数学模型_ 微分方程_

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

数学建模作业、微分方程实验、北京工业大学

2微分方程实验 1、微分方程稳定性分析 绘出下列自治系统相应的轨线,并标出随 t 增加的运动方向,确定平■衡点, 并按稳定的、渐近稳定的、或不稳定的进行分类: 解:(1)由 f (x ) =x=0, f (y ) =y=0;可得平衡点为(0,0), ___ 1 0 系数矩阵A ,求得特征值入1=1,入2=1; 0 1 p=-(入1+入2)=-2<0 , q=入1入2=1>0;对照稳定性的情况表,可知平■衡点(0, 0) 是 不稳定的。 图形如下: (2)如上题可求得平衡点为(0,0 ),特征值入1=-1,入2=2; p=-(入1+入2)=-1<0 , q-入1入2=-2<0;对照稳定性的情况表,可知平■衡点(0, 0) 是 不稳定的。 其图形如下: dx ⑴dt dt x, y; dx dt dy dt dx x, ⑶尸 2y ;晋 dx y , (4) ? 2x;也 dt x+1, 2y.

(3) 如上题可求得平■衡点为(0,0 ),特征值入1=0 + 1.4142i,入2=0 -1.4142i; p=-(入1+入2)= 0, q-入1入2=1.4142>0;对照稳定性的情况表,可知平■衡点(0, 0)是不稳定的。 其图形如下: (4) 如上题可求得平衡点为(1,0 ),特征值入1=-1,入2=-2; p=-(入1+入2)= 3>0, q=入1入2=2>0;对照稳定性的情况表,可知平■衡点(1, 0) 是稳定的。 其图形如下:

2、种群增长模型 一个片子上的一群病菌趋向丁繁殖成一个圆菌落.设病菌的数目为N,单位 成员的增长率为r1,则由Malthus生长律有竺r1 N,但是,处丁周界表面的dt 那些病菌由丁寒冷而受到损伤,它们死亡的数量与N2成比例,其比例系数为r2, 求N满足的微分方程.不用求解,图示其解族.方程是否有平衡解,如果有,是否为稳定的? 解:由题意很容易列出N满足的微分方程:坐r1N r2N; f(N) dt 令f(N)=O,可求得方程的两个平■衡点N1=0,N2=「22/r i2 1 1 d2N 1 5 5 2 (r1 r2N 2) (r1N r2N 2) dt 2 进而求得 A d2N 令r dt 2 2 0可求得N=r2 /4r〔 则N=N1 N=N2 N=r22/4r i2可以把第一象限划为三部分,且从下到上三部分中分 0,冬dt2 .2 2 c dN cdN c dN cdN 0, ;—0, —r 0; —0, ―r dt dt dt dt 则可以画出N (t) 的图形,即微分方程的解族,如下图所示:

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建 立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对 微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有 所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能 近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性 质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t时刻病人人数() x t连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0 t=时有0x个病人。 +?病人人数增加 建模:t到t t

()()()x t t x t x t t λ+?-=? (1) 0,(0)dx x x x dt λ== (2) 解得: 0()t x t x e λ= (3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型 假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ= (4) 由于 ()()1s t i t += (5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-= (6)

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

最新31微分方程与微分方程建模法汇总

31微分方程与微分方 程建模法

第三章微分方程模型 3.1微分方程与微分方程建模法 一、微分方程知识简介 我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系:(1)初等积分法(一阶方程及几类可降阶为一阶的方程) ?Skip Record If...?(2)一阶线性微分方程组(常系数线性微分方程组的解法) ?Skip Record If...?(3)高阶线性微分方程(高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理。 0.常数变易法:常数变易法在上面的(1)(2)(3)三部分中都出现过,它是由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次方程或方程组的解的一种方法。 1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法,掌握全微分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。 分离变量法:(1)可分离变量方程: ?Skip Record If...? (2) 齐次方程:?Skip Record If...? 常数变易法:(1) 线性方程,?Skip Record If...??Skip Record If...?

