现代半导体器件与仿真实验报告

现代半导体器件与仿真实验报告
现代半导体器件与仿真实验报告

现代半导体器件与仿真作业实验报告

实验1:利用模型仿真电容性能

1.实验目的:建立模型仿真电容性能,掌握电容。

2.实验要求:利用pspice建立模型仿真电容性能。

3. 实验步骤:

Step1:打开pspice,建立新文档,输入代码,建立模型,设置VC1,VC2,TC1,TC2(电容的一阶二阶电压,温度系数)为0.001,0.002,0.005,0.015,以及电容倍乘系数为1.5。

Step2:保存文档文件为XXXXX.cir文件,并运行,模拟run。

Step3:打开图表,观察各个曲线,与预期结果进行对比分析。

(电流随时间变化)

(电容两端电压随时间的变化)

4.实验心得:通过对电容模型的模拟仿真,基本熟练掌握利用pspice建立电子元件并进行仿真观察其电路特性,对电容的电路特性也有了更为直观的了解。

实验2:自建电容模型并仿真电容性能

1.实验目的:建立电容模型,仿真电容性能。

2.实验要求:建立电容模型并在pspice中仿真电容性能。

3.实验过程:

Step1:输入代码:

******CAPMODEL******

*****************

.subckt differs 1 3

Rin 1 0 1MEG

E1 5 0 1 0 1

Ctime 5 6 0.25N

Rtime 6 7 1K

R2 6 0 1G

E2 7 0 6 0 -1G

Eout 8 0 7 0 1

R3 3 0 1G

Rout 8 3 1K

.ends differs

*****************

.subckt cpip n1 n2 PARAMS:l=10u w=10u pt=27

.param ere0=1.0996e-12 tox=1.0e-6

.param ptc1=2.09e-05 ptc2=3.72e-08 pvc1=-7.72e-05 pvc2=-9.12e-06 .param tfac={1.0+ptc1*(pt-25.0)+ptc2*(pt-25.0)*(pt-25.0)}

E1 vfac 0 value={1+pvc1*(v(n2,n1))+pvc2*v(n2,n1)*v(n2,n1)}

*R2 vfac 0 100meg

E2 cvalue 0 value={ere0*l*w/tox*V(vfac)*tfac}

*R3 cvalue 0 100meg

E3 n3 0 n1 n2 1

X00 n3 n4 differs

R1 n4 0 100MEG

Gvalue n1 n2 value={V(cvalue,0)*V(n4,0)}

.ends cpip

***********************************

X01 1 0 cpip PARAMS:l=20u w=20u pt=27

VCC 1 0 PULSE(0 1 0 0 0 1ms 2ms)

.TRAN 0 10ms

.OP

.PROBE

.end

Step2:另存为cir文件,在pspice中打开,点击运行。

Step3:做出曲线并且和时机曲线对比分析。

V(1)曲线

I(X01:2)曲线

实验3:建立隧道二极管模型,仿真隧道二极管I-V特性

1.实验目的:仿真隧道二极管Iv特性

2.实验要求:利用pspice自建隧道2级管模型,仿真隧道二极管I-V特性。

3.实验步骤:

Step1:打开pspice输入代码:

*******************test3**************

*************************************

.subckt RTD 1 2

.param: Ip=5mA Is=1e-14A Up=50mV n=1 VT=0.026

G1 1 2 value={Ip=(V(1,2)/Up)*(exp(1-V(1,2)/(n*Vt)))}

G2 1 2 value={Is*(exp(V(1,2)/(n*Vt))-1)}

.ends

**************************************

V1 1 0

R1 1 2 500

X1 2 0 RTD

.PROBE

.DC LIN V1 0 2 0.01

.OP

.END

Step2:另存为cir格式并保存,再在pspcie中打开,运行

Step3:打开图表,并与实际情况进行对比分析:

I(X1,G1)

I(X1,G2)

I(X1:1)

V(1)V(2)

半导体专业实验补充silvaco器件仿真..

