数学归纳法习题

数学归纳法习题
数学归纳法习题

数学归纳法

双基训练

*1.用数学归纳法证明(n+1)(n+2)…(n+n)=2n ·1·3·…(2n-1)(n ∈N*)时,从“k 到k+1”左边需增乘的代数式是( )。【2】

(A)2k+1 (B)

2k+1k+1 (C)2(2k+1) (D)2k+3

k+1

*2.用数学归纳法证明:1+12+13+…+n 1

2-1

1)在验证n=2成立时,左式是( )。【2】

(A)1 (B)1+1/2

(C)1+1/2+1/3 (D)1+1/2+1/3+1/4

*3.某个与自然数n 有关的命题,若n=k 时,该命题成立,那么可推得当n=k+1时该命题也成立。现已知当n=5时该命题不成立,那么可推得( )。【2】 (A)当n=6时该命题不成立 (B)当n=6时该命题成立 (C)当n=4时该命题不成立 (D)当n=4时该命题成立 *4.用数学归纳法证明:1-1/2+1/3-1/4+

12n-1-12n =1n+1+1n+2+ (12)

,第一步应验试左

式是 ,右式是 。【2】

*5.若要用数学归纳法证明2n>n 2

(n ∈N*)则仅当n 取值范围是 时不等式才成立。【2】

**6.用数学归纳法证明:1+a+a 2

+…+a n+1

=n+21-a 1-a

(a ≠1)(n ∈N*).【3】

**7.请用数学归纳法证明:1+3+6+…+

n(n+1)2=n(n+1)(n+2)

6

(n ∈N*).【3】 **8.用数学归纳法证明:1(n 2

-1)+2(n 2

-22

)+…+n(n 2

-n 2

)=2n (n-1)(n+1)

4

(n ∈N*).【4】

**9.用数学归纳法证明:1·2·3+2·3·4+…+n(n+1)(n+2)=

n

4(n+1)·( n+2)·(n+3)(n ∈N*).【4】

**10.用数学归纳法证明:1·3+3·5+5·7+…+(2n-1)(2n+1)=2

1n(4n +6n-1)(n N*)3

∈.【4】

**11.用数学归纳法证明:

1111n

++++=(n N*)2446682n(2n+2)4(n+1)???∈???。【4】 **12.用数学归纳法证明:

23n n 122n n+2

++++=2-(n N*)22222

???∈.【4】 **13.用数学归纳法证明:22212n n(n+1)

+++=(n N*)1335(2n-1)(2n+1)2(2n+1)

???∈??【4】

**15.用数学归纳法证明:13

+23

+…+n 3

+3(15

+25

+…+n 5

)=33

n (n+1)2

(n ∈N*)。【5】

**16.用数学归纳法证明:

222222222

3572n+11

++++=1-122334n (n+1)(n+1)

??? (n ∈N*).【4】 **17.用数学归纳法证明:

12

-22

+32

-42

+…+(-1)n-1n 2

=(-1)n-1

·n(n+1)

2

(n ∈N*).【4】 **18.用数学归纳法证明:

1-2+4-8+…+(-1)n-12n-1

=(-1)n-1

·

2n 1

+33

(n ∈N*).【4】 **19.用数学归纳法证明:(1·22

-2·32

)+(3·42

-4·52

)+…

+[(2n-1)(2n)2-2n(2n+1)2

]=-n(n+1)(4n+3) (n ∈N*)【4】 ***20.求证:1+2+…+2n=n(2n+1) (n ∈N*)【4】

***21.求证:1+2+…+(n-1)+n+(n-1)+…+1=n 2

(n ∈N*)【4】 ***22.用数学归纳法证明:1·n+2(n-1)+…+n ·1=n(n+1)(n+2)

6

(n ∈N*)【5】

***23.当n 为正偶数时,求证:

(2)(2)21(1)(3)(1)(3)1

n n n n n n n n n n n --???++???+=-----??? .【5】 ***24.当n>1,n ∈N*时,求证:

1119

12310

n n n ++???+>++【5】 纵向应用

**1.设n 是正奇数,用数学归纳法证明x n +y n

能被x+y 整除时,第二步归纳法假设应写成( )。

【2】

(A)假设n=k(k ≥1)时正确,再推证n=k+2时正确

(B)假设n=2k+1(k ∈N*)时正确,再推证n=2k+3时正确 (C)假设n=2k-1(k ∈N*)时正确,再推证n=2k+1时正确 (D)假设n=k(k ∈N*)时正确,再推证n=k+1时正确 **2.用数学归纳法说明:1+