(2) 伯努里方程,?Skip Record If...??Skip Record If...? 积分因子法:化为全微分方程,按全微分方程求解。 对于一阶隐式微分方程?Skip Record If...?有 参数法:(1) 不含x或y的方程:?Skip Record If...? (2) 可解出x或y的方程:?Skip Record If...? 对于高阶方程,有 降阶法:?Skip Record If...? 恰当导数方程 一阶方程的应用问题(即建模问题)。 2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次微分方程的通解结构,刘维尔公式等); n阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下

第三讲微分方程的理论与数学建模

第三讲 微分方程的理论与数学建模 一、微分方程模型的建立 函数是事物的内部联系在数量方面的反映,如何寻找变量之间的函数关系,在实际应用中具有重要意义。在许多实际问题中,往往不能直接找出变量之间的函数关系,但是根据问题所提供的情况,有时可以列出含有要找的函数及其导数的关系式。这就是所谓的微分方程,从而得出微分方程模型。 例1 物体冷却过程的数学模型 将物体放置于空气中,在时刻0=t 时,测量得它的温度为1500=u C ,10分钟后测量得温度为 C u 1001=。我们要求此物体的温度u 和时间t 的关系,并计算20分钟后物体的温度。这里我们假定 空气温度保持为C u a 24=。 解 为了解决上述问题,需要了解有关热力学的一些基本规律。例如,热量总是从温度高的物体向温度低的物体传导的;在一定的温度范围内,一个物体的温度变化速度与这一物体的温度和其所在介质温度的差值成正比。这是已为实验证实了的牛顿(Newton )冷却定律。 设物体在时刻t 的温度为)(t u u =,则温度的变化速度以 dt du 来表示。注意到热量总是从温度高的物体向温度低的物体传导的,因而a u u >0。所以温度差a u u -恒正;又因物体将随时间而逐渐冷却,故温度变化速度dt du 恒负。故有: dt du )(a u u k --= (1.1) 这里0>k 是比例常数。方程(1.1)就是物体冷却过程的数学模型,它含有未知函数u 及它的一阶导数dt du ,这样的方程称为一阶微分方程。 为了解出物体的温度u 和时间t 的关系,我们要从方程(1.1)中解出u 。注意到a u 是常数,且0>-a u u ,可将(1.1)改写成 kdt u u u u d a a -=--)( (1.2) 这样u 和t 就被分离开了。两边积分,得到 c kt u u a ~)ln(+-=- (1.3) 这里c ~是任意常数。上式可写成 c kt a e u u ~+-=- 令c e c ~=,则有 kt a ce u u -+= (1.4) 再根据初始条件: 当0=t 时,0u u = (1.5) 可得a u u c -=0,于是 kt a a e u u u u --+=)(0 (1.6) 如果k 的数值确定了,(1.6)就完全决定了温度u 和时间t 的关系。 根据条件10=t 时,1u u =,得到 k a a e u u u u 1001)(--+= 由此得到a a u u u u k --=10ln 101051.066.1ln 10 1≈=。从而 t e u 051.012624-+= (1.7)

数学建模作业求解常微分方程和人口模型问题

实验报告 课程名称:数学建模 课题名称:求解常微分方程与人口模型 专业:信息与计算科学 姓名:胡家炜 班级: 123132 完成日期: 2016 年 6 月 10 日

一.求解微分方程的通解 (1). dsolve('2*x^2*y*Dy=y^2+1','x') ans = (exp(C3 - 1/x) - 1)^(1/2) -(exp(C3 - 1/x) - 1)^(1/2) i -i (2). dsolve('Dy=(y+x)/(y-x)','x') ans = x + 2^(1/2)*(x^2 + C12)^(1/2) x - 2^(1/2)*(x^2 + C12)^(1/2) (3). dsolve('Dy=cos(y/x)+y/x','x') ans = (pi*x)/2-x*log(-(exp(C25 + log(x)) - i) /(exp(C25 + log(x))*i - 1))*i (4). dsolve('(x*cos(y)+sin(2*y))*Dy=1','x') ans = -asin(x/2 + lambertw(0, -(C30*exp(- x/2 - 1))/2) + 1) (5). dsolve('D2y+3*Dy-y=exp(x)*cos(2*x)','x') ans = C32*exp(x*(13^(1/2)/2 - 3/2)) + C33*exp(-x*(13^(1/2)/2 + 3/2)) + (13^(1/2)*exp(x*(13^(1/2)/2-3/2))*exp((5*x)/2(13^(1/2)*x)/2)* (2*sin(2*x) - cos(2*x)*(13^(1/2)/2 - 5/2)))/(13*((13^(1/2)/2 - 5/2)^2 +4))-(13^(1/2)*exp(x*(13^(1/2)/2+3/2))*exp((5*x)/2 +(13^(1/2)*x)/2)*(2*sin(2*x)+cos(2*x)*(13^(1/2)/2+5/2))) /(13*((13^(1/2)/2 + 5/2)^2 + 4)) (6)dsolve('D2y+4*y=x+1+sin(x)','x') ans = cos(2*x)*(cos(2*x)/4 - sin(2*x)/8 + sin(3*x)/12 - sin(x)/4 + (x*cos(2*x))/4 - 1/4) + sin(2*x)*(cos(2*x)/8 - cos(3*x)/12 + sin(2*x)/4 + cos(x)/4 + (x*sin(2*x))/4 + 1/8) + C35*cos(2*x) + C36*sin(2*x)

