、环境适应性强以及实时性好等优点,尤其是波长较短者。 俗话说万事开头难!在搜寻了各大厂商的方案之后,最终选择了UMS 的 24G 雷达方案,选择这个方案有几点好处: 1)方案比较灵活,可以选择集成度高、设计相对简单的单发双收的雷达芯片。也可利用分立器件自由组合出多个收发结合的方案,这样可以探测更加精 准和扩展更广阔的探测范围。 2)拥有业界唯一的GaAs 工艺,工作温度范围为-40 度125 度,适用于机车工作环境。 3)开发工具和参考资料比较齐全。 在笔者的项目中,选择的是集成度较高的单芯片方案CHC2442-QPG。从图1 CHC2442-QPG 的内部架构,可以看出其内部集成了低噪声的VCO、Tx PA、混频器、接收LNA 和中频放大器等核心功能。只需加上DSP 处理单元就可以 完成雷达的功能设计。如图2 UMS 机车24G 雷达模块原理框图所示,雷达模块支持单发双收和一路视频,与车载控制单元之间通过CAN 总线以及以太网 进行通讯。

核辐射物理与探测学课后习题

第一章 原子核的基本性质 1-1 当电子的速度为18105.2-?ms 时,它的动能和总能量各为多少? 1-2 将α粒子的速度加速至光速的0.95时,α粒子的质量为多少? 1-5 已知()()92,23847.309,92,23950.574MeV MeV ?=?= ()()92,23540.921,92,23642.446MeV MeV ?=?= 试计算239U ,236U 最后一个中子的结合能。 1-8 利用结合能半经验公式,计算U U 239236,最后一个中子的结合能,并与1-5式的结果进行比较。 第二章 原子核的放射性 2.1经多少半衰期以后,放射性核素的活度可以减少至原来的3%,1%,0.5%,0.01%? 2.7 人体内含%18的C 和%2.0%的K 。已知天然条件下C C 1214与的原子数之比为12102.1,C 14的573021=T 年;K 40的天然丰度为%0118.0,其半衰期a T 911026.1?=。求体重为Kg 75的人体内的总放射性活度。 2-8 已知Sr 90按下式衰变: Zr Y Sr h a 90 64,901.28,90??→????→?--ββ(稳定) 试计算纯Sr 90放置多常时间,其放射性活度刚好与Y 90的相等。 2-11 31000 cm 海水含有g 4.0K 和g 6108.1-?U 。假定后者与其子体达平衡,试计算31000 cm 海水的放射性活度。 第三章 原子核的衰变 3.1 实验测得 Ra 226 的α能谱精细结构由()%95785.41MeV T =α和()%5602.42 MeV T =α两种α粒子组成,试计算如下内容并作出Ra 226衰变网图(简图) (1)子体Rn 222核的反冲能; (2)Ra 226的衰变能; (3)激发态Rn 222发射的γ光子的能量。 3.2 比较下列核衰变过程的衰变能和库仑位垒高度: Th He U 2304234+→; Rn C U 22212234+→; Po O U 21816234+→。

辐射探测器

工作原理:辐射探测器的工作原理基于粒子与物质的相互作用。当粒子通过某种物质时,这种物质就吸收其全部或部分能量而产生电离或激发作用。 如果粒子是带电的,其电磁场与物质中原子的轨道电子直接相互作用。(库仑力) 如果是γ射线或X射线,则先经过一些中间过程,发生光电效应、康普顿效应或产生电子对,把部分或全部能量传给物质的轨道电子(二次电子),再产生电离或激发。 对于不带电的中性粒子,例如中子,则是通过核反应产生带电粒子,然后造成电离或激发。 辐射探测器就是用适当的探测介质作为与粒子作用的物质,将粒子在探测介质中产生的电离或激发,转变为各种形式的直接或间接可为人们感官所能接受的信息。探测器接收到入射粒子后,立即给出相应的电信号,经过电子线路放大、处理,就可以进行记录和分析。 工作过程: 入射粒子射入探测器,与探测器中的介质作用致使其激发或电离,在这个过程中入射粒子的能量发生损耗,这部分能量称为沉积能量,探测器通过某种机制将沉积能量转化为输出信号,从而反映辐射信息。 如果入射粒子不带电(如γ射线、X射线、中子),则利用其与探测介质作用产生二级电子或重带电粒子,从而实现能量的沉积。

