《烧结理论与工艺》第四章 烧结过程燃烧与传热

化工原理答案第四章 传热

第四章 传 热 热传导 【4-1】有一加热器,为了减少热损失,在加热器的平壁外表面,包一层热导率为(m·℃)、厚度为300mm 的绝热材料。已测得绝热层外表面温度为30℃,另测得距加热器平壁外表面250mm 处的温度为75℃,如习题4-1附图所示。试求加热器平壁外表面温度。 解 2375℃, 30℃t t == 计算加热器平壁外表面温度1t ,./()W m λ=?016℃ (1757530025005016016) t --= ..145 025********t =?+=℃ 【4-2】有一冷藏室,其保冷壁是由30mm 厚的软木做成的。软木的热导率λ= W/(m·℃)。若外表面温度为28℃,内表面温度为 3℃,试计算单位表面积的冷量损失。 解 已 知 .(),.123℃, 28℃, =0043/℃ 003t t W m b m λ==?=, 则单位表面积的冷量损失为 【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。若所测固体的表面积为0.02m 2 ,材料的厚度为0.02m 。现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。 解 根据已知做图 热传导的热量 .28140392Q I V W =?=?= .().() 12392002 002280100Qb A t t λ?= = -- 【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=(m·℃),厚度230b mm =;绝热砖层,热导率λ=(m·℃);普通砖层,热导率λ=(m·℃)。 耐火砖层内侧壁面温度为1000℃,绝热砖的耐热温度为940℃,普通砖的耐热温度为130℃。 (1) 根据砖的耐热温度确定砖与砖接触面的温度,然后计算绝热砖层厚度。若每块绝热砖厚度为230mm ,试确定绝热砖层的厚度。 (2) 若普通砖层厚度为240mm ,试计算普通砖层外表面温度。 解 (1)确定绝热层的厚度2b 温度分布如习题4-4附图所示。通过耐火砖层的热传导计算热流密度q 。 绝热砖层厚度2b 的计算 每块绝热砖的厚度为023m .,取两块绝热砖的厚度为 习题4-1附图 习题4-3附图 习题4-4附图

新版化工原理习题答案(05)第五章传热过程基础

第五章 传热过程基础 1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。 解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 L t t S Q 21-=λ 式中 W 50W 1005.0=?==IV Q m 02.0C 50C 200m 02.0212=?=?==L t t S ,,, 将上述数据代入,可得 ()()()()C m W 333.0C m W 5020002.002.05021??=??-??=-=t t S QL λ 2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为 20.30.0003t λ=+,W /(m C)??。两式中的t 可分别取为各层材料的平均温度。 解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 Q Q Q ==21 (5-32) 或 2 3221211b t t S b t t S Q -=-=λλ (5-32a ) 式中 115000.80.00060.80.0006 1.250.00032 t t t λ+=+=+?=+ 21000.30.00030.30.00030.3150.000152 t t t λ+=+=+?=+ 代入λ1、λ2得 2 .0100)00015.0315.0(4.01500)0003.025.1(-+=-+t t t t 解之得 C 9772?==t t ())()C m W 543.1C m W 9770003.025.10003.025.11??=???+=+=t λ 则 ()22111m W 2017m W 4 .0977*******.1=-?=-=b t t S Q λ 3.外径为159 mm 的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm ,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),