数学建模的介绍

一、数学建模的意义 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时) (第5章 微分方程模型) 1.(验证)传染病模型2(SI 模型)p136~138 传染病模型2(SI 模型): 0(1),(0)di k i i i i dt =-= 其中, i (t )是第t 天病人在总人数中所占的比例。 k 是每个病人每天有效接触的平均人数(日接触率)。 i 0是初始时刻(t =0)病人的比例。 1.1 画~di i dt 曲线图p136~138 取k =0.1,画出i dt di ~的曲线图,求i 为何值时dt di 达到最大值,并在曲线图上标注。 参考程序:

提示:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图 用fplot函数,调用格式如下: fplot(fun,lims) fun必须为一个M文件的函数名或对变量x的可执行字符串。 若lims取[xmin xmax],则x轴被限制在此区间上。 若lims取[xmin xmax ymin ymax],则y轴也被限制。 本题可用 fplot('0.1*x*(1-x)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2) fun必须为一个M文件的函数名或对变量x的可执行字符串。 返回自变量x在区间x1

常微分方程数学建模中的应用(免费版)

常微分方程在数学建模中的应用 这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为9 1006.3?,而在以后7年中,人口总数 以每年2%的速度增长,这样19610=t ,9 01006.3?=N ,02.0=r ,于是 ) 1961(02.09e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点). 但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改. 例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地

常微分方程在数学建模中的应用

北方民族大学学士学位论文 论文题目:常微分方程在数学建模中的应用 院(部)名称:信息与计算科学学院 学生姓名:马木沙 专业:信计学号:20093490 指导教师姓名:魏波 论文提交时间: 论文答辩时间: 学位授予时间: 北方民族大学教务处制

摘要 本文利用常微分方程和数学建模二者之间的联系,了解微分方程的一般理论、微分方程解的存在惟一性、微分方程的稳定性问题、通过几个典型的数学模型如:人口模型、减肥的数学模型、化工车间通风模型、传染病的传播模型及定性分析等例子来体现微分方程在数学建模中的应用. 用数学理论解决实际生活中的问题.微分方程的出现以及运用微分方程在数学建模中的应用,就是为了更好地使更多的人理解并运用数学理论,更好的解决实际生活中的问题.努力在各个领域利用并渗透数学知识的广泛运用. 关键词:常微分方程,数学建模,数学模型

Abstract In this paper, ordinary differential equations and mathematical modeling contact between the two, understand the general theory of differential equations, stability problems of the existence and uniqueness of differential equations, differential equations, several typical mathematical models such as: demographic model,example of the mathematical model of weight loss, chemical plant ventilation model, spread of infectious diseases, model and qualitative analysis to reflect the application of differential equations in mathematical modeling. found that the application of mathematical theory to study and solve problems in the actual process of the emergence of ordinary differential equations andOrdinary Differential Equations in Mathematical Modeling widely used, in order to better enable ordinary people to understand and use mathematical theory, solving real-world problems. sublimation theory by the knowledge-based transformation to the ability to type, highlight the differential equationsand differential equations in mathematical modeling efforts made outstanding and significant contribution in various fields. Keywords: ordinary differential equations, mathematical modeling, mathematical model.

扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

数学建模课程简介

《数学建模》课程简介 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 内容简介: 本课程以物理、生态、环境、医学、管理、经济、信息技术等领域的一些典型实例为背景,阐述如何通过建立数学模型的方法来研究、解决实际问题的基本方法和技能。开设本课程的目的是,在传授知识的同时,通过典型建模实例的分析和参加建模实践活动,培养和增强学生自学能力、创新素质。参加数学建模课的学习,应自己动手解决一、二个实际问题,以求在实际参与中获取真知。 本课程包括一定学时的讨论班,学生可利用课外时间自己参与建模实践活动并自愿参加由指导教师组织的讨论班活动。选修本课程的本科生经双向选择还有机会参加全国大学生数学建模竞赛(每年约90人)和美国大学生数学建模竞赛(每年为21人)。 推荐教材或参考书: “数学建模”,杨启帆、谈之奕、何勇编著,浙江大学出版社出版,2006年7月 《数学建模》教学大纲 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 一、教学目的与基本要求: 通过典型数学模型分析和课外建模实践,使学生基本掌握运用数学知识建立数学模型来研究科研问题或实际课题的基本技能与基本技巧,本课程教学除传授知识外还要求学生在实际建模中注意培养和提高自身的能力,以便提高自己的综合素质与实际本领。 二、主要内容及学时分配: 1.数学建模概论,3学时 2.初等模型,8学时:舰艇的汇合,双层玻璃的功效,崖高的估算,经验模型,参数 识别,量纲分析法建模,方桌问题、最短路径与最速方案等 3.微分方程建模,14学时:马尔萨斯模型和罗杰斯蒂克模型,为什么要用三级火箭发 射人造卫星,药物在体内的分布,传染病模型,捕食系统的P-P模型,双种群生态 系统研究等

