螺旋桨的强度计算

螺旋桨的强度计算
螺旋桨的强度计算

第八章螺旋桨的强度校核

为了船舶的安全航行,必须保证螺旋桨具有足够的强度,使其在正常航行状态下不致破损或断裂。为此,在设计螺旋桨时必须进行强度计算和确定桨叶的厚度分布。螺旋桨工作时作用在桨叶上的流体动力有轴向的推力及与转向相反的阻力,两者都使桨叶产生弯曲和扭转。

螺旋桨在旋转时桨叶本身的质量产生径向的离心力,使桨叶受到拉伸,若桨叶具有侧斜或纵斜,则离心力还要使桨叶产生弯曲。此外,桨叶上也可能受到意外的突然负荷,例如:碰击冰块或其他飘浮物体等。同时螺旋桨处于不均匀的尾流场中工作,使桨叶受力产生周期性变化,故较难精确地算出作用在桨叶上的外力。

在计算桨叶的强度时,我们可以把桨叶看作是扭曲的、变截面的悬臂梁,而且其横截面是非对称的,故计算较为复杂,即使能正确地求得桨叶上的作用力,要精确地进行强度计算也是很困难的。目前,对于动态负荷(即计及伴流不均匀性影响)下螺旋桨的强度计算方法虽

然有所发展,但计算繁复,付之实用还为时尚早。故在螺旋桨设计的实践中,一般都用理论和实验相结合的近似方法来进行螺旋桨的强度计算。

计算螺旋桨强度的近似方法很多,中国船级社于2001年颁发的《钢质海船入级与建造规

范》(以下简称《规范》)中对螺旋桨的强度也有了规定,因为比较偏于安全,用近似方法计算的厚度未必一定能满足规范的要求,因此对“入级”海船应采用规范规定的方法计算。本章中主要介绍我国2001年《规范》的规定,由此确定桨叶厚度。为了使读者了解桨叶上的受力情况,对于分析计算方法也作必要的介绍。

§ 8-1 《规范》校核法

一、螺旋桨桨叶厚度的确定

为了保证螺旋桨的安全,中国船级社2001年《钢质海船入级与建造规范》第三分册第三

篇第十一章中,对螺旋桨的强度要求作了明确具体的规定。

螺旋桨桨叶厚度t(固定螺距螺旋桨为0.25R和0.6R切面处,可调螺距螺旋桨为0.35R和0.6R切面处)不得小于按下式计算所得之值:

r^Y

342

(mm)(8-1)

t 二厂X

式中Y ――功率系数,按(8-2)式求得;

343

K ――材料系数,查表8-1;

X ――转速系数,按(8-3)式求得。

1 ?功率系数

1.36几心

(8-2)

Zbn°

表8-1材料系数

材料抗拉强度@ (N/mm2)材料密度G (g/cm3)材料系数K

碳钢与合金钢

铁素钢与马氏体不锈钢

400 7.9 0.57 奥氏体不锈钢500 7.7 1.04

450 7.9 1.04 Cu1锰青铜440 8.3 1

440 8.3 1 Cu2镍锰青铜590 7.6 1.38

630 7.5 1.17 Cu3镍铝青铜

Cu4锰铝青铜

D D D

式中A(K i —K2 ) K3 K4

P F0.7 P0.7

对于随缘上翘的机翼型切面,上式求得之A值应增加30%;

D ――螺旋桨直径(m);

P ――所计算切面处的螺距(m);

P0.7―― 0.7R切面处的螺距(m);

R ――螺旋桨半径(m);

K i,K2,K3,K4 ――系数,查表8-2;

N e ——主机的额定功率(kw),

Z ――桨叶叶数,

B ――所计算半径处切面的弦长(m);

n e --------- 螺旋桨在主机额定功率时的转速(rpm)。

344

表8-2

345

2.转速系数

2

A z GA d n。D

(8-3)

1010Zb

式中A^D(K5 K6 0 K7 £ K8 ;

P

D、P、N、Z和b同前;

£ ――桨叶后倾角,(O);

K5, K6, K7, K8 ――系数,查表8-2 ;

3

G ――桨叶材料的重量密度(g/cm );