传热基本方程及传热计算

第三节传热基本方程及传热计算 可知,要强化传热过程主要应着眼于增加推动力和减少热阻, 也就是设法增大 t m 或者 增大传热面积A 和传热系数K 。 在生产上,无论是选用或设计一个新的换热器还是对已有的换热器进行查定,都是建 立在上述基本方程的基础上的, 传热计算则主要解决基本方程中的 Q ,A,K, tm 及有关量的 计算。传热基本方程是传热章中最主要的方程式。 、传热速率Q 的计算 冷、热流体进行热交换时,当热损失忽略,则根据能量守恒原理,热流体放出热 量Qh ,必等于冷流体所吸收的热量 Qc ,即Qn Qc ,称之热量衡算式。 i.i. 无相变化时热负荷的计算 (1) ( 1)比热法 Q m h c ph T 1 T 2 m c C pc t 2 11 式中 Q ――热负荷或传热速率, J .S 1或W ; mh , mc ――热、冷流体的质量流量, kg.s -1; Cpc,Cph ――冷、热流体的定压比热,取进出口流体温度的算术平均值下的比热, k J . (kg.k ) -1; T 1 ,T 2——热流体进、出口温度,K(° C ); t 1 ,t 2 —冷流体的进出口温度,K(° C )。 (2) 热焓法 Q m(l 1 I 2) (4 — 13) 式中 丨 1 ――物料始态的焓,k J .kg -1; I 2 ――物料终态的焓,k J .kg -1。 2 ?有相变化时热负荷计算 Q Gr (4—14) 式中 G ――发生相变化流体的质量流量, kg.s -1; r ---- 液体汽化(或蒸汽冷凝)潜热, k J .kg -1。 注意:在热负荷计算时,必须分清有相变化还是无相变化, 然后根据不同算式进行计算。 对蒸汽的冷凝、冷却过程的热负荷,要予以分别计算而后相加。 当要考虑热损失时,则有: 从传热基本方程 或 Q kA t m t Q m 1 kA 传热推动力 传热热阻 (4-11) (4-lla) (4-12)

最新05第五章传热过程基础

05第五章传热过程基 础

第五章 传热过程基础 1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。 解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 L t t S Q 21-=λ 式中 W 50W 1005.0=?==IV Q m 02.0C 50C 200m 02.0212=?=?==L t t S ,,, 将上述数据代入,可得 ()()()()C m W 333.0C m W 5020002.002.05021??=??-??=-=t t S QL λ 2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为20.30.0003t λ=+,W /(m C)??。两式中的t 可分别取为各层材料的平均温度。 解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 Q Q Q ==21 (5-32) 或 2 3221211b t t S b t t S Q -=-=λλ (5-32a )

式中 115000.80.00060.80.0006 1.250.00032 t t t λ+=+=+?=+ 21000.30.00030.30.00030.3150.000152 t t t λ+=+=+?=+ 代入λ1、λ2得 2 .0100)00015.0315.0(4.01500)0003.025.1(-+=-+t t t t 解之得 C 9772?==t t ())()C m W 543.1C m W 9770003.025.10003.025.11??=???+=+=t λ 则 ()22111m W 2017m W 4 .0977*******.1=-?=-=b t t S Q λ 3.外径为159 mm 的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm ,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),设A 的内层温度和B 的外层温度分别为170 ℃和 40 ℃,试求每米管长的热损失;若将两层材料互换并假设温度不变,每米管长的热损失又为多少? 解: ()()m W 150m W 100159100502159ln 0.11159502159ln 1.014017014.32ln 21ln 212 3 21212 1=++?++?+-??=+-=r r r r t t L Q πλπλ A 、 B 两层互换位置后,热损失为 ()()m W 5.131m W 100159100502159ln 1.01159502159ln 0.114017014.32ln 21ln 212 3 21212 1=++?++?+-??=+-=r r r r t t L Q πλπλ

最新第四章 传热 练习题答案

第四章传热练习题 一、选择题: 1、关于传热系数K下述说法中错误的是() A、传热过程中总传热系数K实际是个平均值; B、总传热系数K随着所取的传热面不同而异; C、总传热系数K可用来表示传热过程的强弱,与冷、热流体的物性无关; D、要提高K值,应从降低最大热阻着手; 答案:C 2、影响对流传热系数的因素有( )。 A、产生对流的原因; B、流体的流动状况; C、流体的物性; D、流体有无相变; E、壁面的几何因素; 答案:A、B、C、D、E 3、传热过程中当两侧流体的对流传热系数都较大时,影响传热过程的将是()。 A、管避热阻; B、污垢热阻; C、管内对流传热热阻; D、管外对流传热热阻; 答案:B 4、冷热水通过间壁换热器换热,热水进口温度为90?C,出口温度为50?C,冷水进口温度为15?C,出口温度为53?C,冷热水的流量相同,且假定冷热水的物性为相同,则热损失占传热量的()。 A、5%; B、6%; C、7%; D、8%; 答案:A 解:由 () 2 1 T T c W Q ph h h - = , () 2 1 t t c W Q pc c c - = 得 ()()()() 05 .0 40 38 40 50 90 15 53 50 90 2 1 1 2 2 1= - = - - - - = - - - - = - T T t t T T Q Q Q h c h 5、有两台同样的管壳式换热器,拟作气体冷却器用。在气、液流量及进口温度一定时,为使气体温度降到最低应采用的流程为() A、气体走管外,气体并联逆流操作; B、气体走管内,气体并联逆流操作; C、气体走管内,串联逆流操作; D、气体走管外,串联逆流操作; 答案:D 6、对在蒸汽-空气间壁换热过程中,为强化传热,下列方案中()在工程上是可行的: A、提高空气流速; B、提高蒸汽流速; C、采用过热蒸汽以提高蒸汽温度; D、在蒸汽一侧管壁上加装翅片,增加冷凝面积并及时导走冷凝液;