入射带电粒子与物质原子的轨道电子发生库仑相互作用而损失能量,轨道电子获得能量。 ? 电离:电离的结果形成一对正离子和自由电子。若内壳层电子被电离后,该壳层留 下空穴,外层电子跃迁来填补,同时放出特征x 射线或俄歇电子。 ? 激发:当电子获得能量较少,不足以克服原子核的束缚成为自由电子,将跃迁到较 高的能级。处于激发态的原子不稳定,作短暂停留后,将从激发态跃迁回到基态,退激时,释放的能量以荧光的形式发射出来。 利用电离或激发效应来记录入射粒子是绝大多数探测器的物理基础。它们的差别在于记录方式不同,大致分为: (1) 收集电离电荷的探测器主要收集电离效应产生的大量正负离子,记录它们 的电荷所形成的电压或电流脉冲。这类探测器必须加上适当的工作电压,形成电场以有效收集电荷。如气体探测器、半导体探测器。 (2) 收集荧光的探测器被带电粒子激发的原子退激时发出荧光。由于荧光很弱, 需要通过一定的转换放大,即把光脉冲转换成较大的电脉冲——光电倍增管。如闪烁计数器等。 γ射线探测基本原理: γ射线与物质的相互作用主要有三个过程:光电效应、康普顿散射和电子对效应。在三种效应中,每个γ光子都是在一次作用中就损失其全部能量或相当大部分能量,并发射出电子。正是这些电子使得探测γ射线成为可能。 中子探测基本原理: 中子与物质相互作用主要是中子与原子核的强相互作用,即核反应。探测中子就是探测中子与原子核核反应产生的次级粒子。 ? 核反冲法是记录中子与原子核弹性散射后的反冲核。反冲核具有电荷,可以作为带 电粒子记录。记录了反冲核,就探测到中子。该方法主要用于探测快中子。 反冲核越小获得的能量越,实际中测量沿入射中子束方向张角为±10度的反冲质子,此时探测器接收到的质子数较多,反冲质子的能量粗略地等于入射中子能量。 核反冲法探测中子时应选择轻核物质做靶材料。 ? 核反应法主要用于测量慢中子通量。 a(入射粒子)+A(靶核)→b(出射粒子)+B(剩余核) 都是放热反应,反应放出的能量变成次级粒子的动能。σ0是热中子的反应截面,都 很大。实际应用最广的是反应。因为硼材料比较容易得到,气态可选用BF 3气体,固态有氧化硼、碳化硼等。天然硼中10B 含量较高,易浓缩。 ? 核裂变法就是通过记录中子与重核作用产生的裂变碎片来探测中子的方法。裂变放 出能量200MeV ,两个裂变碎片带走170MeV 的能量。入射中子能量远小于它,故该法不能测量中子能量,主要测中子通量。 224cos ()n n n m M E E m M ?=+反冲2224cos cos (1)n n A E E E A ?α?∴==+反冲333300.764532710(,)n He p T MeV He n p T σ+→++±,=靶, 636304.7809414,)n Li T MeV Li n T ασα+→++=±,靶, (10710702.79238379,)n B Li MeV B n Li ασα+→++±,=靶, (107(,)B n Li α

