晶粒大小对于金属机械性能的影响

晶粒大小对于金属力学性能的影响

晶粒大小对金属材料性能有很大影响:

晶粒之间的“边界”叫晶界,晶粒越大-则晶界也越大,而“晶界”又类似

于材料中的“裂纹”;那么晶粒越大则材料中的“裂纹”越大。其次,晶粒内部

的原子排列较为规则,容易产生“滑移”;而晶界上的原子排列较为凌乱,存在

许多“位错”和“劈间”,使得原子面之间不易滑移和变形。那么晶粒细小时,

其内的滑移变形就小且能被晶界有效抑制。第三,晶粒、晶界都越细小,外来的

总重荷及变形将分散到更多的晶粒上,岂不更好。所以,晶粒越细--则金属材料

的性能越好。

控制晶粒大小方法很多,主要原理有两个:

1.增大金属结晶时的过冷度。

2.增加结晶晶核。

第一节: 金属材料液态成形基础

(二)金属的结晶

1.结晶的条件

纯金属液体缓慢冷却过程的时间—温度的关系曲线,即纯金属的冷却曲线。

冷却曲线

分析冷却曲线可知,液体纯金属冷却到平衡结晶温度Tm(又称为理论结晶温度,热力学凝固温度,熔点和凝固点等)时,液体纯金属并不会立即自发地出现结晶,只有冷却到低于Tm后,固体才开始结晶,而后长大,并放出大量潜热,使温度回升到略低于平衡结晶温度,而在冷却曲线上出现一个温度平台。当凝固完成后,由于没有潜热释放,因此,温度又继续下降。理论结晶温度Tm与实际结晶温度Tn之间的温度差称为过冷度,写作△T=Tm-Tn。

由图可知,金属结晶必须在一定的过冷度下才能自发的进行。从热力学观点来分

析,任何引起系统自由能降低的过程都是自发的过程。在金属结晶前后的两个状态下,金属是由两个不同的相所组成,即液相和固相。两种不同聚集状态自然有两种不同的自由能。

图2-1-29所示是同一金属材料液相和固相的自由能—温度变化曲线。图中显示,两条曲线有一个交点,其对应的温度即为理论结晶温度Tm。在温度Tm时,液相和固相处于两相平衡状态,自由能相等,可长期共存。高于温度Tm时,液相比固相的自由能低,金属处于液相才是稳定的;低于温度Tm时,金属稳定的状态为固相。

因此,液态金属如果要结晶,就必须处于Tm温度以下。金属在液态与固态之间存在有一个自由能差(△F),这个能量差△F就是促使液体结晶的驱动力。

2.结晶的过程

液态金属结晶是由形核和长大两个密切联系的基本过程来实现。

液态金属结晶时,首先在液态中形成一些极微小的晶体(称为晶核),然后再以它们为核心不断地长大。在这些晶体长大的同时,又出现新的晶核并逐渐长大,直至液体金属消失。如动画2-1-8所示:

(1)晶核的形成

液态金属结晶时晶核常以两种方式形成:

1)自发形核——自发形核指依靠液态金属本身在一定过冷度下由其内部自发长出结晶核心。

2)非自发形核——非自发形核指依附与金属液体中未溶的固态杂质表面而形成晶核。

金属结晶过程中晶核的形成主要是以非自发形核方式为主

3)晶核的长大晶核长大的实质就是原子由液体向固体表面的转移。

当过冷度较大,尤其是金属中存在杂质时,金属晶体常以树枝状的形式长大。在晶核开始长大的初期,因其内部原子规则排列的特点,故外形也是比较规则的。但随着晶核的继续长大,形成了晶体的顶角和棱边,由于顶角和棱边处散热条件优于其它部位并易于存在晶体缺陷等原因,晶体在顶角和棱边处优先长大,如图2-1-11所示。

图2-1-11 树枝状晶体长大过程

由此可见,其生长方式像树枝一样,先长出干枝,称为一次晶轴,然后在一次晶轴伸长和变粗的同时,在其侧面棱角处又长出分枝,称为二次晶轴。随着时间的推移,二次晶轴成长的同时又长出三次晶轴等,如此不断成长和分枝下去,直至液体全部消

失。最后得到的晶体称为树枝状晶体,简称枝晶。每一枝晶将成长为一个晶粒。

第一节: 金属材料液态成形基础

3.铸件晶粒组织

铸件的晶粒组织是指铸件的晶粒形状和大小。

一般铸件的典型晶粒组织分为三个区域。看动画2-1-9铸件组织示意图。

(1)表层细晶粒区

当液态金属刚刚浇入铸模时,由于模壁温度很低,使与它接触的很薄一层液态金属发生强烈的过冷,形成大量的自发晶核。这些晶核迅速生长到互相接触,在铸件表层形成等轴细晶粒区。

(2)柱状晶粒区

细晶粒区形成的同时,模壁温度不断升高,使剩余液态金属的冷却速度逐渐降低,过冷度减小,形核率变慢,此时凡晶轴垂直于模壁的晶粒,沿着枝晶轴向模壁传热有利,所以这些晶粒优先得到长大,从而形成柱状晶粒。

(3)中心等轴晶粒区

随着柱状晶粒发展到一定程度,通过已结晶的柱状晶层和模壁向外散热的速度愈来愈慢,在锭模心部的剩余液态金属内部温差愈来愈小,散热方向已不明显,因而形成较粗大的等轴晶粒区。