实验2 PN结二极管特性仿真 1、实验内容 (1)PN结穿通二极管正向I-V特性、反向击穿特性、反向恢复特性等仿真。 (2)结构和参数:PN结穿通二极管的结构如图1所示,两端高掺杂,n-为耐压层,低掺杂,具体参数:器件宽度4μm,器件长度20μm,耐压层厚度16μm,p+区厚度2μm,n+区厚度2μm。掺杂浓度:p+区浓度为1×1019cm-3,n+区浓度为1×1019cm-3,耐压层参考浓度为5×1015 cm-3。 图1 普通耐压层功率二极管结构 2、实验要求 (1)掌握器件工艺仿真和电气性能仿真程序的设计 (2)掌握普通耐压层击穿电压与耐压层厚度、浓度的关系。 3、实验过程 #启动Athena go athena #器件结构网格划分; line x loc=0.0 spac= 0.4 line x loc=4.0 spac= 0.4 line y loc=0.0 spac=0.5 line y loc=2.0 spac=0.1 line y loc=10 spac=0.5 line y loc=18 spac=0.1 line y loc=20 spac=0.5 #初始化Si衬底; init silicon c.phos=5e15 orientation=100 two.d #沉积铝; deposit alum thick=1.1 div=10 #电极设置 electrode name=anode x=1 electrode name=cathode backside #输出结构图 structure outf=cb0.str tonyplot cb0.str #启动Atlas go atlas #结构描述

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

华科电力电子实验报告

电气11级 《信号与控制综合实验》课程 电力电子部分实验报告 姓名学专业班 同组学号专业班号 同组者 实验评分表

基本实验实验编号名称/内容实验分值评分 PWM信号的生成和PWM控制的实现 DC/DC PWM升压降压变换电路性能的研究 三相桥式相控整流电路性能的研究 DC/AC单相桥式SPWM逆变电路性能的研 究 设计性实验实验名称/内容实验分值评分 实验三十九信号的调制—SPWM信号 的产生与实现 教师评价意见总分 目录

实验二十八 PWM信号的生成和PWM控制的现 (4) 实验二十九 DC/DC—PWM升压、降压变换电路性能研究 (11) 实验三十三相桥式相控整流电路性能研究 (14) 实验三十一DC/AC单相桥式SPWM逆变电路性能研究 (23) 实验三十九信号的调制—SPWM信号的产生与实现 (32) 实验心得 (40)

实验二十八 PWM信号的生成和PWM控制的实现 一.实验目的 分析并验证基于集成PWM控制芯片TL494的PWM控制电路的基本功能,从而掌握PWM 控制芯片的工作原理和外围电路设计方法。 二.实验原理 PWM控制的基本原理:将宽度变化而频率不变的的脉冲作为电力电子变换器电路中的开关管驱动信号,控制开关管的适时、适式的通断;而脉冲宽度的变化与变换器的输出反馈有着密切的联系,当输出变化时,通过输出反馈调节开关管脉冲驱动信号,调节驱动脉冲的宽度,进而改变开关管在每个周期中的导通时间,以此来抵消输出电压的变化,从而满足电能变换的需要。 本实验中采用实验室中已有的PWM控制芯片TL494来完成实验,当然在进行具体的PWM控制之前,我们必须要详细的了解和认识该控制芯片的工作原理和方式,如何输出?输出地双路信号存在怎样的关系?参考信号是如何形成的?反馈信号是如何加载到控制芯片上,同时又是如何以此反馈信号来完成输出反馈的?另外我们也必须了解和认识到对不同开关管进行驱动时,为保证开关管的完全可关断,保证电路的正常可靠工作,死区时间的控制方式。最后我们也要了解为防止电力电子变换器在突然启动时,若开放较宽脉冲而带来的较大冲击电流的影响(和会给整个电路带来许多不利影响),控制芯片要采用“软启动”的方式,这也是本实验中认识的一个重点。 三.实验内容 (1)考察开关频率为20kHz,单路输出时,集成电路的软启动功能。 (2)考察开关频率为20kHz,单路输出时,集成电路的反馈电压Vf对输出脉宽的影响。(3)考察开关频率为20kHz,单路输出时,集成电路的反馈电流If对输出脉宽的影响。(4)考察开关频率为20kHz,单路输出时,集成电路的保护封锁功能 (5)考察开关频率为20kHz,单路输出时,集成电路死区电压对输出脉宽的影响。 四.实验步骤 本实验采用单路输出,将端口13接地。 1.PWM脉宽调节:软启动后,在V1端口施加电压作为反馈信号Vf,给定信号Vg=2.5v,改变V1端口电压大小,即可改变V3,从而改变输出信号的脉宽。V3越大,K越大,C=J+K越大,脉宽越小;反之脉宽越大。记录不同V1下的输出波形并与预计实验结果比较。 2.软启动波形:为防止变换器启动时较大的冲击电流,控制芯片TL494和其他控制芯片相似也采用了软启动。在启动时,为防止变换器冲击电流的出现,驱动脉宽应从零开始增大,逐渐变宽到工作所需宽度。本实验中此功能由脉冲封锁端口电位的逐渐开放来实现,电位又打逐渐变小,便可实现软启动。为对控制芯片的该控制过程有更明确和清晰的认识,我们可以观察芯片启动过程中“启动和保护端口4”(TP3)的电压波形变化并与实验前预测进行比较。

