脱硫塔工艺介绍

脱硫塔工艺介绍

脱硫塔的工艺介绍

玻璃钢脱硫设备工流程:首先,热烟气进入预洗涤塔,与饱和硫酸铵溶液接触,烟气在此过程中被冷却,同时,由于饱和硫酸铵溶液中水的蒸发而析出硫酸铵晶体。已被冷却的烟气通过除雾器进入SO2吸收塔。

在吸收塔中,氨与水混合成氨液。烟气中的SO2在此被吸收,与氨反应生成硫酸铵。然后,脱硫后烟气经120米高的烟囱排入大气。

硫酸铵溶液被送入预洗涤塔循环利用。预洗涤塔中的硫酸铵料浆进入脱水系统。先经水利旋流器脱水,然后经离心机得到硫酸铵滤饼。

从旋流器和离心机回收的清液返回预洗涤器,循环利用。硫酸铵滤饼被送至造粒系统,得到高利用价值的颗粒硫酸铵肥料,在被火车或者卡车运走前,存放在能容纳50,000吨硫酸铵的圆顶储仓内。

玻璃钢脱硫塔

玻璃钢脱硫塔工艺特点

1.双碱法脱硫,塔内是钠碱为吸收剂,反应活性高、吸收速度快,可降低液气比,从而既可降低运行费用,又可减少水池、水泵和管道的投资;

2.用石灰中和沉淀,钠碱再生循环利用,损耗少,运行成本低;

3.正常操作下吸收过程无废水排放;

4.沉淀分离可靠,可大大降低水池的投资;

5.脱硫渣无毒,溶解度极小,无二次污染,可综合利用;

6.操作简便,系统可长期运行稳定。

烟塔合一新技术

烟塔合一新技术 0 概述 三河发电厂地处北京周边,电厂厂址位于河北省三河市燕郊,地处燕郊经济技术开发区东侧,厂址西距通州区17km、北京市区37.5km,东距三河市17km。电厂规划容量为1300MW~1400MW。一期工程已安装2台350MW凝汽式汽轮发电机组,#1、#2机组分别于 1999年12月、2000年4月投产。二期工程将安装2台300MW供热机组,烟气采用脱硫、脱硝、“烟塔合一” 技术,计划将于2007年10月、12月投产发电。 国华三河电厂扩建的二期工程为热电联产扩建工程,采用“烟塔合一”技术并将一、二期机组同步建设脱硫,达 到了整个电厂“增产不增污、增产减排污”的目的。 1“烟塔合一”技术的优点 “烟塔合一”技术是针对电力企业研制的当今世界上先进的环保技术,在城市规划和环境改善方面具有以下明显 优势:一是充分利用冷却塔的巨大能量,对除尘、脱硫后的湿烟气进行有效抬升,促进净烟气中未脱除污染物 的扩散,降低其落地浓度。二是由于机组不必再建设烟囱及脱硫系统的烟气再加热装置。这样不仅可缓解城市