核辐射测量数据处理习题及答案

核数据处理理论知识 核辐射测量数据特征:随机性(被测对象测量过程)局限性混合型空间性 数据分类:测量型计数型级序型状态型名义型 精度:精密度正确度准确度 统计误差:核辐射测量中,待测物理量本身就是一个随机变量。准确值为无限次测量的平均值, 实际测量为有限次,把样本的平均值作为真平均值,因此存在误差。 变量分类:(原始组合变换)变量 误差来源:(设备方法人员环境被测对象)误差 误差分类:系统误差随机误差统计误差粗大误差 放射性测量统计误差的规律答:各次测量值围绕平均值涨落二项分布泊松分布高斯分布 精度的计算,提高测量精度的方法?答:采用灵敏度高的探测器增加放射源强度增加测量次数延长测量时间减少测量时本底计数 放射性测量中的统计误差与一般测量的误差的异同点?答:不同点:测量对象是随机的,核衰变本身具有统计性,放射性测量数据间相差可能很大。测量过程中存在各种随机因素影响。相同点:测量都存在误差。 样本的集中性统计量?答:算术平均值几何平均值中位数众数(最大频数) 样本的离散性统计量?答:极差方差变异系数或然系数算术平均误差 单变量的线性变换方法?答: 1.标准化变换 2.极差变换 3.均匀化变换 4.均方差变换 单变量的正态化变换方法?答:标准化变化角度变换平方根变换对数变换 数据网格化变换的目的?答: 1.把不规则的网点变为规则网点 2.网格加密 数据网格变换的方法?答: 1.插值法(拉格朗日插值三次样条插值距离导数法方位法) 2.曲面拟合法(趋势面拟合法趋势面和残差叠加法加权最小二乘拟合法) 边界扩充的方法有哪些?答:拉格朗日外推法余弦尖灭法偶开拓法直接扩充法补零法 核数据检验目的: 1.帮助检查测量系统的工作和测量条件是否正常和稳定,判断测量除统计误差外是否存在其它的随机误差或系统误差 2.确定测量数据之间的差异是统计涨落引起的,还是测量对象或条件确实发生了变化引起的 变量选择的数学方法:几何作图法(点聚图数轴)相关法(简单相关系数逐步回归分析秩相关 系数)秩和检验法 谱数据处理—问答题谱的两大特点?答: 1.放射性核素与辐射的能量间存在一一对应关系 2.放射性核素含量和辐射强度成正比 谱光滑的意义是什么?方法有哪些?答:意义 1.由于核衰变及测量的统计性,当计数较小时, 计数的统计涨落比较大,计数最多的一道不一定是高斯分布的期望,真正峰被湮没在统计涨落中2.为了在统计涨落的影响下,能可靠的识别峰的存在,并准确确定峰的位置和能量,从而完成定 性分析,就需要谱光滑 3.由于散射的影响,峰边界受统计涨落较大,需要谱光滑方法算术滑动平均法重心法多项式最小二乘法其他(傅里叶变换法) 寻峰的方法有哪些?答:简单比较法导数法对称零面积变换法二阶插值多项式计算峰位法 重心法拟合二次多项式计算峰位法 峰面积计算的意义和方法?答: 1)峰面积的计算是定量分析的基础。2)知道了特征峰的净峰面积,就可以计算目标元素的含量线性本底法(科沃尔沃森 Sterlinski )峰面积法单峰曲面拟合法 谱的定性分析、定量分析的内容?答:定性:确定产生放射性的核素或元素定量:峰边界的确定峰面积计算重锋分析含量计算 核辐射测量特点:核辐射是核衰变的产物核辐射的能量具有特征性核素的含量与特征辐射的