实验六 半导体器件仿真实

实验六半导体器件仿真实验 姓名:林少明专业:微电子学学号11342047 【实验目的】 1、理解半导体器件仿真的原理,掌握Silvaco TCAD 工具器件结构描述流程及特 性仿真流程; 2、理解器件结构参数和工艺参数变化对主要电学特性的影响。 【实验原理】 1. MOSFET 基本工作原理(以增强型NMOSFET 为例): 图 1 MOSFET 结构图及其夹断特性 当外加栅压为0 时,P 区将N+源漏区隔开,相当于两个背对背PN 结,即使在源漏之间加上一定电压,也只有微小的反向电流,可忽略不计。当栅极加有正向电压时,P 型区表面将出现耗尽层,随着V GS的增加,半导体表面会由耗尽层转为反型。当V GS>V T时,表面就会形成N 型反型沟道。这时,在漏源电压V DS的作用下,沟道中将会有漏源电流通过。当V DS一定时,V GS越高,沟道越厚,沟道电流则越大。

2. MOSFET 转移特性 V DS 恒定时,栅源电压 V GS 和漏源电流 I DS 的关系曲线即是 MOSFET 的转移特性。 对于增强型 NMOSFET ,在一定的 V DS 下, V GS =0 时, I DS =0;只有 V GS >V T 时,才有 I DS >0。图 2 为增强型 NMOSFET 的转移特性曲线。 图 2 增强型 NMOSFET 的转移特性曲线 图中转折点位置处的 V GS (th ) 值为阈值电压。 3. MOSFET 的输出特性 对于 NMOS 器件,可以证明漏源电流: 令n = ox WC L μβ,称β为增益因子。 (1)()DS GS T V V V <<- 由于 V DS 很小,忽略2DS V 项,可得:

现代控制理论实验

华北电力大学 实验报告| | 实验名称状态空间模型分析 课程名称现代控制理论 | | 专业班级:自动化1201 学生姓名:马铭远 学号:2 成绩: 指导教师:刘鑫屏实验日期:4月25日

状态空间模型分析 一、实验目的 1.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验仪器与软件 1. MATLAB7.6 环境 三、实验内容 1 、模型转换 图 1、模型转换示意图及所用命令 传递函数一般形式: MATLAB 表示为: G=tf(num,den),,其中 num,den 分别是上式中分子,分母系数矩阵。 零极点形式: MATLAB 表示为:G=zpk(Z,P,K) ,其中 Z,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。 传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN); 状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第 iu 个输入量求传递函数;对单输入 iu 为 1。

例1:已知系统的传递函数为G(S)= 2 2 3 24 11611 s s s s s ++ +++ ,利用matlab将传递函数 和状态空间相互转换。 解:1.传递函数转换为状态空间模型: NUM=[1 2 4];DEN=[1 11 6 11]; [A,B,C,D] = tf2ss(NUM,DEN) 2.状态空间模型转换为传递函数: A=[-11 -6 -11;1 0 0;0 1 0];B=[1;0;0];C=[1 2 4];D=[0];iu=1; [NUM,DEN] = ss2tf(A,B,C,D,iu); G=tf(NUM,DEN) 2 、状态方程状态解和输出解 单位阶跃输入作用下的状态响应: G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应 [y,t,x]=initial(G,x0)其中,x0 为状态初值。