A d ――螺旋桨的盘面比。

对航行于冰区的船舶,螺旋桨桨叶还需进行加强,具体办法在《规范》第三分册第三篇第十四章中有明确规定。因限于篇幅,这里不再进行介绍。

《规范》还规定,对于特殊设计的螺旋桨,允许用其他计算方法来确定螺旋桨桨叶的厚度,但需取得验船部门的同意。

二、计算实例

4

某3.5X 10 t散装货船,船长L PP= 185m,型宽B = 28.4m,设计吃水T = 11.0m,方形系数

4

C B = 0.821。主机额定功率N e = 1.11 X 10 hp,转速n e = 124 rpm,按MAU型4叶螺旋桨设计图谱求得:螺旋桨的直径

D = 5.6m,螺距比P/D = 0.7,敞水效率n= 0.521,盘面比A E/A°=0.586,航速V = 14.68 kn。桨叶的纵斜角£= 10 0,螺旋桨的材料为ZQALI2-8-3-2,其重量密度为G = 7.4g/cm3。现要求按《规范》进行强度校核。

根据已知条件可算出:

0.7R切面处的螺距P0.7 = 3.92m,

0.25R及0.6R处切面的弦长为:

b0 25 =07212亘?D =0.7212汇0.332X5.6 =1.342m ;

0 D

b06=0.9911 虹=0.9911 X0.332X5.6 =1.843m ;

D

由表8-1可查得材料系数K,由表8-2可查得K t、K2、K a、K4、K5、(、心、K s诸系数。计算可按表8-3形式进行。

346

表8-3计算结果

单位所校核的叶切面

347

8-3

t o.25R = 211.6 mm

t o.6R = 101.6 mm

而标准桨在相应半径处切面的厚度为:

t n0.25R = 214.2 mm

t no.6R = 122.1 mm

大于《规范》的要求。若采用标准桨的厚度及其分布,则可以满足强度的要求,且略有裕度。

§ 8-2分析计算法

本节讨论在静态负荷下螺旋桨强度的计算问题。所谓静态负荷,就是假定作用于桨叶上的外力负荷不变。在应用这种方法进行计算时,把桨叶作为简单的悬臂梁,首先计算出每一桨叶上的推力、旋转阻力及离心力对计算切面的弯矩,然后根据切面的几何特性确定所受的应力。

螺旋桨工作时,桨叶根部所受的应力最大。实践证明,螺旋桨桨叶常在叶根附近断裂,所以应用计算分析法来校核桨叶强度时,主要计算叶根处切面的强度(略去填角料)。

、推力和旋转阻力所产生的弯矩

348

250×700梁模板(扣件式)计算书讲解

梁模板(扣件式)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-2011 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 新浇混凝土梁名称WKL14 新浇混凝土梁计算跨度(m) 8.2 混凝土梁截面尺寸(mm×mm) 250×700 新浇混凝土结构层高(m) 6.6 梁侧楼板厚度(mm) 120 二、荷载设计

平面图

立面图四、面板验算

W =bh 2/6=1000×15×15/6=37500mm 3,I =bh 3/12=1000×15×15×15/12=281250mm 4 q 1=0.9max[1.2(G 1k + (G 2k +G 3k )×h)+1.4Q 2k ,1.35(G 1k + (G 2k +G 3k )×h)+1.4×0.7Q 2k ]×b=0.9max[1.2×(0.1+(24+1.5)×0.7)+1.4×2,1.35×(0.1+(24+1.5)×0.7)+1.4×0.7×2]×1=23.57kN/m q 2=(G 1k + (G 2k +G 3k )×h)×b=[0.1+(24+1.5)×0.7]×1=17.95kN/m 1、强度验算 M max =q 1l 2/8=23.57×0.252/8=0.18kN·m σ=M max /W =0.18×106/37500=4.91N/mm 2≤[f]=15N/mm 2 满足要求! 2、挠度验算 νmax =5qL 4/(384EI)=5×17.95×2504/(384×10000×281250)=0.325mm≤[ν]=l/400=250/400=0.62mm 满足要求! 3、支座反力计算 设计值(承载能力极限状态) R 1=R 2=0.5q 1l=0.5×23.57×0.25=2.95kN 标准值(正常使用极限状态) R 1'=R 2'=0.5q 2l=0.5×17.95×0.25=2.24kN 五、小梁验算 小梁类型 方木 小梁材料规格(mm) 45×90 小梁抗弯强度设计值[f](N/mm 2 ) 15.44 小梁抗剪强度设计值[τ](N/mm 2 ) 1.78 小梁弹性模量E(N/mm 2 ) 9350 小梁截面抵抗矩W(cm 3 ) 60.75 小梁截面惯性矩I(cm 4) 273.38 为简化计算,按四等跨连续梁和悬臂梁分别计算,如下图:

螺旋桨设计计算说明书.