毫米波雷达技术及其发展趋势

1.引言 毫米波的工作频率介于微波和光之间,因此兼有两者的优点。它具有以下主要特点: 1)极宽的带宽。通常认为毫米波频率范围为26.5~300GHz,带 宽高达273.5GHz。超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达 135GHz,为微波以下各波段带宽之和的5 倍。这在频率资源紧张的今天无疑极具吸引力。 2)波束窄。在相同天线尺寸下毫米波的波束要比微波的波束 窄得多。例如一个 12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波速宽度仅1.8度。因此可以分辨相距更近的小目标或者更为清晰 地观察目标的细节。 3)与激光相比,毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。 4)和微波相比,毫米波元器件的尺寸要小得多。因 此毫米波系统更容易小型化。由于毫米波的这些特点,加上在电子对抗中扩展频段是取得成功的重要手段。毫米波技术和应用得到了迅速的发展。 2.毫米波技术的应用 表面上看来毫米波系统和微波系统的应用范围大致是一样的。但实际上两者的性能有很大的差异,优缺点正好相反。因此毫米波系统经常和微波系统一起组成性能 互补的系统。下面分述各种应用的进展情况。 2.1毫米波雷达 毫米波雷达的优点是角分辨率高、频带宽因而有利于采用脉冲压缩技术、多普勒颇移大和系统的体积小。缺点是由于大气吸收较大,当需要大作用距离时所需的发 射功率及天线增益都比微波系统高。下面是一些典型的应用实例。 2.1.1 空间目标识别雷达它们的特点是使用大型天线以得到成像所需的角分辨率和足够高的天线增益,使用大功率发射机以保证作用距离。例如一部工作 于35GHz的空间目标识别雷达其天线直径达36m。用行波管提供10kw的发射功率,可以拍摄远在16,000km处的卫星的照片。一部工作于 94GHz的空间目标识别雷达的天线直径为13.5m。当用回族管提供20kw的发射功率时,可以对14400km 远处的目标进行高分辨率摄像。 2.1.2汽车防撞雷达因其作用距离不需要很远,故发射机的输出功率不需要很高,但要求有很高的距离分辨率(达到米级),同时要能测速,且雷达的体积 要尽可能小。所以采用以固态振荡器作为发射机的毫米波脉冲多普勒雷达。采用脉冲压缩技术将脉宽压缩到纳秒级,大大提高了距离分辨率。利用毫米波多普勒颇 移大的特点得到精确的速度值。 2.1.3直升飞机防控雷达现代直升飞机的空难事故中,飞机与高压架空电缆相撞造成的事故占了相当高的比率。因此直升飞机防控雷达必须能发现线径较细 的高压架空电缆,需要采用分辨率较高的短波长雷达,实际多用3mm雷达。 2.1.4精密跟踪雷达实际的精密跟踪雷达多是双频系统,即一部雷达可同时工作于微波频段(作用距离远而跟踪精度较差)和毫米波频段(跟踪精度高而作

本科核辐射测量方法考题及参考答案

成都理工大学学年 第一学期《核辐射测量方法》考试试题 参考答案与评分标准 一、名词解释(每名词3分,共18分) 1. 探测效率:探测效益率是表征γ射线照射量率与探测器输出脉冲计数之间关系的重要物理参数。 2. 衰变常数:衰变常数是描述放射性核素衰变速度的物理量,指原子核在某一特定状态下,经历核自发跃迁的概率。 3. 吸收剂量:电力辐射授予某一点处单位质量物质的能量的期望值。D=dE/dm,吸收剂量单位为戈瑞(Gy)。 4. 平均电离能:在物质中产生一个离子对所需要的平均能量。 5. 放射性活度:表征放射性核素特征的物理量,单位时间内处于特定能态的一定量的核素发生自发核转变数的期望值。A=dN/dt。 6.碰撞阻止本领:带电粒子通过物质时,在所经过的单位路程上,由于电离和激发而损失的平均能量。 二、填空题(每空0.5分,共9分) 1.α射线与物质相互作用的主要形式是电离和激发。 2.铀系气态核素是222Rn;其半衰期是 3.825d。 3.用γ能谱测定铀、钍、钾含量,一般选择的γ辐射体是214Bi 、208Tl 和40K;其γ光子的能量分别是 1.76MeV 、 2.62MeV和 1.46MeV。 4.β+衰变的实质是母核中的一个质子转变为中子。 5.放射性活度的单位为:Bq;照射量率的单位为:C/kg*s;能注量率的单位为 W/m2。 6.β射线与物质相互作用方式主要有电离与激发、轫致辐射和弹性散射。