电力电子技术matl新编仿真实验报告

电力电子技术m a t l新编仿真实验报告 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

上海电机学院卢昌钰 BG0801 10号 1.单相半波可控整流电路 (1)电阻性负载(R=1欧姆,U2=220V,α=30°) 接线图 电阻性负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入电压与输出电压波形 (2)阻感负载(R=1欧姆,L=,U2=220V,α=30°) 接线图 阻感负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入电压与输出电压波形 (3)阻感负载+续流二极管(R=1欧姆,L=,U2=220V,α=30°)有问题 接线图 阻感负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入与输出电压波形 2.单相桥式全控整流电路

(1)电阻性负载(R=1欧姆,U2=220V,α=60°) 电阻性负载电路图搭建 电阻负载输入电压和输出电压对比 电阻负载直流电压和电流波形 电阻负载时晶闸管T1的波形 电流i2的曲线 (2)电感性负载(R=1欧姆,L=,α=60°,U2=220V,) 阻感负载电路图搭建 阻感负载电压输入与输出波形 阻感负载输出电流id 阻感负载输出电压ud 阻感负载交变时的电流i2

阻感负载交变时的电压u2 阻感负载VT1的电压波形 (3)电感性负载+续流二极管(R=1欧姆,L=,α=60°,U2=220V,) 电感性负载+续流二极管接线图 输入和输出电压波形 负载电流 负载电压 二次侧电流 晶闸管两端电压 3.单相桥式半空整流电路 (1)电阻负载(R=1欧姆,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管电压,二极管电压,二 极管电流波形图 (2)阻感负载(R=1欧姆,L=,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管电压,二极管电压,二 极管电流波形图 (3)阻感负载+续流二极管(R=1欧姆,L=,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管VT1电压,二极管VD4 电压,二极管VD4电流波形图

现代控制理论实验报告

现代控制理论实验报告

实验一系统能控性与能观性分析 一、实验目的 1.理解系统的能控和可观性。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台; 三、实验容 二阶系统能控性和能观性的分析 四、实验原理 系统的能控性是指输入信号u对各状态变量x的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。 对于图21-1所示的电路系统,设iL和uc分别为系统的两个状态变量,如果电桥中 则输入电压ur能控制iL和uc状态变量的变化,此时,状态是能控的。反之,当 时,电桥中的A点和B点的电位始终相等,因而uc不受输入ur的控制,ur只能改变iL的大小,故系统不能控。 系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间根据系统的输出能唯一地确定系统的初始状态,则称系统能观。为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式: 平衡时:

由式(2)可知,状态变量iL和uc没有耦合关系,外施信号u只能控制iL的变化,不会改变uc的大小,所以uc不能控。基于输出是uc,而uc与iL无关连,即输出uc中不含有iL的信息,因此对uc的检测不能确定iL。反之式(1)中iL与uc有耦合关系,即ur的改变将同时控制iL和uc的大小。由于iL与uc的耦合关系,因而输出uc的检测,能得到iL 的信息,即根据uc的观测能确定iL(ω) 五、实验步骤 1.用2号导线将该单元中的一端接到阶跃信号发生器中输出2上,另一端接到地上。将阶跃信号发生器选择负输出。 2.将短路帽接到2K处,调节RP2,将Uab和Ucd的数据填在下面的表格中。然后将阶跃信号发生器选择正输出使调节RP1,记录Uab和Ucd。此时为非能控系统,Uab和Ucd没有关系(Ucd始终为0)。 3.将短路帽分别接到1K、3K处,重复上面的实验。 六、实验结果 表20-1Uab与Ucd的关系 Uab Ucd

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

电力电子仿真仿真实验报告

目录 实验一:常用电力电子器件特性测试 (3) (一)实验目的: (3) 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; (3) 掌握各器件的参数设置方法,以及对触发信号的要求。 (3) (二)实验原理 (3) (三)实验内容 (3) (四)实验过程与结果分析 (3) 1.仿真系统 (3) 2.仿真参数 (4) 3.仿真波形与分析 (4) 4.结论 (10) 实验二:可控整流电路 (11) (一)实验目的 (11) (二)实验原理 (11) (三)实验内容 (11) (四)实验过程与结果分析 (12) 1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例 (12) 2.仿真参数 (12) 3.仿真波形与分析 (14) 实验三:交流-交流变换电路 (19) (一)实验目的 (19) (三)实验过程与结果分析 (19) 1)晶闸管单相交流调压电路 (19) 实验四:逆变电路 (26) (一)实验目的 (26)