传热过程的计算

1 总传热速率方程 如图所示,以冷热两流体通过圆管的间壁进行换热为例,热流体走管内,温度为T,冷流体走管外温度为t,管壁两侧温度分别为T W和t w,壁厚为,b,其热导率为λ,内外两侧流体与固体壁面间的表面传热系数分别为αi和α0。根据牛顿冷却定律及傅立叶定律分别列出对流传热及导热的速率方程: 对于管内侧: 对于管壁导热: 对于管外侧: 即 故有 令(4.6.1) 则(4.1.1) 该式称为总传热速率方程。 A为传热面积,可以是内外或平均面积,K与A是相对应的。 2 热流量衡算 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:

(热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 3 传热系数和传热面积 (1)传热系数K和传热面积A的计算 传热系数K是表示换热设备性能的极为重要的参数,是进行传热计算的依据。K的大小取决于流体的物性、传热过程的操作条件及换热器的类型等,K值通常可以由实验测定,或取生产实际的经验数据,也可以通过分析计算求得。 传热系数K可利用式(4.6.1)进行计算。但传热系数K应和所选的传热面积A相对应,假设和传热面积A i、A m和A0相对应的传热系数K分别为K i、K m和K0,则其相互关系为:

柴诚敬《化工流体流动与传热》(第2版)配套题库【章节题库】 第5章 传热过程基础【圣才出品】

第5章传热过程基础 一、选择题 1.冷热流体进行对流传热,冷流体一侧的对流传热系数α1为100W/(m2·K),热流体一侧的对流传热系数α2等于1000W/(m2·K),总传热系数K接近哪一侧的对流传热系数α值,要提高K,应提高哪一侧的α值()。 A.接近α1,提高α2 B.接近α2,提高α1 C.接近α1,提高α1 D.接近α2,提高α2 【答案】C 2.下列各种情况下对流给热系数由大到小的正确顺序是()。 ①空气流速为30m/s时的α ②水的流速为1.5m/s时的α ③蒸汽滴状冷凝时的α ④水沸腾时的α A.③>④>①>② B.④>③>②>① C.③>④>②>① D.③>②>④>① 【答案】C

【解析】因为有相变时的给热系数比无相变时要大,而气相的给热系数又大于液相,所以蒸汽滴状冷凝时的α>水沸腾时的α>水的α>空气的α。 3.强制对流(无相变)流体的对流传热系数关联式来自()。 A.理论方法 B.量纲分析法 C.数学模型法 D.量纲分析和实验相结合的方法 【答案】D 4.在间壁式传热中,热量从热流体传到冷流体的过程,热阻主要集中在()。 A.金属壁 B.冷、热流体的层流底层内 C.冷、热流体的主体 D.平均分配在各层 【答案】B 5.在对流传热系数关联式中,反映流体流动状况对对流传热影响的准数是()。 A.努塞尔特准数Nu B.普朗特准数Pr C.雷诺准数Re D.格拉斯霍夫准数Gr