由上述可知,铸锭的组织是不均匀的,从表层到心部依次由细小的等轴晶粒、柱状晶粒和粗大的等轴晶粒所组成。

4.铸件晶粒组织的控制

晶粒组织对铸件力学性能有很大影响

铸锭的表层细晶粒区的组织较为致密,力学性能较好,但由于该区很薄,故对铸锭性能影响不大。柱状晶粒区的组织较中心等轴晶粒区致密。但柱状晶的接

触面由于常存在有非金属夹杂物和低熔点杂质而成为脆弱面,在热压力加工时常沿脆弱面断裂。因此,一般不希望钢锭柱状晶粒区过大。但对于塑性较好的有色金属及其合金,有时为了获得较致密的组织,反而希望得到柱状组织。

(1)细晶强化:

等轴晶的晶界长,杂质分布较分散,各方向的机械性能差异小,晶粒愈细小,铸件不但强度、硬度愈高,而且塑性和韧性愈好,这种提高金属强度的方法叫细晶强化。在所有强化金属的方法中,细晶强化是最理想的强化方法。所以,通常希望铸件为细等轴晶粒组织。

(2)细晶强化的方法:

1)增加液态金属结晶时的过冷度

根据过冷度对形核率和生长速率的影响规律,增大过冷度可以使铸件晶粒变小。在连续冷却情况下,冷却速度愈大,过冷度愈大,增大冷却速度可采取降低熔液的浇注温度,选用吸热能力和导热性较强的铸型材料等措施来达到。例如,金属型比砂型冷区速度大,故金属型铸件比砂型铸件的晶粒细小。

2)变质处理

在金属液结晶前,向金属液中加入某些物质(称为变质剂),形成大量分散的固态微粒作为非自发形核界面,或起阻碍晶体长大的作用,从而获得细小晶粒,这种细化晶粒的方法,称为变质处理。

3)附加振动

金属液结晶时,可采用机械振动,超声波或电磁振动等措施,使铸型中液体金属运动,造成枝晶破碎,碎晶块起晶核作用,从而使晶粒细化。

如何进行晶粒度分析

教你如何进行晶粒度分析 金属晶粒的尺寸(或晶粒度)对其在室温及高温下的机械性质有决定性的影响,晶粒尺寸的细化也被作为钢的热处理中最重要的强化途径之一。因此,在金属性能分析中,晶粒尺寸的估算显得十分重要。那么根据一张金相照片我们能从中得到哪些信息呢? 首先来看看这一段小视频 视频:晶粒度分析 一、晶粒度概述 晶粒度表示晶粒大小的尺度。金属的晶粒大小对金属的许多性能有很大影响。晶粒度的影响,实质是晶界面积大小的影响。晶粒越细小则晶界面积越大,对性能的影响也越大。对于金属的常温力学性能来说,一般是晶粒越细小,则强度和硬度越高,同时塑性和韧性也越好。 二、测定平均晶粒度的基本方法 一般情况下测定平均晶粒度有三种基本方法:比较法、面积法、截点法。具体如下 1、比较法:比较法不需计算晶粒、截矩。与标准系列评级图进行比较,用比较法评估晶粒度时一般存在一定的偏差(±0.5级)。评估值的重现性与再现性通常为±1级。 2、面积法:面积法是计算已知面积内晶粒个数,利用单位面积晶粒数来确定晶粒度级别数。该方法的精确度中所计算晶粒度的函数,通过合理计数可实现±0.25级的精确度。面积法的测定结果是无偏差的,重现性小于±0. 5级。面积法的晶粒度关键在于晶粒界面明显划分晶粒的计数

图:面积法 3、截点法:截点数是计算已知长度的试验线段(或网格)与晶粒界面相交截部分的截点数,利用单位长度截点数来确定晶粒度级别数。截点法的精确度是计算的截点数或截距的函数,通过有效的统计结果可达到±0.25级的精确度。截点法的测量结果是无偏差的,重现性和再现性小于±0.5级。对同一精度水平,截点法由于不需要精确标计截点或截距数,因而较面积法测量快。 同心圆测量线(截点法) 三、金相图具体案例分析 以上只是大致的测定方法太过笼统,如果真的拿到一个具体的微观照片,我们该怎么做呢?下面我们来看一下具体操作与计算方法。

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

晶粒度研究分析

晶粒度分析

————————————————————————————————作者:————————————————————————————————日期:

DEFROM-3D之晶粒度分析模拟1.创建一个新问题 在主窗口中选中一个DB文件,单机后处理的Microsoftstructure按钮,打开 DEFORM-MICROSTRUCTURE窗口,单击Add project按钮增加计划。 2. 追踪选项设置 点击define按钮,在坯料上选取5个点,如图2所示

单机next按钮,在追踪界面选中No单选按钮,点击next。 3. 离散点阵设置 在离散点阵界面,类型选中Celluar Automata单选按钮(即CA模型),几何选中Square单选按钮,行和列分别设置为50,绝对尺寸为1,如图3所示 4. 边界条件设置 在边界条件界面,保持默认设置即可 5. 晶粒边界条件设置 在晶粒边界选项界面,设定Grain boundaries coupled to material flow 为No。Neighborhood选第一个,半径为1如图4所示