三、简要回答下列问题(每题6分,共36分) 1.简述NaI(Tl)探测器的特征X射线逃逸以及对谱线的影响。 解答:当γ光子在晶体内发生光电效应时,原子的相应壳层上将留一空位,当外层电子补入时,会有特征X射线或俄歇电子发出(3分)。若光电效应发生在靠近晶体表面处时,则改特征X射线有可能逃逸出探测晶体,使入射光子在晶体内沉淀的能量小于光子能量,光子能量与在晶体内沉淀能量即差为特征X射线能量(2分)。因此,使用Na(Tl)晶体做探测器时,碘原子K层特征射线能量为38keV,在测量的γ谱线上将会出一个能量比入射γ射线能量小28keV的碘特征射线逃逸峰(2分)。随着入射射线能量增加和探测晶体体积的增大,NaI(Tl)探测器的特征X射线逃逸峰会逐渐消失。(2分) 2.画出γ能谱仪的基本框图,并说明各个部分的作用。 图(3分) 闪烁体和倍增管是探测器部分,用于将γ射线的能量转化为可以探测的电信号。前置放大器是将信号进行一定倍数的放大。主放大器是将信号转化微可以供多道脉冲幅度分析器使用的信号。多道脉冲幅度分析器将信号转化成数字信号。微机对采集的信号进行软件的处理。(3分) 3.随着入射γ射线能量的变化,γ射线与物质相互作用的主要效应所占比例如何变化? 解答:伽马射线与物质相互作用的主要形式是光电效应、康普顿效应和电子对效应。随着入射伽玛射线能量的变化,三种效应所占比例是不同的。低能光子与物质作用的主要形式是光电效应(2分);随着射线能量增大,光电效应所占比例逐渐降低,康普顿效应所占比例增加,成为射线与物质作用的主要形式(2分)。当入射光子能量大于1.02MeV,将存在形成电子对效应的几率,并随着能量的继续增大,电子对效应所占的比例会逐渐增大;而康普顿效应和光电效应所占比例逐渐降低。电子对效应是高能量光子与物质作用的主要的作用形式。(2分) 4.简述半导体探测器的工作原理。 解答:半导体探测器工作时,在搬半导体P区和N区加反向电压,使空间电荷电场增强。电子和空穴分别向正负两级扩散,使得探测器灵敏区的厚度增大。(3分)当探测的射线进入

辐射探测实验2-实验报告

符合法测量放射源活度实验报告 班级: 姓名: 学号: 一. 实验目的 1、 学习符合测量的基本方法。 2、 学习用符合方法测定60Co 放射源的活度。 二. 实验内容 1、调整符合系统的参量,选定工作条件,观察各级输出信号波形及其时间关系。 2、测量符合装置的分辨时间。 3、用γβ-符合方法测量60Co 级联衰变的放射性活度。 三. 实验原理 符合技术是利用电子学方法在不同探测器的输出脉冲中把有时间关联的事件选择出来。选择同一时刻脉冲的符合称为瞬时符合。选择不同时的,但有一定时间联系的脉冲符合称为延迟符合。相反,排斥同一时刻或有时间关联脉冲的技术就是反符合或延迟反符合。符合法是研究相关事件的一种方法,在核物理与核技术应用的各领域中获得了广泛应用,如测量放射源的活度、研究核反应产物的角分布、激发态的寿命及角关联的测量、测量飞行粒子的能谱,研究宇宙射线和实现多参数测量等。γβ-符合实验装置图如图2-1。 图2-1 γβ-实验装置 脉冲线性定时延迟线性定时延迟符合光电光电塑料跟随器 跟随器 高压电源 发生器高压电源 放大器单道成形 定标器 放大器单道成形 定标器 定标器 电路 示波器 NIM 机箱低压电源 γ 探头 倍增管倍增管 β 探头 闪烁体 NaI 晶体