111(1)2321

n n n ++???+<>-,在第二步证明从n=k 到n=k+1成立时,左边增加的项数是( )。【2】

(A)2k 个 (B)2k -1个 (C)2k-1个 (D)2k

+1个 **3.设凸n 边形的内角和为f(n),凸n+1边形的内角和为f(n+1),则f(n+1)=f(n)+ 。【2】 **4.已知f(x)=

,记f 1(x)=f(x),n ≥2时,f n (x)=f[f n-1(x)],则

f 2(x)= ,f 3(x)= ,f 4(x)= ,由此得f n (x)= .【3】

**5.猜想:1=1,1-4=-(1+2),1-4+9=1+2+3,…第n 个式子为 。【2】

***6.求证:13n N*)

n +

+>≥∈且.【5】 ***7.用数学归纳法证明:对一切大于1的自然数n ,证明:

111(1)(1+)(1+)(n N*)352n-12

+???+>∈【4】

***8.求证:

135(2n-1)>

2462n 2n+1

?????? ∈N*)【4】 ***9.求证:2n

>n 3

,(n ≥10且n ∈N*)【4】

***10.求证:当n ∈N ,用n ≥2时,n n

>1·3·5·…·(2n-1).【4】

***11.用数学归纳法证明:n

n+1()>n!2(n ∈N 且n ≥2)【8】 ***12.用数学归纳法证明:111

1++++<3(n 1,n N)1!2!n!

???≥∈【8】

***13.求证:3,n N)

≥∈【8】 ***14.用数学归纳法证明:n n 1111

1+

1++++n(n N*)22322

≤???≤∈【8】 ***15.用数学归纳法证明:n n n

a +

b a+b ()22

≥(a+b>0,n ∈N*)【8】 ***16.证明:n

1(1+

)

(n ≥3,n ∈N*)【8】

***17.若n a ???求证:2

n n(n+1)(n+1)

( n ∈N*)【8】 ***18.设i a >0,i=1,2,,n,??????,且2n n n a +1

a

【8】 ***19.用数学归纳法证明:sin n n sin αα≤(n ∈N*)【5】 ***20.求证:

***21.求证:

(1)49n+16n-1能被64整除(n∈N*)【4】

(2)(3n+1)7n-1是9的倍数(n∈N*)【4】

(3)1+2+22+…+25n-1能被31整除【4】

(4)62n+3n+2+3n是11的倍数(n∈N*)【5】

***22.求证:

(1)x n-na n-1+(n-1)a n能被(x-a)2整除【8】

(2)m n+2+(m+1)2n+1能被m2+m+1整除(n∈N*)【5】

***23.用数学归纳法证明:三个连续自然数的立方和能被9整除。【5】

***24.用数学归纳法证明:若x+x-1=2cosθ,则x n+x-n=2cosnθ(n∈N*)【6】

***25.用数学归纳法证明:f(n)=n3+3/2n2+1/2n-1为整数(n∈N*)【5】

***26.平面上有n条直线,其中任何两条都不平行,任何三条不共点,求证:n条直线

(1)被分割成n2段;

(2)把平面分成1/2(n2+n+2)部分。【10】

***27.用数学归纳法证明:凸n边形的对角线条数为1/2n(n-3)【5】

***28.平面内有n个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成n2-n+2个部分。【6】

***29.在2与8之间插入n个正数a1,a2,…a n,使这n+2个正数依次成等差数列,又在2与8之间插入n个正数b1,b2,…b n,使这n+2个正数依次成等比数列;设A n=a1+…

+a n,B n=b1·…·b n。

(1)求An及Bn的通项公式。

(2)求使f(n)=3A n+B n-10对任意自然数n都能被m整除的最大自然数m之值。【12】横向拓展

***1.已知函数f1(x)=x-1

x+1

,f n+1(x)=f1[f n(x)](n∈N*),则f30(x)是( )。【3】

(A)x (B)x-1 x

(C)

1

1-x

(D)