(二)实验内容 (26) 实验五:单相有源功率校正电路 (38) (一)实验目的 (38) (二)实验内容 (38) 个性化作业: (40) (一)实验目的: (40) (二)实验原理: (40) (三)实验内容 (40) (四)结果分析: (44) (五)实验总结: (45)

实验一:常用电力电子器件特性测试 (一)实验目的: 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; 掌握各器件的参数设置方法,以及对触发信号的要求。(二)实验原理 将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 ?在MATLAB/Simulink中构建仿真电路,设置相关参数。 ?改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 以GTO为例,搭建仿真系统如下:

模电实验报告——半导体器件特性仿真

实验报告 课程名称:___模拟电子技术基础实验_____实验名称:____半导体器件特性仿真____实验类型:__EDA___ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、 实验目的和要求 1、了解PSPICE 软件常用菜单和命令的使用。 2、掌握PSPICE 电路图的输入和编辑。 3、学习PSPICE 分析设置、仿真、波形查看等方法。 4、学习半导体器件特性的仿真分析方法。 二、 实验内容和原理 1、二极管伏安特性测试电路如图3.1.1所示,输入该电路图,设置合适的分析方式及参数,用PSpice 程序仿真分析二极管的伏安特性。 2、在直流分析中设置对温度的内嵌分析,仿真分析二极管在不同温度下的伏安特性。 3、将电源Vs 用VSIN 元件代替,并设置合适的元件参数,仿真分析二极管两端的输出波形。 4、三极管特性测试电路如图3.1.2所示,用PSpice 程序仿真分析三极管的输出特性,并估算电压放大倍数。 图3.1.1 二极管特性测试电路 图3.1.2 三极管特性测试电路 三、 主要仪器设备 装有PSpice 程序的PC 机 四、 操作方法和实验步骤 1、二极管特性的仿真分析

受温度影响。用PSpice仿真时,从元件库中选出相应元件,连线,设置分析参数。二极管特性测试电路的直流扫描分析参数可设置为:扫描变量类型为电压源,扫描变量为Vs,扫描类型为线性扫描,初始值为-200V,终值为40V,增量为0.1V。为了仿真分析二极管在不同温度下的伏安特性,还需设置直流扫描的内嵌分析(Nested Sweep),内嵌分析参数可设置为:扫描变量类型为温度,扫描类型为列表扫描,扫描值为-10(℃),0(℃),30(℃)。在Probe程序中可查看到二极管的伏安特性曲线,其横坐标应为二极管两端电压V(2)。为了分析温度对二极管伏安特性的影响,可以改变X坐标轴和Y坐标轴的范围,得到二极管在不同温度下的正向伏安特性曲线。 2、三极管特性的仿真分析 三极管的共射输出特性曲线是在一定的基极电流下,三极管的集电极电流与集电极发射极电压之间的关系。用PSpice仿真时,从元件库中选出相应元件,连线,设置分析参数。直流扫描分析参数可设置为:扫描变量类型为电压源,扫描变量为VCC,扫描类型为线性扫描,初始值为0V,终值为50V,增量为0.1V。设置直流扫描的内嵌分析(Nested Sweep),内嵌分析参数可设置为:扫描变量类型为电流源,扫描类型为IB,扫描类型为线性扫描,初始值为0,终值为100μA,增量为10μA。在Probe程序中可查看到三极管集电极电流IC(Q1)的曲线,需将X轴变量设置为三极管集电极与发射极之间的电压V(Q1:c),并选择合适的坐标范围 ,可得到三极管的输出特性曲线。 五、实验数据记录和处理 1、二极管特性的仿真分析

现代控制理论实验报告河南工业大学

河南工业大学 现代控制理论实验报告姓名:朱建勇 班级:自动1306 学号:201323020601

现代控制理论 实验报告 专业: 自动化 班级: 自动1306 姓名: 朱建勇 学号: 201323020601 成绩评定: 一、实验题目: 线性系统状态空间表达式的建立以及线性变换 二、实验目的 1. 掌握线性定常系统的状态空间表达式。学会在MATLAB 中建立状态空间模型的方法。 2. 掌握传递函数与状态空间表达式之间相互转换的方法。学会用MATLAB 实现不同模型之 间的相互转换。 3. 熟悉系统的连接。学会用MATLAB 确定整个系统的状态空间表达式和传递函数。 4. 掌握状态空间表达式的相似变换。掌握将状态空间表达式转换为对角标准型、约当标准 型、能控标准型和能观测标准型的方法。学会用MATLAB 进行线性变换。 三、实验仪器 个人笔记本电脑 Matlab R2014a 软件 四、实验内容 1. 已知系统的传递函数 (a) ) 3()1(4)(2++=s s s s G