建设用地紧张和建筑物限高等问题,并且可以显著改善城市周边电厂建设同城市整体规划的适应性和灵活度,有利于缩小热源、电源与负荷中心间的距离,提高电厂的经济性并有利于城市供热、供电的可靠性。?此项技术在国外已成功实施近二十多年,技术已臻成熟。目前我国有许多电厂正在实施这种技术。 2“烟塔合一”技术在三河电厂的应用 目前,河北三河电厂、天津国电津能公司和华能北京热电公司在新建机组均采用“烟塔合一”技术进行除尘、脱硝和脱硫排放,三河电厂是第一个采用国产化的“烟塔合一”技术的机组。 国华三河电厂为满足城市社会经济的快速发展,改善北京市区的大气环境质量,三河电厂二期工程(2×300MW机组)项目决定采用烟塔合一技术,主要基于以下几方面考虑: 第一、由于采用石灰石一石膏湿法脱硫系统,脱硫系统排放烟气温度只有50℃左右,若采用烟囱排放须对其进行再加热,温度达到S02的露点温度(72℃)以上。而 采用冷却塔排烟则无此限制,还可节省GGH系统和烟囱初期投资及运行费用。 第二、由于该项目选址距北京顺义机场较近,采用烟塔合一技术可有效避开对航空影响。 第三、脱硫系统所用的增压风机与锅炉所用的吸风机合而为一既节省了设备的初期投资,又为整个机组的经济 运行打下了良好的基础。 经测算,通过120米高的冷却塔排烟,对地面造成的SO2和PM10、NOX年均落地浓度总体好于240米高烟 囱排烟对地面造成的落地浓度。工程建成后,每年可减少排放SO2?2万多吨,烟尘100多吨,具有良好的环 保效益。 2.1本工程技术特点 本工程采用了烟塔合一的技术,取消了传统的烟囱,将经脱硫后的烟气通过穿过冷却塔筒壁的烟道送入塔中心, 随塔内蒸发气体一同排放。利用冷却塔排烟在国外已是先进成熟的技术,但在国内刚开始应用,本工程完全立足于自主开发设计和建造的工程尚无先例。 1、本工程排烟冷却塔技术取消了传统的高烟囱,将脱硫后的烟气通过烟道直接引入自然通风冷却水塔与水蒸气混合后,由冷却塔出口排入大气。经环评分析,尽管传统烟囱一般比双曲线冷却塔要高,烟囱排放的烟气温度也比冷却塔排出混合气体的温度要高,但冷却塔排放烟气时其热抬升高度及扩散效果是相当的。原因主要有以下两个方面:由于烟气通过冷却塔排放,烟气和冷却塔的热汽混合一起排放,具有巨大的热释放率。对于一个大型电厂来说,汽轮机的排汽通过冷却水带走的热量按热效

脱硫烟塔合一技术介绍.

脱硫烟塔合一技术介绍 从上个世纪八十年代初期开始,以德国为代表的一些发达国家开始尝试利用冷却塔排放湿法脱硫后的烟气,目的是节省较大的烟气再热器的投资和提高烟气排放的扩散效果,经过二十年的发展,到目前为止,全世界大概已经有三十多台机组采用了这种技术。 烟气通过冷却塔排放,是将烟气用烟气管道送入塔内配水装置的上方集中排放。这对冷却塔带来了两个方面的影响,一方面,烟气排入会使配水装置上方的气体流量增加,流速有所增加,带来额外的流动阻力,但冷却塔内烟气的流速很低,一般都在1.0m/s左右,即使流速增加30%,带来额外的流动阻力增加也非常有限,与冷却塔的其他阻力(人字柱、进风口、淋水装置、淋水、出口等阻力)相比,还是较小的。考虑这部分额外的流动阻力增加和烟气管道带来的局部阻力,将冷却塔的总阻力系数增加3。另一方面,烟气排入冷却塔与配水装置上方的湿空气发生混合换热现象,改变了塔内气体的密度。 锅炉在设计工况运行时,吸收塔出口烟气温度范围为43-50℃(主要决定于吸收塔入口烟气温度),考虑到烟道长度和环境温度变化带来的温度降低,进入冷却塔的烟气温度为36-43℃。 以下是就烟塔合一时可能遇到的问题进行探讨: 一、烟气能否从烟塔顺利排出 烟气能否从烟塔顺利排出,根本是看烟塔内填料上方混合气体的密度是否比环境空气的密度低。这两个密度差越大,通风量越大,混合气体的热浮力越大,烟气从烟塔排放的扩散效果就越好。在烟塔运行的绝大多数时间里,烟塔内填料上方混合气体的密度都比环境空气的密度低,烟气都会顺利排放。当夏季环境温度达到38℃,烟气温度只有为40℃时,烟气仍然可以通过烟塔顺利排出。但我们必须保证在机组运行的任何情况下,烟塔都能顺利排烟,就必须考虑到烟塔运行的极端情况。对烟塔来说,最极端恶劣的烟气排放工况就是:环境温度为极热(42℃),并且烟塔不通循环水。这时如果使烟气顺利排放,烟气温度必须达到52.5℃以上。环境温度为38℃,并且烟塔不进循环水时,使烟气顺利排放的最低烟气温度为48℃。但从吸收塔的热力计算可知,吸收塔出口的烟气温度变化范围有限,一般在43-50℃之间,从吸收塔出口到冷去塔出口还有一定的温度损失,为使烟气在极端工况时也能顺利从冷却塔排出,必须考虑设有对净烟气进行加热的措施。最简单实用的办法就是用一部分烟气走脱硫旁路的办法应付这种极端情况。 二、烟气通过冷却塔排放后,对冷却塔冷却效率影响 判别烟气通过冷却塔排烟对冷却塔冷却效率影响的依据是:烟气密度是否低于填料上方空气的密度。当烟气密度比填料上方空气的密度低时,烟气的排入会使冷