某沿海单桨散货船螺旋桨设计计算说明书 姓名: XXX 班级:XXX 学号:XXX 联系方式:XXX 日期:XXX

1.已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--=w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.5 42.34 35.18 29.60 25.19

Bp 6.51 5.93 5.44 5.02 MAU 4-40 δ75.82 70.11 64.99 60.75 P/D 0.640 0.667 0.694 0.720 ηO0.5576 0.5828 0.6055 0.6260 P TE =P D ·η H ·η O hp 2862.09 2991.44 3107.95 3213.18 MAU 4-55 δ74.35 68.27 63.57 59.33 P/D 0.686 0.713 0.741 0.770 ηO0.5414 0.5672 0.5909 0.6112 P TE =P D ·η H ·η O hp 2778.94 2911.36 3043.28 3137.21 MAU 4-70 δ73.79 67.79 63.07 58.70 P/D 0.693 0.723 0.754 0.786 ηO0.5209 0.5456 0.5643 0.5828 P TE=P D ·η H ·η O hp 2673.71 2800.49 2891.86 2991.44 据上表的计算结果可绘制PT E、δ、P/D及η O 对V的曲线,如下图所示。

机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式

机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算) 2009-04-16 08:02 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。 在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力 滑翔比与升阻比

升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。 如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。这个在SU-27和歼11-B 身上就能体现出来,歼11-B应该拥有更大的滑翔比。 螺旋桨拉力计算公式(静态拉力估算) 你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢下面我们就列一个估算公式解决这个问题 螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数()=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数()=拉力(克) 前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在。1000米以下基本可以取1。 例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得: 100×50×10×502×1×=公斤。 如果转速达到6000转/分,那么拉力等于: 100×50×10×1002×1×=125公斤 注:仅供参考

模板计算书

400x1600梁模板支架计算书一、梁侧模板计算 (一)参数信息 1、梁侧模板及构造参数 梁截面宽度 B(m):;梁截面高度 D(m):; 混凝土板厚度(mm):; 采用的钢管类型为Φ48×3; 次楞间距(mm):300;主楞竖向道数:4; 穿梁螺栓直径(mm):M12; 穿梁螺栓水平间距(mm):600; 主楞材料:圆钢管; 直径(mm):;壁厚(mm):; 主楞合并根数:2; 次楞材料:木方; 宽度(mm):;高度(mm):; 2、荷载参数

新浇混凝土侧压力标准值(kN/m2):; 倾倒混凝土侧压力(kN/m2):; 3、材料参数 木材弹性模量E(N/mm2):; 木材抗弯强度设计值fm(N/mm2):;木材抗剪强度设计值fv(N/mm2):; 面板类型:胶合面板;面板弹性模量E(N/mm2):; 面板抗弯强度设计值fm(N/mm2):; (二)梁侧模板荷载标准值计算 =m2; 新浇混凝土侧压力标准值F 1 (三)梁侧模板面板的计算 面板为受弯结构,需要验算其抗弯强度和刚度。强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力。 面板计算简图(单位:mm) 1、强度计算 面板抗弯强度验算公式如下: σ = M/W < f 其中,W -- 面板的净截面抵抗矩,W = 150××6=81cm3; M -- 面板的最大弯矩(N·mm); σ -- 面板的弯曲应力计算值(N/mm2) [f] -- 面板的抗弯强度设计值(N/mm2); 按照均布活荷载最不利布置下的三跨连续梁计算:

M = 1l+ 2 l 其中,q -- 作用在模板上的侧压力,包括: 新浇混凝土侧压力设计值: q 1 = ×××= kN/m; 倾倒混凝土侧压力设计值: q 2 = ××4×=m; 计算跨度(次楞间距): l = 300mm; 面板的最大弯矩 M= ××3002+××3002= ×105N·mm; 面板的最大支座反力为: N= 1l+ 2 l=××+××=; 经计算得到,面板的受弯应力计算值: σ = ×105/ ×104=mm2; 面板的抗弯强度设计值: [f] = 15N/mm2; 面板的受弯应力计算值σ =mm2小于面板的抗弯强度设计值 [f]=15N/mm2,满足要求! 2、抗剪验算 Q=××300+××300)/1000=; τ=3Q/2bh=3××1000/(2×1500×18)=mm2; 面板抗剪强度设计值:[fv]=mm2; 面板的抗剪强度计算值τ=mm2小于面板的抗剪强度设计值 [f]=mm2,满足要求! 3、挠度验算 ν=(100EI)≤[ν]=l/150 q--作用在模板上的侧压力线荷载标准值: q=×; l--计算跨度: l = 300mm; E--面板材质的弹性模量: E = 6000N/mm2; I--面板的截面惯性矩: I = 150×××12=72.9cm4; 面板的最大挠度计算值: ν = ××3004/(100×6000××105) = 0.722 mm; 面板的最大容许挠度值:[v] = min(l/150,10) =min(300/150,10) = 2mm; 面板的最大挠度计算值ν =0.722mm 小于面板的最大容许挠度值 [v]=2mm,满

精馏塔的设计计算方法

各位尊敬的评委老师、领导、各位同学: 上午好! 这节课我们一起学习一下精馏塔的设计计算方法。 二元连续精馏的工程计算主要涉及两种类型:第一种是设计型,主要是根据分离任务确定设备的主要工艺尺寸;第二种是操作型,主要是根据已知设备条件,确定操作时的工况。对于板式精馏塔具体而言,前者是根据规定的分离要求,选择适宜的操作条件,计算所需理论塔板数,进而求出实际塔板数;而后者是根据已有的设备情况,由已知的操作条件预计分离结果。 设计型命题是本节的重点,连续精馏塔设计型计算的基本步骤是:在规定分离要求后(包括产品流量D、产品组成x D及回收率η等),确定操作条件(包括选定操作压力、进料热状况q及回流比R等),再利用相平衡方程和操作线方程计算所需的理论塔板数。计算理论塔板数有三种方法:逐板计算法、图解法及简捷法。本节就介绍前两种方法。 首先,我们看一下逐板计算法的原理。 该方法假设:塔顶为全凝器,泡点液体回流;塔底为再沸器,间接蒸汽加热;回流比R、进料热状况q和相对挥发度α已知,泡点进料。 从塔顶最上一层塔板(序号为1)上升的蒸汽经全凝器全部冷凝成饱和温度下的液体,因此馏出液和回流液的组成均为y1,且y1=x D。 根据理论塔板的概念,自第一层板下降的液相组成x1与上升的蒸汽组成y1符合平衡关系,所以可根据相平衡方程由y1 求得x1。 从第二层塔板上升的蒸汽组成y2与第一层塔板下降的液体组成x1符合操作关系,故可用根据精馏段操作线方程由 x1求得y2。 按以上方法交替进行计算。 因为在计算过程中,每使用一次相平衡关系,就表示需要一块理论塔板,所以经上述计算得到全塔总理论板数为m块。其中,塔底再沸器部分汽化釜残夜,气液两相达平衡状态,起到一定的分离作用,相当于一块理论板。这样得到的结果是:精馏段的理论塔板数为n-1块,提馏段为m-n块,进料板位于第n板上。 逐板计算法计算准确,但手算过程繁琐重复,当理论塔板数较多时可用计算机完成。 接下来,让我们看一下计算理论塔板数的第二种方法——图解法的原理。 图解法与逐板计算法原理相同,只是用图线代替方程,以图形的形式求取

模板计算书(最终版)

附录一: 1 模板及外挂架计算书 1.1墙体定型大模板结构模板计算 该模板是按《大模板多层住宅结构设计与施工规程》(JGJ20-84)﹑《钢结构设计规范》(GBJ17-88)与《混凝土结构工程施工及验收规范》(GB50204-2002)的要求进行设计与计算的。 已知:层高为2900mm,墙厚200mm,采用全刚模数组合模板系列,2根[10#背楞,采用T30穿墙螺栓拉结,混凝土C30﹑Y=24KN/m2,混凝土塌落度13cm,采用泵送混凝土,浇筑速度1.8m/h,温度T=25,用插入式振动器捣实,模板挠度为L/400(L为模板构件的跨度)。 模板结构为:面板6mm厚普热板,主筋为[8#,间距h=300mm,背楞间距L1=1100mm,L2=300mm,穿墙螺栓水平间距L3=1200mm。L=5400mm。 1.1.1 模板侧向荷载 混凝土侧压力标准值: F=0.22Y*β1β2ν1/2*250/(T+15) =0.22*24*1*1.15*1.81/2*250/(25+15) =50.92KN/m2 混凝土侧压力设计值: F1=50.92*1.2=61.1KN/m2 有效压头高度:h=61.1/24=2.55m 2.混凝土倾倒力标准值:4KN/m2 其设计值:4*1.4=5.6KN/m2 1.1.2 面板验算 由于5400/250=21.6>2,故面板按单向板三跨连续梁计算。1. 强度验算: 取1m宽的板条为计算单元 F3=F1+F2=48.88+5.6=54.48KN/m2=0.05448N/mm2 q=0.05448*1*0.85=0.046308N/mm