【答案】C 6.热量传递的基本方式是()。 A.恒温传热和定态变温传热 B.导热给热和热交换 C.汽化、冷凝与冷却 D.传导传热、对流传热和辐射传热 【答案】D 7.关于辐射传热,下列几种说法中错误的是()。 A.除真空和大多数固体外,热射线可完全透过 B.热射线和光辐射的本质完全相同,不同的仅仅是波长的范围 C.热射线和可见光一样,都服从折射定律 D.物体的温度不变,其发射的辐射能也不变 【答案】A 【解析】任何物体只要其绝对温度不为零度,都会不停地以电磁波的形式向外界辐射能量,且热辐射线可以在真空中传播,无需任何介质。和可见光一样,当来自外界的辐射能投射到固体表面上时,会发生吸收、反射和穿透现象。 8.蒸汽-空气间壁换热过程为强化传热,下列方案中的()在工程上是可行的。 A.提高空气流速 B.蒸汽侧管壁上装翅片,增加冷凝面积并及时导走冷凝液

4-4-传热过程计算

知识点4-4 传热过程计算 【学习指导】 1.学习目的 通过本知识点的学习,掌握换热器的能量衡算,总传热速率方程和总传热系数的计算。在传热计算的两种方法中,重点掌握平均温度差法,了解传热单元数法及应用场合。 2.本知识点的重点 换热器的能量衡算,总传热速率方程和总传热系数的计算,用平均温度差法进行传热计算。 3.本知识点的难点 传热单元数法。 4.应完成的习题 4-4 在某管壳式换热器中用冷水冷却热空气。换热管为φ25×2.5 mm的钢管,其导热系数为45 W/(m·℃)。冷却水在管程流动,其对流传热系数为2600 W/(m2·℃),热空气在壳程流动,其对流传热系数为52 W/(m2·℃)。试求基于管外表面积的总传热系数以及各分热阻占总热阻的百分数。设污垢热阻可忽略。 4-5 在一传热面积为40m2的平板式换热器中,用水冷却某种溶液,两流体呈逆流流动。冷却水的流量为30000kg/h,其温度由22℃升高到36℃。溶液温度由115℃降至55℃。若换热器清洗后,在冷、热流体量和进口温度不变的情况下,冷却水的出口温度升至40℃,试估算换热器在清洗前壁面两侧的总污垢热阻。假设: (1)两种情况下,冷、热流体的物性可视为不变,水的平均比热容为4.174 kJ/(kg·℃); (2)两种情况下,αi、αo分别相同;

(3)忽略壁面热阻和热损失。 4-6 在套管换热器中用水冷却油,油和水呈并流流动。已知油的进、出口温度分别为140℃和90℃,冷却水的进、出口温度分别为20℃和32℃。现因工艺条件变动,要求油的出口温度降至70℃,而油和水的流量、进口的温度均不变。若原换热器的管长为1m,试求将此换热器管长增至若干米后才能满足要求。设换热器的热损失可忽略,在本题所涉及的温度范围内油和水的比热容为常数。 4-7 冷、热流体在一管壳式换热器中呈并流流动,其初温分别为32℃和130℃,终温分别为48℃和65℃。若维持冷、热流体的初温和流量不变,而将流动改为逆流,试求此时平均温度差及冷、热流体的终温。设换热器的热损失可忽略,在本题所涉及的温度范围内冷、热流体的比热容为常数。 4-8 在一管壳式换热器中,用冷水将常压下的纯苯蒸汽冷凝成饱和液体。已知苯蒸汽的体积流量为1600 m3/h,常压下苯的沸点为80.1℃,气化潜热为394kJ/kg。冷却水的入口温度为20℃,流量为35000kg/h,水的平均比热容为4.17 kJ/(kg·℃)。总传热系数为450 W/(m2·℃)。设换热器的热损失可忽略,试计算所需的传热面积。 4-9 在一传热面积为25m2的单程管壳式换热器中,用水冷却某种有机物。冷却水的流量为28000kg/h,其温度由25℃升至38℃,平均比热容为4.17 kJ/(kg·℃)。有机物的温度由110℃降至65℃,平均比热容为1.72 kJ/(kg·℃)。两流体在换热器中呈逆流流动。设换热器的热损失可忽略,试核算该换热器的总传热系数并计算该有机物的处理量。 4-10 某生产过程中需用冷却水将油从105℃冷却至70℃。已知油的流量为6000kg/h,水的初温为22℃,流量为2000kg/h。现有一传热面积为10 m2的套管式换热器,问在下列两种流动型式下,换热器能否满足要求: (1)两流体呈逆流流动; (2)两流体呈并流流动。 设换热器的总传热系数在两种情况下相同,为300 W/(m2·℃);油的平均比热容为1.9 kJ/(kg·℃),水的平均比热容为4.17kJ/(kg·℃)。热损失可忽略。