6. 位错密度常数设置 根据实际情况分别查找到对应材料各参数值,本次演示操作选取的值如图5所示 7. 再结晶设置 在再结晶界面选中Discontinous dynamic recrystallization (DRX)复选框,如图6所示,点击next 8. 形核状况设置 (1)在晶核形成界面1选中Function of threshold dislocation density and probability 单选按钮,如图7所示,然后next (2)在晶核形成条件界面2里,Critical dislocation density for DRX设为0.02,Probability of nucleation设为0.01,如图8所示,然后单击next。

机械加工常用金属材料及特性

简介:1. 45——优质碳素结构钢,是最常用中碳调质钢。主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例 1. 45——优质碳素结构钢,是最常用中碳调质钢。 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2. Q235A(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3. 40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4. HT150——灰铸铁。应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5. 35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件 6. 65Mn——常用的弹簧钢。应用举例:小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制做弹簧环、气门簧、离合器簧片、刹车弹簧、冷卷螺旋弹簧,卡簧等。 7. 0Cr18Ni9——最常用的不锈钢(美国钢号304,日本钢号SUS304)特性和应用: 作为不锈耐热钢使用最广泛,如食品用设备,一般化工设备,原于能工业用设备 8. Cr12——常用的冷作模具钢(美国钢号D3,日本钢号SKD1) 特性和应用: Cr12钢是一种应用广泛的冷作模具钢,属高碳高铬类型的莱氏体钢。该钢具有较好的淬透性和良好的耐磨性;由于Cr12钢碳含量高达2.3%,所以冲击韧度较差、易脆裂,而且容易形成不均匀的共晶碳化物;Cr12钢由于具有良好的耐磨性,多用于制造受冲击负荷较小的要求高耐磨的冷冲模、冲头、下料模、冷镦模、冷挤压模的冲头和凹模、钻套、量规、拉丝模、压印模、搓丝板、拉深模以及粉末冶金用冷压模等

金属力学性能

E,弹性模量,表征材料对弹性变形的抗力, δs:呈现屈服现象的金属拉伸时,试样在外力不增加仍能继续伸长的应力,表征材料对微量塑性变形的抗力。 σbb:是灰铸铁的重要力学性能指标,是灰铸铁试样弯曲至断裂前达到的最大弯曲里(按弹性弯曲应力公式计算的最大弯曲应力) δ:延伸率,反应材料均匀变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力(或指材料抵抗裂纹扩展能力) 低温脆性:某些金属及中低强度钢,在实验的温度低于某一温度Tk时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔集聚型变为穿晶解理型,断口特征由纤维状态变为结晶状,这就是低温脆性 Kic:断裂韧度,为平面应变的断裂韧度,表示在平面应变条件下材料抵抗裂变失稳扩展的能力 弹性比功(弹性比能):表示单位体积金属材料吸收变形功的能力σ-1:疲劳极限,表明试样经无限次应力循环也不发生疲劳断裂所对应的能力 循环韧性(消振性):表示材料吸收不可逆变形功的能力(塑性加载)Ψ:断面收缩率,缩经处横截面积的最大缩减量与原始横截面积的百分比, Ak:冲击功、,冲击试样消耗的总能量或试样断裂过程中吸收的总能量 σtて:在规定温度(t)下,达到规定的持续时间(て)而不发生断裂的最大应力。 氢致延滞断裂:由于氢的作用而产生的延滞断裂现象。 δ0.2:屈服强度 △K th:疲劳裂纹扩展门槛值,表征阻止裂纹开始扩展的能力 δbc:抗拉强度,式样压至破坏过程中的最大应力。 包申效应:金属材料经过预加载产生少量塑变,卸载后再同向加载,规定残余伸长应力增加,反向加载,规定残余应力减低的现象,称为包申效应。蠕变:材料在长时间的恒温应力作用下,(即使应力低于屈服强度)也会缓慢地产生塑性变形的现象。 NSR:缺口敏感度,缺口试样的抗拉强度δbn与等截面尺寸光滑试样的抗拉强度δb之比。 力学行为:材料在外加载荷,环境条件及综合作用下所表现出的行为特征。强度:变形和断裂的抗力 应力腐蚀:金属在拉应力和特定化学介质共同作用下,进过一段时间后所产生的应力脆断现象。 滞弹性(弹性后效):在弹性范围内快速加载或卸载后,随时间延长而产生附加弹性应变的现象。 1.断裂可以分为(裂纹形成)与(扩展)两个阶段。静拉伸断裂宏观断口分为(纤维区)、(放射区)、(剪切唇)三个区域。该断口微观特征:(纤维状)对于脆性穿晶断裂断口主要特征:(放射状)和(结晶状) 2.典型疲劳断裂的宏观断口分为三个区(疲劳源)(疲劳区)(瞬间区)疲劳断口宏观特征(贝纹线、海滩花样)、微观特征(疲劳条带) 3.应力腐蚀微观断口可以看到呈(枯树枝状)的微观裂纹,呈(泥状花样)的腐蚀产物和(腐蚀抗) 4.微孔聚集型断裂的微观特征(韧窝),解理断裂的微观特征主要有(解理台阶)和(河流花样),沿晶断裂的微观特征(冰糖状) 断口和(晶粒状)断口。 5.应力状态系数值越大,表示应力状态越(软),材料越容易产生(塑性)变形和(韧性)断裂。为测量脆性材料的塑性,常选用应力状态系数值(较大)的试验方法。 6.在扭转实验中,塑性材料的断裂面与式样轴线(垂直),脆性材料的断裂面与式样轴线(成45°角)。 7.接触疲劳和应力水平,疲劳可分为(高周疲劳)和(低周疲劳),疲劳断裂的典型宏观特征是(贝纹线),微观特征是(疲劳条带)。 8.在缺口式样冲击试验中,缺口式样的厚度越大式样的冲击韧性越(小)韧脆转变温度越(高)。