1

-

x

***2.已知1+2·3·32+4·33+…+n·3n-1=3n(na-b)+c对于一切n∈N*都成立,那么a、b、c 的值为( )。【2】

(A)a=1/2,b=c=1/4

(B)a=b=c=1/4

(C)a=0,b=c=1/4

(D)不存在这样的a、b、c

***3.楼梯共有n级,每步只能跨上1级或2级,走完该n级楼梯共有f(n)种不同的走法,则f(n)、f(n-1)、f(n-2)的关系为。【2】

***4.用an表示n个篮球队单循环赛的场数,则a n+1=a n+ .【2】

***5.在数列{}n a中,a1=-1,a2=1,a3=-2,若对一切n∈N*有a n·a n+1·a n+2·a n+3=a n+a n+1+a n+2+a n+3且a n+1·a n+2·a n+3≠1,则S4321= 【3】

***6.如图11-1所示,在杨辉三角中,斜线AB上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…记该数列前n项之和为S(n),则S(16)= .【5】

****7.观察下列式子:

32+42=52,102+112+122=132+142,212+222+232+242=252+262+272,362+372+382+392+402=412

+422+432+442

,…,则第n 个式子是 。【5】 ****8.设数列{}n a 满足a 1=0,a 2=1,对于n>2(n ∈N*)有a n =2a n-1-2a n-2,试用数学归纳法证明:

a n =2n-12·sin n-14

л

****9.对于以下数的排列:

2,3,4

3,4,5,6,7, 4,5,6,7,8,9,10 ……

(1)求前三项每行各项之和;

(2)归纳出第n 行各项的和与n 的关系式; (3)用数学归纳法证明(2)中所得的关系式。【10】 ****10.在数列{}n a 中,a n >0,且S n =1/2(a n +

n

1

a ) (1)求a 1、a 2、a 3;

(2)猜测出a n 的关系式并用数学归纳法证明。【10】

****11.在数列{}n a 中,若a 1=cotx,a n =a n-1cosx-sin(n-1)x ,试求通项a n 的表达式且证明。【8】

****12.是否存在自然数m ,使f(n)=(2n+7)·3n

+9对于任意自然数n ∈N*都能被m 整除?若

存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由。【8】 ****13.设f(n)=

111+++n+3n+42n+2???是否存在一个最大的自然数m ,使不等式f(n)>m

72

对n ∈N*恒成立?若不存在,请说明理由;若存在,求出m 之值,并证明该不等式。

【10】

****14.已知数列{}n b 是等差数列,b1=1,b1+b2+…+b10=145。

(1)求数列{}n b 的通项bn (2)设数列{}n a 的通项a n =log a (1+

n

1

b )(其中a>0且a ≠1),记S n 是数列{}n a 的前n 项和,试比较S n 与a n+11log b 3

的大小,并证明你的结论。(1998年全国高考试题)p.200【10】

****15.设a,b ∈N ,两直线l1:y=b=

b x a 与l2:y=b

x a

的交点为P 1(x 1,y 1)且对n ≥2的自然数,两点(0,b),(x n-1,0)的连续与直线y=b

x a

交于点P n (x n ,y n )。

(1)求P 1、P 2的坐标;

(2)猜想P n 并用数学归纳法证明。【10】

****16.如图11-2,设抛物线

x 轴上的点构成正三角形 OP 1Q 1,Q 1P 2Q 2、Q 2P 3Q 3、…,其中Q n 在x 轴上,P n 在抛物线上,设 Q n-1P n Q n 的边长为a n . 求证:a 1+a 2+…+a n =

n(n+1)

3

【10】 ****17.设a>2,给定数列{}n x ,其中x 1=a ,x n+1=2

n n x 2(x -1)

(n=1,2,…),求证:x n >2且

n+1

n

x x <1(n<1,2,3,…)【1.5】 ****18.设a i >0,i=1,2,…,n,且a 1·a 2·…·a n =1,求证:(1+a 1)(1+a 2)·…·(1+a n )≥2n .【10】 ****19.设数列{}n a 满足关系a 1=1,a n +a n-1=2n (n ≥2),数列{}n b 满足关系:b n +a n =(-1)n

1/3。

证明:{}n b 是等比数列。【10】

*****20.已知数列{}n a ,其中a n >0,满足a n

(n=1,2,3,…)

(1)求证:a n <1; (2)求证:当n ≥2时,a n ≤

2

1

(n+2)

.【8】 *****21.正整数列{}n a 定义如下:a 1=2,a 2=7,且-1/2

n a an-1

≤1/2,n ≥2,n ∈N*.求证:对一切n>1,a n 为奇数。【15】

参考答案

双基训练

1.C

2.C

3.C

4.1/2 1/2

5.n ≥5

6.~24.略

纵向应用

1.C

2.A

3.π

4.