1、 符合分辨时间τ 探测器的输出脉冲总有一定的宽度,在选择同时事件的脉冲符合时,当从两个探测器输出的脉冲起始时间差别很小,以至于符合装置不能区分它们的时间差别时,就会被当作同时事件而记录下来,即符合装置有一定的时间分辨能力,符合装置所能够区分的最小时间间隔称为符合分辨时间,它的大小与输入脉冲的形状、持续时间、符合电路的性能都有关系。 分辨时间是符合装置的基本参量,它决定了符合装置研究不同事件间的时间关系时所能达到的精确度,对于大量的在时间上互不相关的独立事件来说,只要两个探测器的输出信号偶然地同时发生在τ时间间隔内,这时符合电路也将把它们作为同时事件而输出符合脉冲,但这个事件不是真符合事件,这种不具有相关性的事件之间的符合称为偶然符合。例如某个核在某时刻发生衰变,其β粒子被β探测器记录,但级联的γ没有被γ探测器记录到,然而此时恰好γ探测器记录了另外一个衰变核的γ射线,那么这两个来自于不同原子核衰变的β和γ射线在符合电路中产生的符合就是无时间关联事件的符合,即属于偶然符合。 假定不具有时间关联的两道脉冲均为理想的矩形脉冲,其宽度为τ,偶然符合的计数率和两个输入道的计数率分别为n rc 、n 1和n 2 ,则有 212n n n rc ??=τ 2 12n n n rc = τ (2-1) 显然,减少τ,能够减少偶然符合几率,但由于辐射进入探测器的时间与输出脉冲之间存在统计性的时间离散,当τ太小时,使得某些同时事件的脉冲因前沿离散而时距大于符合电路分辨时间的可能性增加,从而使得真符合丢失的几率增大。 2、 测量符合分辨时间的方法 1) 偶然符合方法测量分辨时间 通过测定偶然符合计数率rc n 和两道各自的计数率1n 和2n ,根据(2-1)式就可以得到符合分辨时间τ。其中两道的计数率应是时间上无关联的粒子在两个探测器中分别引起的计数率;符合道计数率rc n 应纯粹是偶然符合。但实际测量到的符合计数率中还包含有本底符合计数率 b n 。本底符合计数率是由宇宙射线和周围物体中天然放射性核素的级联衰变,以及散射等产生的符合计数所构成。所以实际测量到的符合计数率rc n '为:

核辐射探测复习题第四章半导体探测器答案

1. 小于10-5Ω·cm ;大于1014Ω·cm ;10-2 ~109Ω·cm 。 2. 核辐射粒子射入PN 结区后,通过与半导体的相互作用,损失能量产生电子-空穴对。在 外电场作用下,电子和空穴分别向两极漂移,于是在输出回路中形成信号,当电场足够强时,电子和空穴在结区的复合和俘获可以忽略时,输出信号的幅度与带电粒子在结区消耗的能量成正比。 3. 金硅面垒α半导体探测器;Ge (Li )探测器;Si (Li )探测器;HPGe 探测器;HgI 2探 测器;CdTe 探测器;CdSe 探测器。 4. 扩散型;面垒型;离子注入。 5. PN 结加偏压的目的是:使得PN 结的传导电流很小,相当于PN 结二极管加上反向电压 的情况;内部工作机理是相当于加上反向偏压后P 区中空穴从结区被吸引到接触点,相同的是,N 区中的电子也向结区外移动,那么结区宽度就会变宽。 6. 电荷运动的瞬时涨落。 7. 记录到的脉冲数;入射到探测器灵敏体积内的γ光子数。 8. ε源=π4Ω·ε本征 9. 全能峰内的计数;源发射的γ光子数。 10. 前置放大器与探测器的连接方式有交流耦合和直流耦合两种;其中,交流耦合的优点是 探测器和前置放大器的直流工作点互相隔离,设计简单。缺点是由于探测器负载电阻和耦合电容的存在,增加了分布电容,使得噪声增加,能量分辨率变差。直流耦合的特点是消除了耦合电容和负载电阻对地的分布电容,有效地提高信噪比,对低能X 射线的探测尤为重要。 11. 半导体探测器受强辐射照射一段时间以后性能会逐渐变坏,这种效应称为半导体探测器 的辐射损伤效应。辐射损伤是由于入射粒子通过半导体材料撞击原子产生填隙空位对引起的,它在半导体材料中形成的施主、受主、陷阱等可以作为俘获中心,从而降低载流子的寿命,影响载流子的收集,而且使电阻率发生变化,材料性能变化会使探测器性能变坏。 12. 半导体探测器的优点是: A 电离辐射在半导体介质中产生一对电子、空穴所需能量大约比气体中产生一对电子、离子对少一个数量级,因而电荷数的相对统计涨落也就小很多,能量分辨率高; B 带电粒子在半导体中形成电离密度要比在气体中形成高大约3个数量级,因而具有高空间分辨和快时间响应的探测器。 C 测量电离辐射的能量时,线性范围宽。 半导体探测器的缺点是: A 对辐射损伤效应灵敏,受强辐照后性能变差。 B 常用的Ge 探测器,要在低温条件下工作,使用不便,限制了应用范围。