晶粒度检验

《钢材质量检验》单元教学设计一、教案头

二、教学过程设计

三、讲义 1.金属的硬度试验 晶粒度检验 晶粒度是晶粒大小的量度,它是金属材料的重要显微组织参量。钢中晶粒度的检验,是借助金相显微镜来测定钢中的实际晶粒度和奥氏晶粒度。 实际晶粒度,就是从出厂钢材上截取试样所测得的晶粒大小。而奥氏晶粒度则是将钢加热到一定温度并保温足够时间后,钢中奥氏晶粒度大小。下面介绍奥氏晶粒度的显示和晶粒度的测定方法。 晶粒度的测定 在国家标准GB6394-86中规定测量晶粒度的方法有比较法、面积法和截点法等,生产检验中常用比较法。 1.比较法 比较法是在100倍显微镜下与标准评级图对比来评定晶粒度的。标准图是按单位面积内的平均晶粒数来分级的,晶粒度级别指数G和平均晶粒数N的关系为式中 N=2G+3 N-放大100倍时每1mm2面积内的晶粒数,晶粒越细,N越大,则G越大。 在GB6394-86中备有四个系列的标准评级图,包括I无孪晶晶粒,II有孪晶晶粒,III 有孪晶晶粒(深反差腐蚀),IV钢中奥氏体晶粒。图4-10是系列I的标准评级图。实际评定时应选用与被测晶粒形貌相似的标准评级图,否则将应引入视觉误差。当晶粒尺寸过细或过粗,在100倍下超过了标准评级图片所包括的范围,可改用在其他放大倍数下参照同样标准评定,再利用表查出材料的实际晶粒度。 评级时,一般在放大100倍数的显微镜下,在每个试样检验面上选择三个或三个以上具有代表性的视场,对照标准评级图进行评定。 若具有代表性的视场中,晶粒大小均匀,则用一个级别来表示该种晶粒。若试样中发现明显的晶粒不均匀现象,则应当计算不同级别晶粒在视场中各占面积的百分比,若占优势的晶粒不低于视场面积的90%时。则只记录一种晶粒的级别指数,否则应当同时记录两种晶粒度及它们所占的面积,如6级70%-4级30%。 比较法简单直观,适用于评定等轴晶粒的完全再结晶或铸态的材料。比较法精度较低,为了提高精度可把标准评级图画在透明纸上,再覆在毛玻璃上与实际组织进行比较。 四、训练任务

晶粒度测试与判定

1.晶粒度 晶粒大小的度量称为晶粒度。通常用长度、面积、体积或晶粒度级别数等不同方 晶粒大小的度量称为晶粒度通常用长度面积体积或晶粒度级别数等不同方 法评定或测定晶粒度大小。使用晶粒度级别数表示的晶粒度与测量方法和计量单 位无关。 2.实际晶粒度(如按照产品实际热处理条件进行渗碳淬回火后进行测试的晶粒度)实际晶粒度是指钢在具体热处理或热加工条件下所得到的奥氏体晶粒大小。实际 晶粒度基本上反映了钢件实际热处理时或热加工条件下所得到的晶粒大小,直接 影响钢冷却后所获得的产物的组织和性能平时所说的晶粒度如不作特别的说明 影响钢冷却后所获得的产物的组织和性能平时所说的晶粒度,如不作特别的说明,一般是指实际晶粒度。 3.本质晶粒度(如按照GB/T6394中渗碳法进行测试的晶粒度) 本质晶粒度是用以表明奥氏体晶粒长大倾向的晶粒度,是一种性能,并非指具体 的晶粒。根据奥氏仁晶粒长大倾向的不同,可将钢分为本质粗品粒钢和本质细晶 粒钢两类。就是这个材料的底子好不好,耐热处理晶粒不长大的能力好不好。 测定本质晶粒度的标准方法为:将钢加热到930℃±10℃,保温6h后测定奥氏体 晶粒大小,晶米度在1级~4级者为本质粗晶粒钢,晶粒度在5级~8级者为本质细 晶粒大小晶米度在级级者为本质粗晶粒钢晶粒度在级 晶粒钢。加热温度对奥氏体晶粒大小的影响见下图

一般情况下,本质细晶粒钢的晶粒长大倾向小,正常热处理后获得细小的实际晶粒,淬火温度范围较宽,生产上容易掌握,优质碳素钢和合金钢都是本质细晶粒钢。本质粗晶粒钢的晶粒长大倾向大,在生产中必须严格控制加热温度。以防过热晶粒粗化。值得注意的是加热温度超过930℃。本质细晶粒钢也可能得到很粗大的奥氏体晶粒。甚至比同温度下本质粗晶粒钢的晶粒还粗。 至比同温度下本质粗晶粒钢的晶粒还粗