M max=K mx ql y2=0.117*0.046308*2602=366.26N.mm 则: W x=1/6*1*62=6mm3 所以: δmax=M max/(γx W x)=366.26/1*6=61.04N/mm2

螺旋桨公式

螺旋桨公式 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数

精馏塔优化设计计算

一. 精馏塔优化设计计算 【设计要求】 375.71吨/溶度35wt%,产品溶 度84(wt%),易挥发组分回收率0.98,1476小时。 进料热状况自选 回流比自选 单板压降≤0.7 kPa 塔底温度100104℃ 本设计任务为分离二甲基亚砜- 升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔 物系属易分离物系,,2倍。塔釜采用间接蒸汽加热, 1 二甲基亚砜摩尔质量MA=78.13kg/kmol 水的摩尔质量MB=18 kg/kmol X F==0.7 X D==0.96 M F=0.3×78.13+0.7×18=36.04 kg/kmol M D=0.96×78.13+0.04×18=75.72 kg/kmol 3.物料衡算 原料处理量F==7.06 水回收率衡算;=0.98 D=5.04 总物料衡算7.06=D+W 水物料衡算7.06×0.3=0.04D+WX W

联立解得D=5.04kmol/h W=2.02kmol/h X w=0.05 气液平衡数据 6KPa下二甲基亚砜-水溶液平衡与温度的关系 根据上表,利用内插法求进料,塔顶,塔底温度,由=得;塔顶;=T D=40.8°C+ 塔釜;=T W=96.7°C 进料;=T F=48.1°C 原料液,溜出液与釜残液的含量与温度

相对挥发度的计算 根据上表,利用内插法急速那精馏段和提馏段对应的气液相摩尔分率,得;精馏段;t1==44.45°C ==X=0.75 y=0.98 提馏段;t2==72.4°C ==X=0.3 y=0.85 将X1 Y1 X2 Y2分别带入气液平衡方程,得a1=16.3 a2=13.2 a=(a1a2)0.5=14.67 最小回流比及操作回流比的确定 由泡点进料,可得X q=XF=0.7; Y q==o.97 R min===-0.03 一般回流比取最小回流比的2倍 即R=2R min=0.1×2=0.2

模板计算书范本

剪力墙计算书: 一、参数信息 1.基本参数 次楞(内龙骨)间距(mm):200;穿墙螺栓水平间距(mm):600;主楞(外龙骨)间距(mm):500;穿墙螺栓竖向间距(mm):500;对拉螺栓直径(mm):M14; 2.主楞信息 龙骨材料:钢楞;截面类型:圆钢管48×; 钢楞截面惯性矩I(cm4):;钢楞截面抵抗矩W(cm3):; 主楞肢数:2; 3.次楞信息 / 龙骨材料:木楞; 宽度(mm):;高度(mm):; 次楞肢数:2; 4.面板参数 面板类型:木胶合板;面板厚度(mm):; 面板弹性模量(N/mm2):; 面板抗弯强度设计值f (N/mm2):; c 面板抗剪强度设计值(N/mm2):; 5.木方和钢楞 (N/mm2):;方木弹性模量E(N/mm2):;方木抗弯强度设计值f c (N/mm2):; 方木抗剪强度设计值f t 】 钢楞弹性模量E(N/mm2):; 钢楞抗弯强度设计值f (N/mm2):; c

墙模板设计简图 二、墙模板荷载标准值计算 按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值: 其中γ -- 混凝土的重力密度,取m3; t -- 新浇混凝土的初凝时间,可按现场实际值取,输入0时系统按200/(T+15)计算,得; T -- 混凝土的入模温度,取℃; V -- 混凝土的浇筑速度,取h; & H -- 模板计算高度,取; β -- 外加剂影响修正系数,取; 1 -- 混凝土坍落度影响修正系数,取。 β 2 根据以上两个公式计算的新浇筑混凝土对模板的最大侧压力F; 分别为 kN/m2、 kN/m2,取较小值 kN/m2作为本工程计算荷载。 计算中采用新浇混凝土侧压力标准值 F1=m2; 倾倒混凝土时产生的荷载标准值 F2= 2 kN/m2。