5.1-4+9-…

+(-1)n+1

·n 2

=(-1)n+1

·n 2

=(-1)n-1

(1+2+…+n) 6.~28.略 29.(1)A n =5n +10,B n =4n+2

(2)9

横向拓展

1.D

2.A

3.f(n)=f(n-1)+f(n-2)

4.n

5.-4321

6.164

7.

2

n n

222

k=0k=1

(2n+n+k)=(2n+2n+k)

∑∑ 8.略 9.(1)9;25;49 (2)(2n+1)2 (3)略

10.(1)a1=1,a2=-1,a3=-(2)a n=-,证明略11.a n=cos nx sin x

12.m max=36 13.m max=17 14.(1)b n=3n-2 (2)S n>1/3log a b n+1 15.(1)P1(a/2,b/2),P2(a/3,b/3) (2)(a/n+1,b/n+1) 16.~21.略

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

数列数学归纳法测试题

数列 数学归纳法测试题 班级 姓名 得分 . 一、选择题: 1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( ) (A )168 (B ) 156 (C )78 (D ) 152 2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( ) (A )0 (B )100 (C )10000 (D )102400 3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( ) (A )6 (B )5 (C )4 (D )3 4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( ) (A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a = 5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( ) (A )5 (B ) 6 (C )7 (D ) 8 6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( ) (A ) 978 (B ) 557 (C ) 467 (D )以上都不对 7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( ) (A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --= 8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( ) (A )n S >n na >1na (B ) n S 45a a (D ) 36a a ≥45a a 10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( ) (A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3 n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90 n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

数学归纳法例题讲解

数学归纳法例题讲解 例1.用数学归纳法证明: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边3 13 11=?= ,右边3 11 21= += ,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?k k k k . 那么当n =k +1时,有: ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ?? ??????? ??+-++??? ??+--++??? ??-+??? ??-+??? ??-= 321121121121 7151513131121k k k k 3 22 221321121++? =??? ??+-= k k k ()1 1213 21+++= ++= k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ()() 321211 2+++ += k k k k

()() ()()()() 321211232121 322 ++++= ++++= k k k k k k k k ()1 1213 21+++= ++= k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ??? ??=++=+=60 3224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

高中数学高考总复习数学归纳法习题及详解(可编辑修改word版)

A. n -1 B. n +1-1 C. n +1-2 D. n +2-2 高中数学高考总复习数学归纳法习题及详解 一、选择题 1 1 . 已知a = ,数列{a }的前n 项和为S ,已计算得S = 2-1, S = 3-1,S =1, n n +1+ n n n 1 2 3 由此可猜想 S n =( ) [答案] B 1 1 1 1 2.已知 S k = + + + + + +…+ (k =1,2,3,…),则 S k +1 等于( ) k 1 k 2 k 3 2k 1 A. S k + + 2(k 1) 1 1 B. S k + + - + 2k 1 k 1 1 1 C. S k + + - + 2k 1 2k 2 1 1 D. S k + + + + 2k 1 2k 2 [答案] C 1 1 1 1 1 1 1 [解析] S k +1= + + + + + +…+ = + + + + +…+ = + + + (k 1 1 1 1) 1 1 (k 1) 2 1 2(k 1) 1 1 k 2 k 3 2k 2 k 1 +…+ + + + - + + + =S k + + - + . k 2 2k 2k 1 2k 2 k 1 2k 1 2k 2 3. 对于不等式 1°当 n =1 时, n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 12+1≤1+1,不等式成立. 2°假设 n =k (k ∈N *)时不等式成立,即 k 2+k

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

数学归纳法经典例题及答案

数学归纳法(2016.4.21) 令狐采学 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点:两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n=1时,左边31311=?= ,右边3 1121=+=,左边=右边,等式成立. ②假设n=k 时,等式成立,即: ()()1212121751531311+=+-++?+?+?k k k k . 当n=k+1时. 这就说明,当n=k+1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n=1时,左边=1,右边=2.