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 ???? 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 ???? 材料的工艺性能指材料适应冷、热加工方法的能力。 ???? (一)、机械性能 ???? 机械性能是指金属材料在外力作用下所表现出来的特性。 ??? 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 ??? 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 ?? 5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。??? 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) ??? 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm 2 ) . (二)、工艺性能 ???? 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。 (三)、化学性能 ???? 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回 金属材料的检验

金属力学性能总结

金属力学性能 1、拉伸试验条件:光滑试样室温下进行的轴向加载静拉伸。 2、屈服强度:许多金属拉伸时会出现物理屈服现象,而又有许多金属没有物理屈服现象。把规定产生0.2%残余伸长所对应的应力称为屈服强度。 3、抗拉强度:是试件拉断以前的最高载荷除以试件原始横断面积,用σb表示 4、弹性模数的物理意义:(1)弹性模数是弹性应变为1时的弹性应力;(2)弹性模数实际是原子间静电引力的表征,其数值反应了原子间结合力的大小;(3)弹性模数是弹性变形时应力和应变的比值,或比例常数; 5、包申格效应:试件预加载产生微量塑性变形,然后再同向加载σe升高,反向加载时σe下降,我们把这种现象称作包申格效应。 6、弹性后效:当试件沿OA加载时,呈线性。在A点保持负荷不变,随时间延长变形在慢慢增加,产生变形AB。到B 时卸曲线落到D点。这时可以看到变形OD。OD称为正弹性后效。随时间的延长,又从D慢慢回复到O,DO为反弹性后效。我们把这种与时间有关的弹性变形称为弹性后效。 7、金属在加载和卸载时应力应变曲线不重合,形成一个封闭的环,这个环叫做弹性滞后环。 8、布氏硬度计:软材料,如低碳钢、铜合金、铝合金、铸铁等。 洛氏硬度计:淬火,硬材料。 维氏硬度计:涂层,硬度梯度变化的材料。 9、金属强化方法:细晶强化,固溶强化,第二相强化,形变强化。 10、物理屈服现象:在应力—应变曲线上出现应力不增加,时而有所降低,而变形仍在继续进行的现象。产生机制详见P53。 11、形变强化的意义: (1)形变强化可使金属机件具有一定的抗偶然过载能力,保证机件安全 (2)形变强化可使金属塑变均匀进行,保证冷变形工艺的顺利实现 (3)形变强化可提高金属强度,和合金化、热处理一样,也是强化金属的重要工艺手段 (4)形变强化还可降低塑性改善低碳钢的切削加工性能 12、颈缩实际过程:塑性变形→形变强化→塑性变形不停→塑性变形转移不出去→不停塑变→颈缩。 13、解理断裂特征:河流花样,解理舌,穿晶断裂。 14、光滑试件微孔断裂三个区域:纤维区,放射区,剪切唇。 15、应力场强度因子KI:表示在名义应力的作用下,含裂纹体处于弹性平衡状态时,裂纹前端附近应力场的强弱。 16、金属的断裂韧性KIC是材料常数。材料抵抗裂纹失稳扩展的的能力可用KIC来评定 17、GI:裂纹扩展单位面积由系统所提供的弹性能量叫做裂纹扩展力或称为裂纹扩展时的能量释放率,简称能量释放率。 18、格里菲斯理论优点:①与实测值相符,解决了实际强度与理论强度的巨大差异;②数学形式上简明。缺点:①未考虑塑性变形;②对于没有初始微裂纹的材料无法解释。 19、裂纹的三种扩展方式:张开型,滑开型,撕开型。 20、冷脆:钢在低温冲击时其冲击功极低,这种现象称为钢的冷脆 力学本质:温度低于Tk时,塑变强度高于正断强度,在塑变前发生正断。 物理本质:温度降低时,屈服强度提高造成的。 21、韧脆转变温度的确定:①能量准则法:以Ak值降至某一特定数值时的温度作为Tk。②断口形貌准则法:按特定断口形貌对应的温度确定Tk. 22、疲劳宏观断口分为三个区:疲劳裂纹产生区,疲劳裂纹扩展区,最后断裂区 23、疲劳线为宏观断口,疲劳辉纹 24、损伤度:设试件在循环应力σ1下的疲劳寿命为Nf1,若在该应力幅下循环n1次,则损伤度为n1D1=n1/Nf1. 25、用非发展裂纹解释过负荷损害界的产生:在疲劳极限的应力下,虽经过无限多次应力循环而未断裂,但金属内部还是存在有宏观尺寸的裂纹,只是这种裂纹在金属内部不发展,故称为“非发展裂纹”,这种裂纹在疲劳极限应力下有一临界尺寸。过载荷应力下造成的裂纹长度如果小于此临界尺寸,则此裂纹在疲劳极限应力下不会发展,即过载荷没有造成损伤。如果大于临界尺寸,则在以后的疲劳极限应力下,此裂纹将不停的发展,以致断裂,即过载荷造成了损伤。另外,在过负荷下即有裂纹向前扩展因素,又有裂纹顶端塑性区产生压应力和变形强化及时效等阻止裂纹增长因素,尤其是阻止裂纹长大到非发展裂纹尺寸,所以会产生过负荷损害界。 26、驻留滑移带:反复在原位出现,就像驻扎在那里总也不消失的滑移带称为驻留滑移带。 27、表面强化处理提高疲劳极限的原因:表面强化后不仅直接提高了表面层的强度,从而提高了疲劳极限,而且由于强化层存在,使表层产生残余压应力,降低了交变载荷下表面层的拉应力,是疲劳裂纹不易产生或扩展。 28、金属材料在应变保持一定的情况下,形变抗力在循环过程中不断增高的现象称为循环硬化;形变抗力在循环过程中