HPF脱硫工艺流程图

粗焦炉煤气脱硫工艺有干法和湿法脱硫两大类。干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100 ℃) 、中温(100 ℃~400 ℃) 和高温(> 400 ℃)脱硫剂。 干法脱硫由于脱硫催化剂硫容小,设备庞大,一般用于小规模的煤气厂脱硫或用于湿法脱硫后的精脱硫。 湿法脱硫又分为“湿式氧化法”和“胺法”。湿式氧化法是溶液吸收H2S后,将H2S直接转化为单质硫,分离后溶液循环使用。目前我国已经建成(包括引进)采用的具有代表性的湿式氧化脱硫工艺主要有TH法、FRC法、ADA法和HPF法。胺法是将吸收的H2S 经再生系统释放出来送到克劳斯装置,再转化为单质硫,溶液循环使用,主要有索尔菲班法、单乙醇胺法、AS法和氨硫联合洗涤法。湿法脱硫多用于合成氨原料气、焦炉气、天然气中大量硫化物的脱除。当煤气量标准状态下大于3000m3/h 时,主要采用湿法脱硫。 HPF法脱硫工艺流程: 来自煤气鼓风机后的煤气首先进入预冷塔,与塔顶喷洒的循环冷却液逆向接触,被冷却至25℃~30℃;循环冷却液从塔下部用泵抽出送至循环液冷却器,用低温水冷却至2 3℃~28℃后进入塔顶循环喷洒。来自冷凝工段的部分剩余氨水进行补充更新循环液。多余的循环液返回冷凝工段。

预冷塔后煤气并联进入脱硫塔A、脱硫塔B,与塔顶喷淋下来的脱硫液逆流接触,以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气进入下道工序进行脱氨脱苯。 脱硫基本反应如下: H2S+NH4OH→NH4HS+H2O 2NH4OH+H2S→(NH4)2S+2H2O NH4OH+HCN→NH4CN+H2O NH4OH+CO2→NH4HCO3 NH4OH+NH4HCO3→(NH4)2CO3+ H2O 吸收了H2S、HCN的脱硫液从脱硫塔A、B下部自流至反应槽,然后用脱硫液循环泵抽送进入再生塔再生。来自空压机站压缩空气与脱硫富液由再生塔下部并流进入再生塔A、B,对脱硫液进行氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。 再生塔内的基本反应如下: NH4HS+1/2O2→NH4OH+S (NH4)2S+1/2O2+ H2O→ 2NH4OH+S (NH4)2Sx+1/2O2+ H2O→2NH4OH+Sx 除上述反应外,还进行以下副反应: 2NH4HS+2O2→(NH4)2S2O3+ H2O 2(NH4)2S2O3+O2→2(NH4)2SO4+2S 从再生塔A、B顶部浮选出的硫泡沫,自流入硫泡沫槽,在此经搅拌,沉降分离,排出清液返回反应槽,硫泡沫经泡