传热过程的计算16页

第五节 传热过程的计算 化工生产中广泛采用间壁换热方法进行热量的传递。间壁换热过程由固体壁的导热和壁两侧流体的对流传热组合而成,导热和对流传热的规律前面已讨论过,本节在此基础上进一步讨论传热的计算问题。 化工原理中所涉及的传热过程计算主要有两类:一类是设计计算,即根据生产要求的热负荷,确定换热器的传热面积;另一类是校核计算,即计算给定换热器的传热量、流体的流量或温度等。两者都是以换热器的热量衡算和传热速率方程为计算基础。 4-5-1 热量衡算 流体在间壁两侧进行稳定传热时,在不考虑热损失的情况下,单位时间热流体放出的热量应等于冷流体吸收的热量,即: Q=Q c =Q h (4-59) 式中 Q ——换热器的热负荷,即单位时间热流体向冷流体传递的热量,W ; Q h ——单位时间热流体放出热量,W ; Q c ——单位时间冷流体吸收热量,W 。 若换热器间壁两侧流体无相变化,且流体的比热容不随温度而变或可取平均温度下的比热容时,式(4-59)可表示为 ()()1221t t c W T T c W Q pc c ph h -=-= (4-60) 式中 c p ——流体的平均比热容,kJ/(kg ·℃); t ——冷流体的温度,℃; T ——热流体的温度,℃; W ——流体的质量流量,kg/h 。 若换热器中的热流体有相变化,例如饱和蒸气冷凝,则 ()12t t c W r W Q pc c h -== (4-61) 式中 W h ——饱和蒸气(即热流体)的冷凝速率,kg/h ; r ——饱和蒸气的冷凝潜热,kJ/kg 。 式(4-61)的应用条件是冷凝液在饱和温度下离开换热器。若冷凝液的温度低于饱和温度时,则式(4-61)变为 ()[]()122t t c W T T c r W Q pc c s ph h -=-+= (4-62) 式中 c ph ——冷凝液的比热容,kJ/(kg ·℃); T s ——冷凝液的饱和温度,℃。 4-5-2 总传热速率微分方程 图4-20为一逆流操作的套管换热器的微元管段d L ,该管段的内、外表面积及平均传热面积分别为d S i 、d S o 和d S m 。热流依次经过热流体、管壁和

第四章传热

第四章 传热过程 4-1 某化工厂有一台饱和蒸汽加热空气的换热器,经过一段时间运行后,发现空气出口的温度达不到原来的温度,其原因是( )。 A .空气湿度加大 B .换热器需要清洗 C .蒸汽流量减少 D .以上三种原因都有可能 答案:4-1 D 4-2 在一台换热器中,若保持热流体的进出口的温度恒定不变,当冷流体的流量提高一倍时,其出口温度将( )。 A .增大 B .减小 C .保持不变 D .无法判断 答案:4-2 B 4-3 绝压为140 kPa 、流量为1000 kg/h 的饱和蒸汽冷凝后,降温到60℃时所放出的热量为( )。已知140 kPa (绝压)时水蒸气的饱和温度为109.2 ℃,冷凝热为2234.4 kJ/kg ,水的平均比热容为4.201 kJ/(kg·℃)。 A .2441 kW B .2235 kW C .678 kW D .621 kW 答案:4-3 C C .组正确。 热量可由换热器的热量衡算求得,即 Q =W h r +W h c p h (T s -T 2) () 3600602.109201.410004.22341000-??+?= Q kW 678= 4-4 在套管换热器中,用冷水将某硝基苯从85℃冷却到35℃,硝基苯的流量为1000 kg/h 。冷却水的进出口温度分别20℃和30℃。硝基苯的平均比热容为1.61 kJ/(kg·℃),水的平均比热容为4.18 kJ/(kg·℃)。则冷却水的用量为( )。假设换热器热量损失可忽略。 A .1925 kg/h B .2400 kg/h C .535 kg/h D .667 kg/h 答案:4-4 A A .组正确 冷却水用量可由换热器的热量衡算求得,即 Q =W h c p h (T 1-T 2)=W c c p c (t 2-t 1) 则冷却水用量为