毫米波相控阵雷达及其应用发展_石星

文章编号:1001-893X(2008)01-0006-07 毫米波相控阵雷达及其应用发展* 石星 (中国西南电子技术研究所,成都610036) 摘要:概述了毫米波相控阵雷达的特点,介绍了电扫原理和主要毫米波电扫技术,以及相位控制扫描和多种移相器技术。针对毫米波相控阵雷达的特点,叙述了其主要应用领域,结合雷达和半导体技术对毫米波相控阵雷达的发展进行了展望。 关键词:毫米波雷达;相控阵雷达;电扫天线;移相器;数字波束形成 中图分类号:TN958.92文献标识码:A M illi m eter-W ave Phased-Array Radar and its Application Progress S H I X i ng (Southw est China I nstitute o f E lectron ic Techno l o gy,Chengdu610036,Ch i n a) Abstract:The characteristics ofM illi m eter-W ave(MMW)Phased-A rray R adar(P AR)are descri b ed, t h e pr i n ciple of electron ica ll y scanned array(ESA)and pri m ary e l e ctronically scanned techn i q ues for MMW array are presented,as w ell as phase-con tro lled scan and phase shifter techn iques.M a i n app lication fields ofMMW P AR are ill u m i n ated and its progress is antici p ated on the basis o f radar and se m iconductor techniques. Key w ords:MMW radar;phased-array radar(PAR);electr onically scanned array(ESA);phase sh ifter; dig ita l bea m for m i n g(DBF) 1概述 随着雷达技术的发展以及不同应用领域日益提高的需要,远距离和高数据率、宽带和高分辨、多目标跟踪和识别、低截获和抗干扰、多功能和高可靠已经成为现代侦察、监视以及火控等雷达的基本要求。毫米波同相控阵雷达的发展和结合应用,在多个方面适应了现代雷达发展的这些需求。 毫米波段(1~10mm)相对应的频率为30~ 300GH z,其低端毗邻厘米波段,具有厘米波段全天候的特点,高端邻接红外波段,具有红外波的高分辨力特点。毫米波雷达波束窄,角分辨力高,频带宽,隐蔽性好,抗干扰能力强,体积小,重量轻。与红外、激光设备相比较,它具有很好的穿透烟、尘、雨、雾的传播特性,具备良好的抗干扰、反隐身、反低空突防和对抗反辐射导弹(/四抗0)的能力。由于受器件功率和大气条件的影响,毫米波雷达的作用距离受到了一定限制,但这并没有妨碍毫米波雷达的广泛应用。 相控阵雷达,特别是有源相控阵雷达,具有波束扫描快、波形变化灵活、功率孔径积大、易于全固态化和轻小型化、可靠性高等特点,容易实现天线共形设计并具备低截获概率和抗干扰的优良性能。自20世纪50年代末问世以来,相控阵雷达在地基、空基、海基和天基雷达中得到广泛的应用。特别是80年代后,砷化镓(Ga A s)等半导体器件的出现极大促进了有源相控阵雷达的迅速发展,有源相控阵雷达大量取代现役的机械扫描雷达,代表了现代雷达的 #6 # *收稿日期:2007-10-18;修回日期:2007-12-28

相关文档
最新文档