(b) 3486)(22++++=s s s s s G

(c) 6 1161)(232+++++=z z z z z z G (1)建立系统的TF 或ZPK 模型。 (2)将给定传递函数用函数ss( )转换为状态空间表达式。再将得到的状态空间表达式用函 数tf( )转换为传递函数,并与原传递函数进行比较。 (3)将给定传递函数用函数jordants( )转换为对角标准型或约当标准型。再将得到的对角 标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。 (4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。再将得到的能控标 准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。

通信工程系统仿真实验报告

通信原理课程设计 实验报告 专业:通信工程 届别:07 B班 学号:0715232022 姓名:吴林桂 指导老师:陈东华

数字通信系统设计 一、 实验要求: 信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。对传输系统进行误码率分析。 二、系统框图 三、实验原理: QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。QAM 就是一种频率利用率很高的调制技术。 t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb 式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号; t 0s i n ω 为正交信号或者Q 信号; m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅; m 为 m A 和m B 的电平数,取值1 , 2 , . . . , M 。 m A = Dm*A ;m B = Em*A ; 式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空

间上的坐标,有输入数据决定。 m A 和m B 确定QAM 信号在信号空间的坐标点。称这种抑制载波的双边带调制方式为 正交幅度调制。 图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M) QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。 图3.3.5 QAM 相干解调原理图 四、设计方案: (1)、生成一个随机二进制信号 (2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制 (5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调 五、实验内容跟实验结果:

电力电子电路分析与仿真实验报告模板

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号: 年月日

实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

现代控制理论课程报告

现代控制理论课程总结 学习心得 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,在刚拿到课本的时候,没上张老师的课之前,咋一看,会认为开课的内容会是上学期学的控制理论基础的累赘或者简单的重复,更甚至我还以为是线性代数的复现呢!根本没有和现代控制论联系到一起。但后面随着老师讲课的风格的深入浅出,循循善诱,发现和自己想象的恰恰相反,张老师以她特有的讲课风格,精心准备的ppt 课件,向我们展示了现代控制理论发展过程,以及该掌握内容的方方面面,个人觉得,我们不仅掌握了现代控制理论的理论知识,更重要的是学会了掌握这门知识的严谨的逻辑思维和科学的学习方法,对以后学习其他知识及在工作上的需要大有裨益,总之学习了这门课让我受益匪浅。 由于我们学习这门课的课时不是很多,并结合我们学生学习的需求及所要掌握的课程深入程度,张老师根据我们教学安排需要,我们这学期学习的内容主要有:1.绪论;2.控制系统的状态表达式;3.控制系统状态表达式的解;4.线性系统的能空性和能观性;5.线性定常系统的综合。而状态变量和状态空间表达式、状态转移矩阵、系统的能控性与能观性以及线性定常系统的综合是本门课程的主要学习内容。当然学习的内容还包括老师根据多年教学经验及对该学科的研究的一些深入见解。 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的必修课。 经典控制理论的特点 经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。 1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多完整,从而促使现代控制理论的发展:对经典理论的精确化、数学化及理论化。优点,但是,在推理上却是不能令人满意的,效果也