数学模型 微 分 方 程

数学模型 13.人体注射葡萄糖溶液时,血液中葡萄糖浓度g(t)的增长率与注射速率r 成正比,与人体血液容积v 成反比,而由于人体组织的吸收作用,g(t)的减少率与g(t)本身成正比。分别在以下几种假设下建立模型,并讨论稳定情况。 (1)人体血液容积v 不变。 (2)v 随着注入溶液而增加。 (3)由于排泄等因素v 的 增加有极限值 解:模型假设: 本模型中主要符号说明为: 葡萄糖浓度g(t) 注射速率r 人体血液容积v 基本模型为: g k V r k dt dg 21-= (1k ,02>k ,常数) ⑴ (1)V 为常数时,平衡点V k r k g 210= 稳定。 如果以g 为横轴、 dt dg 为纵轴作出方程的图形(图1),可以分析葡萄糖浓度增长速度dt dg 随着g 的增加而变化的情况,从而大概地看出g(t)的变化规律。 令2.01=k ,5.02=k ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.2/100-0.5g,{g,0,100},PlotStyle->{RGBColor[1,0,0]}] 得到: 图1 dt dg ~g 曲线 再利用matlab 在操作窗口中输入以下代码命令:

g=dsolve('Dg=k1*r/v-k2*g','g(0)=g0','t') 其解为 g =k1*r/v/k2+exp(-k2*t)*(-k1*r+g0*v*k2)/v/k2 整理得到: 2 20112)(vk vk g r k e v r k t g t k +-+=- ⑵ 令2.01=k ,5.02=k ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.2/100+Exp[-0.5t],{t,0,100},PlotStyle->{RGBColor[1,0,0]}] 得到: 图2 g ~t 曲线 由图可以知道它在平衡点V k r k g 210= 稳定。 (2)不妨设 β=dt dV (0>β,常数) ⑶ 方程⑴,⑵不存在平衡点。若由⑵解出t V t V β+=0)(代入⑴,得到 g k t V r k dt dg 201-+=β ⑷ 则⑷不能是自治方程。因为平衡点及稳定性的概念只是对自治方程而言才有意义,而⑷不能是自治方程,所以不能考虑它的稳定性。 (3)不妨设 V )(V dt dV -=1μ (0>μ,常数) ⑸ 如果以V 为横轴、dt dV 为纵轴作出方程的图形(图3),可以分析人体血液容积V 增长速度dt dV 随着V 的增加而变化的情况,从而大概地看出V(t)的变化规

常微分方程在数学建模中的应用论文

毕业论文 论文题目:常微分方程在数学建模中的应用姓名: 学科专业: 指导教师: 完成时间:

常微分方程是数学理论(特别是微积分)联系实际的重要工具,它不仅与几何学、力学、电子技术、自动控制、星际航行、甚至和化学、生物学、农业以及经济学都有着密切的联系。本文结合实践背景,建立数学模型,并利用所得结果去解释某些实际问题。 关键字常微分方程、人口预测模型、市场价格模型、混合溶液的数学模型、震动模型

第一章人口预测模型 第二章市场价格模型 第三章混合溶液的数学模型第四章震动模型

绪论 当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态,研究它的控制手段时,通常要建立对象的动态模型。建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其他对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析、预测或控制了。 事实上在微分方程课程中,解所谓应用题时我们遇到简单的建立动态模型问题,例如“一质量为m的物体自高h处自由下落,初速度是零,设阻力与下落速度的平方成正比,比例系数为k,求下落速度随时间的变化规律。”又如“容器内有盐水100L,内含盐10kg,令以3L/min的速度从一管放进净水,以2L/min的速度从另一管抽出盐水,设容器内盐水浓度始终是均匀的,求容器内含盐量随时间变化规律。”本文讨论的是常微分方程在数学建模中的应用。

第一章 人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1(马尔萨斯(Malthus )模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为91006.3?,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3?=N ,02.0=r ,于是 )1961(02.09e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间

相关文档
最新文档