第四章 传 热

第四章传热 第一节概述 传热是指由于温度差引起的能量转移,又称热传递。 热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一种平衡状态变到另一种平衡状态所需要的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。热力学(能量守衡定律)和传热学(传热速率方程)两者的结合,才可能解决传热问题。 化工生产中对传热的要求经常有以下两种情况:一种是强化传热过程;另一种是削弱传热过程。 传热系统(例如换热器)中不积累能量(即输入能量等于输出的能量),称为定态传热。定态传热的特点是传热速率(单位时间传递的热量)在任何时刻都为常数,并且系统中各点的温度仅随位置变化而与时间无关。 根据传热机理不同,热传递有三种基本方式:传导、对流和辐射。在无外功输入时,净的热流方向总是由高温处向低温处流动。 若物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的运动而引起的热量传递称为热传导(又称导热)。固体中的热传导属于典型的导热方式。 流体中各部分之间发生相对位移所引起的热传导过程称为热对流(简称对流)。热对流仅发生在流体中。 流体中对流原因可分为两种:一是自然对流;二是强制对流。 在化工传热过程中,常遇到的并非单纯对流方式,而是流体流过固体表面时发生的对流和热传导联合作用的传热过程,即热由流体传到固体表面(或反之)的过程,通常将它称为对流传热(又称为给热)。 因热的原因而产生的电磁波在空间的传递,称为热辐射。所有物体(包括固体、液体和气体)都能将热能以电磁波形式发射出去,而不需要任何介质,也就是说它可以在真空中传播。物体之间相互辐射和吸收能量的总结果称为辐射传热。任何物体只要在热力学温度零度以上都能发射辐射能,但只有在物体温度较高时,热辐射才能成为主要的传热方式。 传热过程中,热、冷流体热交换可分为三种基本方式:一、直接接触式换热器和混合式换热器;二、蓄热式换热器和蓄热器;三、间壁式换热和间壁式换热器。

第九章 传热过程分析和换热器计算

第九章 传热过程分析和换热器计算 在这一章里讨论几种典型的传热过程,如通过平壁、圆筒壁和肋壁的传热过程通过分析 得出它们的计算公式。由于换热器是工程上常用的热交换设备,其中的热交换过程都是一些典型的传热过程。因此,在这里我们对一些简单的换热器进行热平衡分析,介绍它们的热计算方法,以此作为应用传热学知识的一个较为完整的实例。 9-1传热过程分析 在实际的工业过程和日常生活中存在着的大量的热量传递过程常常不是以单一的热量传递方式出现,而多是以复合的或综合的方式出现。在这些同时存在多种热量传递方式的热传递过程中,我们常常把传热过程和复合换热过程作为研究和讨论的重点。 对于前者,传热过程是定义为热流体通过固体壁面把热量传给冷流体的综合热量传递过程,在第一章中我们对通过大平壁的传热过程进行了简单的分析,并给出了计算传热量的公式 t kF Q ?=, 9-1 式中,Q 为冷热流体之间的传热热流量,W ;F 为传热面积,m 2 ;t ?为热流体与冷流体间 的某个平均温差,o C ;k 为传热系数,W/(?2m o C)。在数值上,传热系数等于冷、热流体间 温差t ?=1 o C 、传热面积A =1 m 2 时的热流量值,是一个表征传热过程强烈程度的物理量。在这一章中我们除对通过平壁的传热过程进行较为详细的讨论之外,还要讨论通过圆筒壁的传热过程,通过肋壁的传热过程,以及在此基础上对一些简单的包含传热过程的换热器进行相应的热分析和热计算。 对于后者,复合换热是定义为在同一个换热表面上同时存在着两种以上的热量传递方 式,如气体和固体壁面之间的热传递过程,就同时存在着固体壁面和气体之间的对流换热以及因气体为透明介质而发生的固体壁面和包围该固体壁面的物体之间的辐射换热,如果气体为有辐射性能的气体,那么还存在固体壁面和气体之间的辐射换热。这样,固体壁面和它所处的环境之间就存在着一个复合换热过程。下面我们来讨论一个典 型的复合换热过程,即一个热表面在环境中的冷却过程, 如图9-1所示。由热表面的热平衡可知,表面的散热热流应等于其与环境流体之间的对流换热热流加上它与包围壁面之间的辐射换热热流,即r c Q Q Q +=,式中Q c 为对流换 热热流;Q r 为辐射换热热流。它们分别为: ) (f w c c T T A Q -=α和 ), ()(44 0f w r s w r T T A T T A Q -=-=αεσ式中, f w s w r T T T T --= ) (440εσα 称为辐射换热系数。如果包围物体距离换热表面比较远,可以将 其温度视为与流体温度相同,于是有: ))((220f w f w r T T T T ++=εσα。于是总的换热热流可以写为:

第五章传热过程基础

合肥学院化学与材料工程系 化工原理电子教案 第五章 传热过程基础 第一节 传热导论 传热:冷热物体间的热量交换。 一、传热在化工中的应用: 1.加热 2.去热 3.隔热 4.热能的综合利用 二、传热方向。 高温 低温,推动力是温差ΔT 。 传热速率q 、阻力R 与推动力ΔT 之间的关系R T q ?∝ 三、学习本章的目的: 研究传热机理,了解设备结构,强化传热过程。 强化传热:提高传热速率Q ,即提高单位时间传热量。 第二节 传热物理量与传热基本方程 一、传热中的一些物理量和单位: 1.热量:是能量的一种形式。用Q 表示,[J]; 2.传热速率:单位时间内传递的热量 τ Q q = [ s J ]即[w ]; 3.热强度(热通量、热流密度):单位时间、单位传热面积所传递的热量。 QS Q [m w /2 ]; 4.焓:单位质量的物质所具有的热量称为焓。 [J/㎏]或[J/mol] 5.潜热:单位质量的物体在一定的温度下发生相变时所吸收或放出的热量; 6.恒压比热:压强恒定时(常指一个绝对大气压)单位质量的物体温度升高1[K]时所需要的热量。[11 --??K kg J ]或[11--??K mol J ]; 7.显热:物体的质量与比热及温度变化值的乘积。[T C m Q p ???=县]。 二.稳态传热与非稳态传热 当与热流方向垂直的任一截面上、某点的温度和传热速率随位置变化而不随时间而变化时,称为稳态传热。 当与热流方向垂直的任一截面上、某点的温度和传热速率既随位置变化又随时间而变化时,称为非稳态传热。 三、工业上的换热方法 1.直接换热(混合式换热)冷热两种流体在换热中直接混合而交换。例如:硫酸工业中,对高温的2SO 炉气进行降温,就是用冷水与2SO 直接接触进行换热。