晶粒大小对于金属机械性能的影响

晶粒大小对于金属力学性能的影响 晶粒大小对金属材料性能有很大影响: 晶粒之间的“边界”叫晶界,晶粒越大-则晶界也越大,而“晶界”又类似 于材料中的“裂纹”;那么晶粒越大则材料中的“裂纹”越大。其次,晶粒部的 原子排列较为规则,容易产生“滑移”;而晶界上的原子排列较为凌乱,存在许 多“位错”和“劈间”,使得原子面之间不易滑移和变形。那么晶粒细小时,其 的滑移变形就小且能被晶界有效抑制。第三,晶粒、晶界都越细小,外来的总重 荷及变形将分散到更多的晶粒上,岂不更好。所以,晶粒越细--则金属材料的性 能越好。 控制晶粒大小方法很多,主要原理有两个: 1.增大金属结晶时的过冷度。 2.增加结晶晶核。 第一节: 金属材料液态成形基础 (二)金属的结晶 1.结晶的条件 纯金属液体缓慢冷却过程的时间—温度的关系曲线,即纯金属的冷却曲线。 冷却曲线 分析冷却曲线可知,液体纯金属冷却到平衡结晶温度Tm(又称为理论结晶温度,热力学凝固温度,熔点和凝固点等)时,液体纯金属并不会立即自发地出现结晶,只有冷却到低于Tm后,固体才开始结晶,而后长大,并放出大量潜热,使温度回升到略低于平衡结晶温度,而在冷却曲线上出现一个温度平台。当凝固完成后,由于没有潜热释放,因此,温度又继续下降。理论结晶温度Tm与实际结晶温度Tn之间的温度差称为过冷度,写作△T=Tm-Tn。 由图可知,金属结晶必须在一定的过冷度下才能自发的进行。从热力学观点来分

析,任何引起系统自由能降低的过程都是自发的过程。在金属结晶前后的两个状态下,金属是由两个不同的相所组成,即液相和固相。两种不同聚集状态自然有两种不同的自由能。 图2-1-29所示是同一金属材料液相和固相的自由能—温度变化曲线。图中显示,两条曲线有一个交点,其对应的温度即为理论结晶温度Tm。在温度Tm时,液相和固相处于两相平衡状态,自由能相等,可长期共存。高于温度Tm时,液相比固相的自由能低,金属处于液相才是稳定的;低于温度Tm时,金属稳定的状态为固相。 因此,液态金属如果要结晶,就必须处于Tm温度以下。金属在液态与固态之间存在有一个自由能差(△F),这个能量差△F就是促使液体结晶的驱动力。 2.结晶的过程 液态金属结晶是由形核和长大两个密切联系的基本过程来实现。 液态金属结晶时,首先在液态中形成一些极微小的晶体(称为晶核),然后再以它们为核心不断地长大。在这些晶体长大的同时,又出现新的晶核并逐渐长大,直至液体金属消失。如动画2-1-8所示:

机械常用金属材料与特性

1、45——优质碳素结构钢,是最常用中碳调质钢。(欢迎关注自动化爱好者论坛,更多学习资料,更多交流者) 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4、HT150——灰铸铁应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5、35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件

金属力学性能总结

第一章 材料的拉伸性能 1、对拉伸试件有什么基本要求?为什么? 答:1、实验条件 光滑试件 室温大气介质 单向单调拉伸载荷 2、试件的形状和尺寸 圆柱试件:l 0=5d 0或l 0=10d 0 板状试件:l 0=5.650A 或11.30A 原因:为了比较不同尺寸试样所测得的延性,要求试样的几何相似,l 0/ 0A 要为一常数。其中A 0为试件的初始横截面积。 2、为什么拉伸试验又称为静拉伸试验?拉伸试验可以测定哪些力学性能? 答:拉伸加载速率较低,s MPa dt d /10~1/=σ,故称静拉伸试验。 拉伸试验可以测定的力学性能为: 弹性模量E 屈服强度σs 抗拉强度σb 延伸率δ 断面收缩率ψ 3、试件的尺寸对测定材料的断面收缩率是否有影响?为什么?如何测定板材的断面收缩率? 答:断面收缩率是材料本身的性质,与试件的几何形状无关。 测定板材的断面收缩率的方法: 断面收缩率ψ=(a 0b 0-a 1b 1)/ a 0b 0 4、试画出示意图说明:脆性材料与塑性材料的应力—应变曲线有何区别?高塑性材料与低塑性材料的应力—应变曲线又有何区别? 答:1、左图近似为一直线,只有弹性变形阶段,没有塑性变形阶段,在弹性变形阶段断裂, 说明是脆性材料。 右图为弯钩形曲线,既有弹性变形阶段,又有塑性变形阶段,在塑性变形阶段断裂, 说明是塑性材料。 2、左图曲线有弹性变形阶段与均匀塑性变形阶段,没有颈缩现象,曲线在最高点处中断,即在均匀塑性变形阶段断裂,且塑性变形量小,说明是低塑性材料。 右图曲线有弹性变形阶段,均匀塑性变形阶段,颈缩后的局集塑性变形阶段,曲线在经过最高点后向下延伸一段再中断,即在颈缩后的局集塑性变形阶段断裂,且塑性变形量大,说明是高塑性材料。