OFDM系统仿真实验报告

无线通信——OFDM系统仿真

一、实验目的 1、了解OFDM 技术的实现原理 2、利用MATLAB 软件对OFDM 的传输性能进行仿真并对结论进行分析。 二、实验原理与方法 1 OFDM 调制基本原理 正交频分复用(OFDM)是多载波调制(MCM)技术的一种。MCM 的基本思想是把数据流串并变换为N 路速率较低的子数据流,用它们分别去调制N 路子载波后再并行传输。因子数据流的速率是原来的1/N ,即符号周期扩大为原来的N 倍,远大于信道的最大延迟扩展,这样MCM 就把一个宽带频率选择性信道划分成N 个窄带平坦衰落信道,从而“先天”具有很强的抗多径衰落和抗脉冲干扰的能力,特别适合于高速无线数据传输。OFDM 是一种子载波相互混叠的MCM ,因此它除了具有上述毗M 的优势外,还具有更高的频谱利用率。OFDM 选择时域相互正交的子载波,创门虽然在频域相互混叠,却仍能在接收端被分离出来。 2 OFDM 系统的实现模型 利用离散反傅里叶变换( IDFT) 或快速反傅里叶变换( IFFT) 实现的OFDM 系统如图1 所示。输入已经过调制(符号匹配) 的复信号经过串P 并变换后,进行IDFT 或IFFT 和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM 调制后的信号s (t ) 。该信号经过信道后,接收到的信号r ( t ) 经过模P 数变换,去掉保护间隔以恢复子载波之间的正交性,再经过串/并变换和DFT 或FFT 后,恢复出OFDM 的调制信号,再经过并P 串变换后还原出输入的符号。 图1 OFDM 系统的实现框图 从OFDM 系统的基本结构可看出, 一对离散傅里叶变换是它的核心,它使各子载波相互正交。设OFDM 信号发射周期为[0,T],在这个周期内并行传输的N 个符号为001010(,...,)N C C C -,,其中ni C 为一般复数, 并对应调制星座图中的某一矢量。比如00(0)(0),(0)(0)C a j b a b =+?和分别为所要传输的并行信号, 若将

电子仿真实验报告doc

电子仿真实验报告 篇一:电路仿真实验报告 实验一电路仿真 一、实验目的 通过几个电路分析中常用定理和两个典型的电路模块,对Multisim的主窗口、菜单栏、工具栏、元器件栏、仪器仪表和一些基本操作进行学习。 二、实验内容 1.叠加定理:在任何由线性元件、线性受控源及独立源组成的线性电路中,每一支路的响应都可以看成是各个独立电源单独作用时,在该支路中产生响应的代数和; 2.戴维南定理:一个含独立源、线性受控源、线性电阻的二端电路N,对其两个端子来说都可以等效为一个理想电压源串联内阻的模型。其理想电压源的数值为有源二端电路N的两个端子间的开路电压uoc,串联的内阻为N内部所有独立源等于零,受控源保留时两端子间的等效电阻Req,常记为R0; 3.互易定理:对一个仅含线性电阻的二端口,其中,一个端口夹激励源,一个端口做响应端口。在只有一个激励源的情况下,当激励与响应互换位置时,同一激励所产生的响应相同; 4.暂态响应:在正弦电路中,电量的频率、幅值、相位

都处于稳定的数值,电路的这种状态称为稳定状态。电路从一种稳态向另一种稳态转换的过程称为过渡过程,由于过渡过程一般都很短暂,因此也称为暂态过程,简称暂态; 5.串联谐振:该电路是一个由电阻、电容和电感串联组成,当激励源的频率达到谐振频率时,输出信号的幅值达到最大。 三、实验结果及分析 1.叠加定理: ①两个独立源共同作用时: ②电压源单独作用时: ③电流源单独作用时: 2.戴维南定理: 所以,根据戴维南定理可知,该电路的戴维南等效电阻 Req=10.033/(781.609*10-6) =12.8 kΩ 3.互易定理: 当激励源与响应互换位置之后, 该激励源所产生的响应不变。 4.暂态响应: ①当电容C=4.7uF时, ②当电容C=1uF时, 对比①、②所对应的输出响应的波形图可以得知:电容