螺旋桨推力计算模型

螺旋桨推力计算模型 根据船舶原理知:42D n K T T ρ=(T K 为螺旋桨的淌水特性) 通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时t K K T T -=10 (0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数nD W U nD V J P A p )1(-==) 估算推力减额分数的近似公式: 1. 汉克歇尔公式: 2. 对于单螺旋桨标准型商船(C B =~) t=对于单螺旋桨渔船: t=对于双螺旋桨标准型商船(C B =~) t=商赫公式 对于单桨船 t=KW 式中:K 为系数 K=~ 适用于装有流线型舵或反映舵者 K=~ 适用于装有方形舵柱之双板舵者 K=~ 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=+ 对于双螺旋桨船采用轴支架者:t=+ 3. 哥铁保公式 对于单螺旋桨标准型商船(C B =~) P B WP B C C C C t ??? ? ??+-=5.13.257.1 对于双螺旋桨标准型商船(C B =~) B WP B C C C t 5.13 .267.1+-= 4. 霍尔特洛泼公式 对于单螺旋桨船 stern P C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=

式中:10C 的定义如下: 当L/B> L B C /10= 当L/B< )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B /1885.0325.0-= 估算伴流分数的近似公式 1. 泰洛公式(适用于海上运输船舶) 对于单螺旋桨船 05.05.0-=B C ω 对于双螺旋桨船 20.055.0-=B C ω 式中C B 为船舶的方形系数。 2. 汉克歇尔公式: 对于单螺旋桨标准型商船(C B =~) 18.070.0-=p C ω 对于单螺旋桨渔船: 28.077.0-=p C ω 对于双螺旋桨标准型商船(C B =~) 3.07.0-=p C ω 式中C p 为船舶的纵向棱形系数。 3. 巴浦米尔公式 ωω?-?=D C x B 3165.0 式中: C B 为船舶的方形系数; ?为船的排水量(3m ); D 为螺旋桨直径(m ); x 为指数,x=1时适用于中线处的螺旋桨,x=2是适用于侧螺旋桨 ω?为伴流系数修正值,与傅氏数gL V F r = 有关,可据下式决定: 当2.0?r F 时, ()2.01.0-=?r F ω

螺旋桨计算公式

直升机螺旋桨升力计算公式 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。 有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样, 空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨) 旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。 平衡时,就悬停在空中。直升机的升力大小,不但决定于旋翼的转速, 而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大; 随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中, 桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前. 后仰, 左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行, 不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有: a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高, 但直径往往受到吃水和输出转速等的限制; b.桨叶数N; c.转速n——每分钟螺旋桨的转数; d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距; e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比; f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小; g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见; 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

模型飞机螺旋桨原理与拉力计算

模型飞机螺旋桨原理与拉力计算 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数

苯氯苯板式精馏塔的工艺设计工艺计算书

苯氯苯板式精馏塔的工艺设计工艺计 算书 1

2

苯-氯苯板式精馏塔的工艺设计工艺计算书(精馏段部分) 化学与环境工程学院 化工与材料系 5月27日

课程设计题目一——苯-氯苯板式精馏塔的工艺设计 一、设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯50000t/a,塔顶馏出液中含氯苯不高于2%。原料液中含氯苯为35%(以上均为质量%)。 二、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力506kPa; 5.单板压降不大于0.7kPa; 6.年工作日330天,每天24小时连续运行。 三、设计内容 1.设计方案的确定及工艺流程的说明; 2.塔的工艺计算; 3.塔和塔板主要工艺结构的设计计算; 4.塔内流体力学性能的设计计算; 5.塔板负荷性能图的绘制; 1 2020年5月29日

2 2020年5月29日 6.塔的工艺计算结果汇总一览表; 7.辅助设备的选型与计算; 8.生产工艺流程图及精馏塔工艺条件图的绘制; 9.对本设计的评述或对有关问题的分析与讨论。 四、基础数据 1.组分的饱和蒸汽压οi p (mmHg) 2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14. 1124-=ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m)