传热过程常用计算方法

传热过程常用计算方法 6.2.2.1 换热器热工计算的基本公式 换热器热工计算的基本公式为传热方程式和热平衡方程式。 (1)传热方程 (6-12) 式中,Δt m为换热器的平均温差,是整个换热面上冷热流体温差的平均值,它是考虑冷热两流体沿传热面进行换热时,其温度沿流动方向不断变化,故温度差Δt也是不断变化的。它不能像计算房屋的墙体的热损失或热管道的热损失等时,都把其Δt作为一个定值来处理。换热器的平均温差的数值,与冷、热流体的相对流向及换热器的结构型式有关。 (2)热平衡方程式 (6-13) 式中 G1,G2:热、冷流体的质量流量,kg/s; c1,c2:热、冷流体的比热,J/(kg·℃); t1′、t2′:热、冷流体的进口温度,℃; t1″、t2″:热、冷流体的出口温度,℃; G1c1,G2c2:热、冷流体的热容量,W/℃。 即各项温度的角标意义为:“1”是指热流体,“2”是指冷流体;”′”指进口端温度,”″”指出口端温度。 6.2.2.2 对数平均温差法 应用对数平均温差法计算的基本计算公式如式(6-12)所示,式中平均温差对于顺流和逆流换热器,由传热学可得,均为: (6-14) 由于温差随换热面变化是指数曲线,顾流与逆流相比,顺流时温差变化较显著,而逆流时温差变化较平缓,故在相同的进出口的温度下,逆流比顾流平均温差大。此外,顾流时冷流体的出口温度必然低于热流体的出口温度,而逆流则不受此限制。故工程上换热器一般都尽可能采用逆流布置。逆流换热器的缺点是高温部分集中在换热器的一端。除顺流、逆流外,根据流体在换热器中的安排,还有交叉流、混合流等。对于这些其它流动形式的平均温差,通常都把推导结果整理成温差修正系数图,计算时,先一律按逆流方式计算出对数平均温差,然后按流动方式乘以温差修正系数。 用对数平均温差法计算虽然较精确,但稍显麻烦。当Δt′/Δt″<1.7时,用算术平均温差代替对数平均温差的误差不超过2.3%,一般当Δt′/Δt″<2时,即可用算术平均温差代替对数平均温差,这时误差小于4%,即 Δt m=(Δt′+Δt″)/2 6.2.2.3 效能-传热单元数法(ε-NTU法) 换热器热工计算分为设计和校核计算,它们所依据的都是式(6-12)、(6-13)。这其中,除Δt m不是独立变量外,如将KA及G l c l、G2c2作为组合变量,独立变量也达8个,

传热过程分析与换热器的热计算杨世铭陶文栓传热学第四版答案

第 10 章 传热过程分析与换热器的热计 算 课堂讲解 课后作业 【10-3】一卧式冷凝器采用外径为25mm 壁厚1.5mm 的黄铜管做成热表面。已知管外 2 冷凝侧的平均传热系数 h o 5700W/(m K),管内水侧平均的表面传热系数 2 h i 4300W/(m K) 。试计算下列两种情况下冷凝器按管子外表面面积计算的总传热系数 (1) 管子内外表面均是洁净的 (2) 管内为海水,流速大于1m/s ,结水垢,平均温度小于50E ,蒸汽侧有油。 【解】 【10-13 】一台 1-2 型壳管式换热用来冷却 11 号润滑油。冷却水在管内流动, 2 t 2 20 C ,t 2 50 C ,流量为3kg/s ;热油入口温度为60°C, k 350W/(m K)。试计算: (1) 油的流量; (2) 所传递的热量; (3) 所需的传热面积。

【10-17】在一逆流式水-水换热器中,管内为热水,进口温度t,100 C出口温度为 t” 80 C;管外流过冷水,进口温度t 2, 20 C,出口温度t2” 70 C;总换热量350KW,

共有53根内径为16mm壁厚为1mm勺管子。管壁导热系数40w/ m* k ,管外流体的表 面传热系数h o 1500w/m *k,管内流体为一个流程。假设管子内、外表面都是洁净的试确定所需的管 子长度。 【解】计算管内平均换热系数 t f - 100 80 90 f2 C u 314.9 10 6Kg / m* s , 0.68w/m*k,Pr 1.95 t m 80 20 100 70 ln 60/30 43.28 c A 8.38m2,A n dL, J ? 本题中冷热流体总温差为43.3 C,管外冷流体侧占68%,管内侧约占32%,故不必 考虑温差的修正 【10-22】欲采用套管式换热器使热水与冷水进行热交换,并给出 t1 200 C, q m1 0.0144kg/s, t2 35 C, q m2 0.0233kg/s。取总传热系数为 2 2 k 980W/(m K),A 0.25m,试确定采用顺流与逆流两种布置时换热器所交换的热量、冷却水出口温度及换热器的效能。 【10-27】一台逆流式换热器刚投入工作时在下列参数下运行:t 1, 360 C,t「 300 C, t 2 30 °C,t2” 200 C , q m1 C 1=2500W/K K=800 W m k 。运行一年后发现,在、 q m2 c 2、及t1,、t2,保持不变的情形 下,冷流体只能被加热到162C,而热流体的出口温度则高于300C。试确定此情况下的污垢热阻及热流体的出口温度。 【解】不结垢时,

相关文档
最新文档