现代控制理论实验报告3

实验三 利用MATLAB 导出连续状态空间模型的离散化模型 实验目的: 1、基于对象的一个连续时间状态空间模型,导出其相应的离散化状态空间模型; 2、通过编程、上机调试,掌握离散系统运动分析方法。 实验原理: 给定一个连续时间系统的状态空间模型: ()()()()()() x t Ax t Bu t y t Cx t Du t =+=+ (3.1) 状态空间模型(3.1)的输入信号()u t 具有以下特性: ()(),u t u kT kT t kT T =≤≤+ (3.2) 已知第k 个采样时刻的状态()x kT 和第k 个采样时刻到第1k +个采样时刻间的输入()()u t u kT =,可得第1k +个采样时刻(1)k T +处的状态 (1)((1))((1))()((1))()k T kT x k T k T kT x kT k T Bu d τττ++=Φ+-+Φ+-? (3.3) 其中: ((1))((1))A k T kT AT k T kT e e +-Φ+-== ((1))((1))A k T k T e ττ+-Φ+-= 由于输入信号在两个采样时刻之间都取常值,故对式(3.3)中的积分式进行一个时间变量替换(1)k T στ=+-后,可得 0((1))()()()AT A x k T e x kT e d Bu kT τ σσ+=+? (3.4) 另一方面,以周期T 对输出方程进行采样,得到 ()()()y kT Cx kT Du kT =+ 在周期采样的情况下,用k 来表示第k 个采样时刻kT 。因此,连续时间状态空间模型

(3.1)的离散化方程可以写成 (1)()()()()()()() x k G T x k H T u k y k Cx k Du k +=+=+ (3.5) 其中: 0()()()AT A G T e H T e d B τσσ==? (3.6) 已知系统的连续时间状态空间模型,MATLAB 提供了计算离散化状态空间模型中状态矩阵和输入矩阵的函数: [G ,H]=c2d(A,B,T) 其中的T 是离散化模型的采样周期。 实验步骤 1、导出连续状态空间模型的离散化模型,采用MA TLAB 的m-文件编程; 2、在MA TLAB 界面下调试程序,并检查是否运行正确。 例3.1 已知一个连续系统的状态方程是 010()()()2541x t x t u t ????=+????--???? 若取采样周期0.05T =秒,试求相应的离散化状态空间模型。 编写和执行以下的m-文件: A=[0 1;-25 –4]; B=[0;1]; [G ,H]=c2d(A,B,0.05) 得到 G= 0.9709 0.0448 -1.1212 0.7915 H= 0.0012 0.0448 因此,所求的离散化状态空间模型是 0.97090.04480.0012(1)()()1.12120.79150.0448x k x k u k ????+=+????-????

通信系统仿真实验报告(DOC)

通信系统实验报告——基于SystemView的仿真实验 班级: 学号: 姓名: 时间:

目录 实验一、模拟调制系统设计分析 -------------------------3 一、实验内容-------------------------------------------3 二、实验要求-------------------------------------------3 三、实验原理-------------------------------------------3 四、实验步骤与结果-------------------------------------4 五、实验心得------------------------------------------10 实验二、模拟信号的数字传输系统设计分析------------11 一、实验内容------------------------------------------11 二、实验要求------------------------------------------11 三、实验原理------------------------------------------11 四、实验步骤与结果------------------------------------12 五、实验心得------------------------------------------16 实验三、数字载波通信系统设计分析------------------17 一、实验内容------------------------------------------17 二、实验要求------------------------------------------17 三、实验原理------------------------------------------17 四、实验步骤与结果------------------------------------18 五、实验心得------------------------------------------27

实验报告-电力电子仿真实验

电力电子仿真实验 实验报告 院系:电气与电子工程学院 班级:电气1309班 学号: 1131540517 学生姓名:王睿哲 指导教师:姚蜀军 成绩: 日期:2017年 1月2日

目录 实验一晶闸管仿真实验 (3) 实验二三相桥式全控整流电路仿真实验 (6) 实验三电压型三相SPWM逆变器电路仿真实验 (18) 实验四单相交-直-交变频电路仿真实验 (25) 实验五VSC轻型直流输电系统仿真实验 (33)

实验一晶闸管仿真实验 实验目的 掌握晶闸管仿真模型模块各参数的含义。 理解晶闸管的特性。 实验设备:MATLAB/Simulink/PSB 实验原理 晶闸管测试电路如图1-1所示。u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。 图1-1 晶闸管测试电路 实验内容 启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。

图1-2 带电阻性负载的晶闸管仿真测试模型 双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。 图1-3 交流电压源模块参数

图1-4 晶闸管模块参数 图1-5 脉冲发生器模块参数 固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为0.02s(即频率为50Hz),脉冲宽度为2(即7.2o),初始相位(即控制角)设置为0.0025s(即45o)。 串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。 元件串联RLC分支并联RLC分支 类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0 单个电感0L inf inf L0 单个电容00C inf inf C

相关文档
最新文档