钢的奥氏体晶粒度试验中影响晶粒大小因素的研究

摘要:本文综合了大量文献资料,就钢中酸溶铝含量、加热方式和奥氏体晶粒的显示方法对奥氏体晶粒大小、粒粗化温度的影响进行了较详细的分析研究。 关键词:酸溶铝加热方式晶粒显示方法奥氏体晶粒度晶粒粗化温度 0引言 钢的奥氏体晶粒度试验方法很多,国家标准GB6394-86《金属平均晶粒度测定法》〔1〕规定可使用渗碳法、氧化法、网状铁素体法、网状珠光体法、网状渗碳体法和晶粒边界腐蚀法等。1922年麦克奎德(Mac2quid)和爱恩(Ehn)首先采用渗碳法检验钢的奥氏体晶粒度到现在己近八十年的历史〔2〕,1938年托宾(Tobin)和肯洋(KenYon)开始采用氧化法检验钢的奥氏体晶粒度以来也有六十多年历史〔3〕。冶金部1964年制订的YB27-64标准中列出了七种试验方法,其中有渗碳法、氧化法和晶粒边界腐蚀法。1977年修订后的YB27-77标准中强调了晶粒边界腐蚀法。1978年7月,冶金部下发了通知,规定某些合金结构钢应采用晶粒边界腐蚀法〔4〕。自此,人们才认真地比较了各种试验方法〔5-10〕。试验和生产实践中发现,不同的试验方法所得结果相互间可以出现很大的差异。钢的冶体晶粒度试验中影响晶粒大小的因素进行较详细的分析和研究。 1钢中酸溶铝含量的影响 奥氏体晶粒度试验中所采用的钢试样,同一钢种,因冶炼方法、冶炼工艺、炉次不同,钢中酸溶铝含量有较大差异。钢中酸溶铝含量将对钢的奥氏体晶粒度带来很大影响。文献〔5〕的作者采用电炉钢和电炉冶炼再经电渣重熔的30CrMnSiA钢加热到900℃保温3h,电炉钢奥氏体晶粒细小均匀,而电渣钢则为严重混晶,电渣钢的粗化温度比电炉钢要低。电渣重熔过程中,熔渣成分在不断地变化,对于1吨电渣锭(长1.3m)来说,渣中的SiO2含量由电极投入前的百分之零点几逐渐增高到补缩后的百分之四左右,即钢中的铝将按下列反应被烧损:4〔A1〕+3〔SiO2〕=3〔Si〕+2〔Al2O3〕。结果分析表明,电渣钢锭中的残余铝减少了。文献〔11、12〕的作者指出,电渣重熔的合金结构钢,由于铝的烧损和偏析,在实验条件下检验奥氏体晶粒度时,电渣重熔钢易出现混晶,它的晶粒粗化温度较电炉钢低。 文献〔13〕的作者研究了影响20Cr2Ni4A钢晶粒长大的因素,认为钢中酸溶铝的影响最大。酸溶铝含量为0.042%的钢,在930℃,保温100h后也不发生晶粒粗化,奥氏体晶粒平均弦长也没有变化酸溶铝含量低(0.003%)的钢,在930℃保温1h~3h后奥氏体晶粒迅速粗化,粗大晶粒所占面积达40%,且随保温时间的继续增加而粗化。钢中酸溶铝含量由0.003%增加到0.042%时,奥氏体晶粒粗化温度可由850℃提高到1050℃,相差达200℃。

平均晶粒度概念

平均晶粒度概念 表示晶粒大小的尺度叫晶粒度。 晶粒度可用晶粒的平均面积或平均直径表示。工业生产上采用晶粒度等级来表示晶粒大小。标准晶粒度共分8级,1-4级为粗晶粒,5-8级为细晶粒。 一般晶粒度越大,也就是越细越好 钢的晶粒度按其奥氏体化条件与长大倾向刁又分成起始晶粒度、实际晶粒度、本质晶粒度三起始晶粒度指钢在临界温度以上加热,奥化过程中最初形成的奥氏体晶粒的晶粒度,即奥转变刚刚完成,其晶粒边界开始接触时的晶粒大,J 称初生晶粒度。实际晶粒度指某一实际条件下所得到的实粒大小。本质晶粒度只代表在某一条件下,奥氏体的长大倾向。 一、晶粒大小与力学性能的关系: 晶粒大小对材料的性能影响很大,实践证明,材料的屈服强度σs与晶粒直径d符合Hall-Petch公式:σs =σ0 + K d1/2 式中,σ0和K 是两个与材料有关的常数。 可见,晶粒越细小,材料的强度越高。不仅如此,晶粒细小还可以提高材料的塑性和韧性。 奥氏体的晶粒大小对钢随后的冷却转变及转变产物的组织和性能都有重要影响。通常,粗大的奥氏体晶粒冷却后得到粗大的组织,其力学性能指标较低。需要了解奥氏体晶粒度的概念以及影响奥氏体晶粒度的因素。