左边<右边,不等式成立. ②假设n=k 时,不等式成立,即 k k 21 31 21 1<++++ . 那么当n=k+1时, 这就是说,当n=k+1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n=k+1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是 要证明: 1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a0+a1(x -1)+a2(x -1)2+a3(x -1)3+…+an(x -1)n(n ≥2,n ∈N*). (1)当n =5时,求a0+a1+a2+a3+a4+a5的值. (2)设bn =a2 2n -3,Tn =b2+b3+b4+…+bn.试用数学归纳法 证明:当n ≥2时,Tn =n(n +1)(n -1)3. 解:(1)当n =5时, 原等式变为(x +1)5=a0+a1(x -1)+a2(x -1)2+a3(x -1)3+

数学归纳法经典例题及答案

数学归纳法(2016421) 、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值n 0 (如n 0 1或2等)时结论正确; (2)假设当n k (k N , k n °)时结论正确,证明n k 1时结论也正确. 综合(1)、( 2), 注意:数学归纳法使用要点: 两步骤,一结论 、题型归纳: 题型1.证明代数恒等式 用数学归纳法证明: 当n=k+1时. k 1 2k 3 由①、②可知,对一切自然数 n 等式成立. 证明:①n=1时,左边 ②假设n =k 时, 2n 1 1 2n 1 n 2n 1 1 3 等式成立,即: -,右边 3 -,左边=右边,等式成立. 3 2k 1 2k 1 k 2k 1 2k 1 2k 1 2k 1 2k 3 2k 1 2k 1 2k 3 2k 2 2k 1 3k 1 2k 3 2k 1 k 1 2k 1 2k 3 这就说明, 当n=k+1时,等式亦成立,

题型2.证明不等式 11 1 _ 例2 ?证明不等式1 2打(n € N ). V 2 <3 V n 证明:①当n=1时,左边=1,右边=2. 左边 <右边,不等式成立. 那么当n=k+1时, 2 .k 2k 1 2.k 1 这就是说,当n=k+1时,不等式成立. 由①、②可知,原不等式对任意自然数 n 都成立. 说明:这里要注意,当 n=k+1时,要证的目标是 1 1 1 1 ---------------------------------------- 1 — — — ------------ 2 \ k 1,当代入归纟纳假设后,就是要证明: ■. 2 3 . k 、k 1 2、、k 1— 2 k 1 . -k 1 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例 3 (x + 1)n = a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + …+ a n (x — 1)n (n > 2, n € N *). (1)当 n = 5 时,求 a o + a 1 + a 2 + a 3 + a 4 + a 5 的值. a 2 十 ⑵设b n = 2厂3, T n = b 2 + b 3 + b 4+…+ b n .试用数学归纳法证明:当 n 》2时,T n = n(n +1)( n — 1) 3 . 解:(1) 当 n = 5 时, 原等式变为(x + 1)5= a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + a 4(x — 1)4+ a 5(x — 1)5②假设n=k 时,不等式成立,即 1 'I 1 .3 1 . 2 1 ■- 3

高考数学题型全归纳:数列要点讲解(含答案)

数列 一、高考要求 1.理解数列的有关概念,了解递推公式是给出数列的一种方法, 并能根据递推公式写出数列 的前n 项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前 n 项和的公式. 并能运用这些知识来解决一些实际问题. 3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思想方法. 二、热点分析 1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n 项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目. 2.有关数列题的命题趋势(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的 代数推理是近年来高考命题的新热点(2)数列推理题是新出现的命题热点.以往高考常 使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。 (3)加强了数列与极限的综合考查题 3.熟练掌握、灵活运用等差、等比数列的性质。等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如2435 46225a a a a a a ,可以利用等比数列的性质进行转化:从而有2 23355225a a a a ,即235()25a a . 4.对客观题,应注意寻求简捷方法 解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法 5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜

2反证法与数学归纳法

(三)、反证法 反证法证明的主要步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。 【典型例题】 例1、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0 例2、设0 < a, b, c < 1,求证:(1 - a)b, (1 - b)c, (1 - c)a,不可能同时大于41 例3、.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根. 【巩固练习】 1.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( ) A .a ,b ,c 中至少有两个偶数 B .a ,b ,c 中至少有两个偶数或都是奇数 C .a ,b ,c 都是奇数 D .a ,b ,c 都是偶数 2.设a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b ,a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立, 其中正确判断的个数为( )A .0 B .1 C .2 D .3 3.若x 、y 、z 均为实数,且a =x 2-2y + 2π,b =y 2-2z +3π,c =z 2-2x +6 π,求证a 、b 、c 中至少有一个大于零. 4.若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0至少有一个方程有实根。试求实数a 的取值范围。

数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

相关文档
最新文档