3 2020年5月29日 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。纯组分的汽化潜热与温度的关系可用下式表示: 38 .01 238 .012??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其它物性数据可查化工原理附录。 附参考答案:苯-氯苯板式精馏塔的工艺计算书(精馏段部分) 苯-氯苯板式精馏塔的工艺计算书(精馏段部分) 一、设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。流程图略。

2003100墙模板(木模板)计算书

2003100墙模板(木模板)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB 50009-2012 4、《钢结构设计标准》GB 50017-2017 5、《建筑结构可靠性设计统一标准》GB50068-2018 一、工程属性 二、荷载组合

新浇混凝土对模板的侧压力标准值G4k=min[0.22γc t0β1β2v1/2,γc H]=min[0.22×24×4×1×1×21/2,24×3.1]=min[29.87,74.4]=29.87kN/m2 S承=γ0×(1.3G4k+γL×1.5Q4k)=1×(1.3 × 29.868+ 0.9×1.5×2.000)=41.53kN/m2 正常使用极限状态设计值S正=G4k=29.868 kN/m2 三、面板布置

模板设计立面图 四、面板验算 面板类型覆面木胶合板面板厚度(mm) 15 面板抗弯强度设计值[f](N/mm2) 15.444 面板弹性模量E(N/mm2) 9350 墙截面宽度可取任意宽度,为便于验算主梁,取b=0.5m,W=bh2/6=500×152/6=18750mm3,I=bh3/12=500×153/12=140625mm4

1、强度验算 q=bS承=0.5×41.528=20.764kN/m 面板弯矩图(kN·m) M max=0.162kN·m σ=M max/W=0.162×106/18750=8.652N/mm2≤[f]=15.444N/mm2 满足要求! 2、挠度验算 q=bS正=0.5×29.868=14.934kN/m 面板变形图(mm) ν=0.578mm≤[ν]=l/400=250/400=0.625mm

螺旋桨的定义及其效率计算

螺旋桨的定义及其效率计算 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J 变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。 桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目

航速及螺旋桨计算书设绘通则

航速及螺旋桨计算书设绘通则

1 主题内容与适用范围 1.1主题内容 航速及螺旋桨计算书是计算船舶在要求吃水状态下的阻力、航速、螺旋桨几何要素、螺旋桨的强度校核、空泡校核、系柱推力和转速、重量、惯量及螺旋桨特性等。为绘制螺旋桨图和进行轴系扭振计算提供依据。 1.2适用范围 应用MAU型或楚思德B型螺旋桨设计图谱设计常规螺旋桨并计算航速。 2 引用标准及设绘依据图纸 2.1引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 a) GB4954-84 船舶设计常用文字符号 2.2 编制依据图纸 a)技术规格书或设计任务书; b)总布置图; c)静水力曲线图或表; d)阻力估算方法或船模试验报告; e)螺旋桨设计图谱; f)主机主要参数及特性曲线; g)减速齿轮箱主要参数。 3 基本要求 提供完整的航速及螺旋桨计算书。 4 内容要点 4.1 计算说明 说明应用上海船舶研究设计院电子计算机程序SC88-CR158计算或应用何种螺旋桨设计图谱直接计算。 4.2 主要参数 4.2.1 船舶数据:主尺度(见表1)、船型系数(见表2)。

船舶主尺度表1 船型系数表2 4.2.2 主机参数:型号X台数、额定功率、额定转速、转向(见表3)。 主机参数表3 4.2.3 减速齿轮箱参数:型号、台数、减速比(见表4)。

减速齿轮箱参数表4 4.2.4 螺旋桨设计要求:主机功率、螺旋桨设计转速、螺旋桨只数、螺旋桨浸深、螺旋桨旋向、桨叶形式和叶片数、桨毂形状和尺度(见表5)。 螺旋桨设计要求表5 4.3 计算阻力、有效功率曲线 根据阻力计算公式及图谱计算实船阻力或按船模试验报告换算实船阻力,绘制有效功率曲线。 4.4 推进因子及螺旋桨收到功率 根据船型特点、主机和齿轮箱参数、船模试验或应用经验公式确定轴系传递效率、螺旋桨收到功率、伴流分数、推力减额分数、相对旋转效率、船身效率。 4.5 航速计算 应用螺旋桨设计图谱计算。 4.6 螺旋桨空泡校核 应用伯努利及各种定理推导出校验空泡的衡准数,若不产生空泡的条件可直接应用勃力尔空泡图。 上述计算中应用的符号及单位,见表6。