二、奥氏体晶粒度的概念: 奥氏体晶粒大小是用晶粒度来度量的。可用晶粒直径、单位面积中的晶粒数等方法来表示晶粒大小。晶粒度的评定一般采用比较法,即金相试样在放大100倍的显微镜下,与标准的图谱相比。YB27-77将钢的奥氏体晶粒度分为8级,1级最粗,8级最细(见P208图)。0级以下为超粗晶粒,8级以上超细晶粒。 奥氏体晶粒度级别(N): 生产上用晶粒度N表示晶粒大小,晶粒度级别与晶粒的大小有如下关系:n = 2N-1 式中n表示放大100倍时,1平方英寸(645.16㎜2)上的晶粒数。n越大,N越大,晶粒越细。n0= 2N+3式中n0表示放大1倍时,1平方毫米上的晶粒数。 几个概念:起始晶粒度、本质晶粒度、实际晶粒度 1、起始晶粒度:奥氏体转变刚刚完成,即奥氏体晶粒边界刚刚相互接触时的奥氏体晶粒大小称为起始晶粒度。通常情况下,起始晶粒度总是比较细小、均匀的。起始晶粒大小取决于形核率和长大速度。加热转变终了时所得A晶粒度称为起始晶粒度。n0 = 1.01(I/V)1/2 式中:I-形核率,V-长大速度。 2、本质晶粒度:根据YB27-64试验方法,即在930±10℃,保温3~8h后测定的奥氏体晶粒大小称为本质晶粒度。如晶粒度为1~4级,称为本质粗晶粒钢,晶粒度为5~8级,则为本质细晶粒钢。本质晶粒度表示在规定的加热条件

金属力学性能

1、名词解释 (1)比例极限:比例极限σp是应力与应变成正比关系的最大应力,即在应力 -应变曲线上开始偏离直线时的应力;σp =Pp/Fo(MPa)Pp----比例极限的载荷,N;Fo ----试样的原截面积,m2或 mm2 (2)变动载荷:指载荷的大小、方向、波形、频率和应力幅,随时间发生周期性变化的一类载荷; (3)平面应力状态:如果在某种情况下,三个主应力中的一个为零。例如σ3=0那么这一点的应力状态,我们就称为平面应力状态。 (4)应力腐蚀断裂:由拉伸应力和腐蚀介质外加敏感的材料组织联合作用而引起的慢长而滞后的低应力脆性断裂称为应力腐蚀断裂(SCC)。 (5)弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 (6)冷脆:刚在低温冲击时其冲击功极低:这种现象称为钢的冷脆。 (7)循环硬化:指金属材料在应变保持一定的情况下,形变抗力在循环过程中不断增高的现象。 (8)循环软化:金属材料的应变保持在一定的情况下,材料的形变抗力在循环过程中下降,即产生该应变所需的应力逐渐减小,该现象称为“循环软化”。 (9)刚度:在弹性范围内,构件抵抗变形的能力:Q=P/ε=бA/ε=EA (10)固溶强化:把异类元素原子溶入基体金属得到固溶合金,可以有效地提高屈服强度,这样的强化方法称为固溶强化。 需掌握的知识要点: 冲击韧性:指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,冲击吸收功用符号Ak表示,单位为J。 2、洛氏硬度有几种,其各自的符号及适用范围。P25 布氏硬度:表示符号HB,适用范围:不适宜零件表面测量,薄壁件或表面硬化层 洛氏硬度:表示符号HR, 适用范围:适用于各种不同硬度材料的检验,不适用于具有粗大组成相火不均匀组织材料的硬度测定 维氏硬度:表示符号HN, 适用范围:常使用于测定表面硬化层仪表零件的硬度显微硬度:表示符号HK, 适用范围:适用于细,线材料的加工硬化程度。 3、断裂的基本过程的组成:裂纹形成,扩展 4、S-N曲线的测定方法,对于一般疲劳极限和有限寿命部分的测试方法分别是什么:分别是升降法和成组试验法 5、变形的种类及各自的特点。 弹性变形:a,有可逆性(外力作用下弹性变形产生,外力去除弹性变形消失)b,单值性(应力和应变保持线性)c,全程性(弹性变形在金属受力到断裂以前全程伴随)塑性变形:1,单晶金属塑变是位错运动的结果2,单晶体金属位错滑移的切应力极小3,单晶体金属切变强度由位错原开动四个阻力组成4,塑变中伴随有弹性变形和形变强化5,位错运动阻力对温度敏感 6、断裂韧度的测试方法分别是什么:三点弯曲法,紧凑拉伸法 7、静拉伸实验能够获得的强度性能指标有哪些?

常用金属材料的特性

它们都是含碳量比较低的优质碳素结构钢。它们不同的主要是两方面,一是含碳量不同;而是机械性能不同。 从化学成分上来看,是含碳量不同,10#钢平均含碳量为万分之10,20#钢平均含碳量为万分之20。 由于含碳量的不同就导致了它们的机械性能的不同。碳素结构钢随着含碳量的增加,强度硬度都相应提高,塑性纫性相应降低。10#、20#属于低碳钢,强度硬度不高,塑性纫性都很好。它们之间比较来说,10#钢的强度和硬度比20#钢要低;10#钢的塑性和纫性比20#钢要好,也是说要软些。 我国钢号表示方法的分类说明 1.碳素结构钢 ①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(σs)为235 MPa的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3.碳素工具钢 ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4.易切削钢 ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5.合金结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。 ③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如20MnVB钢中。钒为0.07-0.12%,硼为0.001-0.005%。 ④高级优质钢应在钢号最后加“A”,以区别于一般优质钢。 ⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如,铆螺专用的30CrMnSi钢,

相关文档
最新文档