精馏塔强度使用说明材料模板

一、设计任务 1. 结构设计任务 完成各板式塔的总体结构设计,绘图工作量折合A1图共计4张左右,具体包括以下内容: ⑴各塔总图1张A0或A0加长; ⑵各塔塔盘装配及零部件图2张A1。 2. 设计计算内容 完成各板式塔设计计算说明书,主要包括各塔主要受压元件的壁厚计算及相应的强度校核、稳定性校核等内容。 二、设计条件 1. 塔体内径mm 2000=i D ,塔高m 299.59H i =; 2.设计压力p c =2.36MPa ,设计温度为=t 90C ?; 3. 设置地区:山东省东营市,基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类,地面粗糙度是B 类; 4. 塔内装有N=94层浮阀塔盘;开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900mm ,高度为1200mm ; 5. 塔外保温层厚度为δs =100mm ,保温层密度ρ2=3503m /kg ; 三、设备强度及稳定性校核计算 1. 选材说明 已知东营的基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类;塔壳与裙座对接;塔内装有N=94层浮阀塔盘;塔外保温层厚度为δs =100mm ,保温层密度ρ 2=350 3m /kg ;塔体开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900mm , 高度为1200mm ;设计压力 p c =2.36MPa ,设计温度为=t 90C ?;壳 3mm ,裙座厚度附加量2mm ;焊接接头系数取为0.85;塔内径mm 2000=i D 。 通过上述工艺条件和经验,塔壳和封头材料选用Q345R 。对该塔进行强度和稳定计算。 2. 主要受压元件壁厚计算

墙模板计算书讲解

墙模板计算书 墙模板的计算参照《建筑结构荷载规范》(GB 50009-2001)、《混凝土结构设计规范》 (GB50010-2002)、《钢结构设计规范》(GB 50017-2003)等规范。 墙模板的背部支撑由两层龙骨(木楞或钢楞)组成:直接支撑模板的为次龙骨,即内龙骨;用以支撑内层龙骨的为主龙骨,即外龙骨。组装墙体模板时,通过穿墙螺栓将墙体两侧模板拉结,每个穿墙螺栓成为主龙骨的支点。 根据《建筑施工手册》,当采用容量为0.2~0.8m3的运输器具时,倾倒混凝土产生的荷载标准值为3.00kN/m2; 一、参数信息 1.基本参数 次楞间距(mm):300;穿墙螺栓水平间距(mm):600; 主楞间距(mm):500;穿墙螺栓竖向间距(mm):500; 对拉螺栓直径(mm):M12; 2.主楞信息 主楞材料:圆钢管;主楞合并根数:2; 直径(mm):48.00;壁厚(mm):2.75; 3.次楞信息 次楞材料:木方;次楞合并根数:2; 宽度(mm):40.00;高度(mm):90.00; 4.面板参数 面板类型:胶合面板;面板厚度(mm):16.00; 面板弹性模量(N/mm2):6000.00;面板抗弯强度设计值f c(N/mm2):13.00; 面板抗剪强度设计值(N/mm2):1.50; 5.木方和钢楞 方木抗弯强度设计值f c(N/mm2):13.00;方木弹性模量E(N/mm2):9000.00; 方木抗剪强度设计值f v(N/mm2):1.50;钢楞弹性模量E(N/mm2):206000.00; 钢楞抗弯强度设计值f c(N/mm2):205.00;

墙模板设计简图 二、墙模板荷载标准值计算 按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值: F=0.22γtβ1β2V1/2 F=γH 其中γ -- 混凝土的重力密度,取24.000kN/m3; t -- 新浇混凝土的初凝时间,取2.000h; T -- 混凝土的入模温度,取20.000℃; V -- 混凝土的浇筑速度,取2.500m/h; H -- 模板计算高度,取3.000m; β1-- 外加剂影响修正系数,取1.200; β2-- 混凝土坍落度影响修正系数,取0.850。 分别计算得 17.031 kN/m2、72.000 kN/m2,取较小值17.031 kN/m2作为本工程计算荷载。 计算中采用新浇混凝土侧压力标准值F1=17.031kN/m2; 倾倒混凝土时产生的荷载标准值F2= 3 kN/m2。 三、墙模板面板的计算 面板为受弯结构,需要验算其抗弯强度和刚度。根据《建筑施工手册》,强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力。计算的原则是按照龙骨的间距和模板面的大小,按支撑在次楞上的三跨连续梁计算。

相关文档
最新文档