现运行的各种脱硫工艺流程图汇总

现运行的各种脱硫工艺流程图汇总 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普 遍使用的商业化技术是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、 干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态 下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等 优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水 废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、 设备庞大等问题。 半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗 活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾

干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 烧结烟气脱硫 海水脱硫技术

利用冷却塔排放烟气

烟塔合一技术是将火电厂烟囱和冷却塔合二为一,取消烟囱,利用冷却塔排放烟气,冷却塔既有原有的散热功能,又替代烟囱排放脱硫后的洁净烟气。此项技术首先在德国使用,从20世纪70年代开始,已有了多座大型火电厂采用。在德国新建火电厂中,已经广泛地利用冷却塔排放脱硫烟气,成为没有烟囱的火电厂。2003年投产的1 000 MW 级Neideraussem电厂也采用此项技术。 采用“烟塔合一”技术的前提是对烟气的品质有一定的要求。以往我国电厂锅炉的排烟,含尘量和含SO2 量高,如由冷却塔排出,将使塔内盛水装置产生污垢,冷却水质变坏,塔筒的腐蚀 影响增大。 在我国新的火电厂排放标准中,规定烟气含尘量不大于50 mg/m3 , SO2 含量不大于400 mg/m3 ,NO x 含量不大于450 mg/m3 (对烟煤) 。在实际工程中,由于装设了脱硫效率90% ~95%的脱硫装置,烟气中SO2 含量可以达到200~300 mg/m3;采用低NO x 燃烧系统, NO x 含量不大于350mg /m3 。这样,便与德国“烟塔合一”电厂的烟气品质基本在同一水平。 烟塔合一工艺系统通常有2种排放形式,分别为外置式和内置式。 ? 外置式 把脱硫装置安装在冷却塔外,脱硫后的洁净烟气引入冷却塔内排放。 脱硫装置安装在冷却塔外,净烟气直接引到冷却塔喷淋层的上部,通过安装在塔内的除雾器除雾后均匀排放,与冷却水不接触。国外早期当脱硫系统运行故障时,由于原烟气的温度和二氧化硫的含量相对较高,不适于通过冷却塔排放,需经干式烟囱排放。目前由于脱硫装置运行稳定,冷却塔外一般不设

旁路烟囱 ?内置式 近几年国外的烟塔合一技术进一 步发展,开始趋向将脱硫装置布置 在冷却塔里面。使布置更加紧凑, 节省用地。其脱硫后的烟气直接从 冷却塔顶部排放。由于省去了烟 囱、烟气热交换器,减少了用地, 可大大降低初投资,并节约运行和 维护费用。 采用烟塔合一技术对烟气的影响 从环保角度来看,冷却塔排烟和烟囱排烟的根本区别在于: ?烟气或烟气混合物的温度不同。 ?混合物的排出速度不同。 ?混合处的初始浓度不同。 从图中可以看出烟塔合一技术与传统烟囱排烟有较大的不同。 n烟气抬升高度 理论分析: 从塔中排放出的净化烟气温度约50 ℃,高于塔内湿空气温度,发生混合换热现象,混合后的结果改变了塔内气体流动工况。由于进入塔内的烟气密度低于塔内空气的密度,对冷却塔内空气的热浮力产生正面影响。此外,进入冷却塔的烟气很少,其体积只占冷却塔空气体积的10%以下。故烟气能够通过自然冷却塔顺利排放。烟气的排入对塔内空气的抬升和速度等影响起到了正面作用。 在排放源附近,烟气的抬升受环境湍流影响较小。大气层的温度层不是很稳定时,烟气抬升路径主要受自身湍流影响,决定于烟气的浮力通量、动量通量及环境风速等。这段时间大约为几十秒至上百秒,这段时间内烟气上升路径呈曲线形式。烟气在抬升过程中,由于自身湍流的作用,会不断卷入环境空气。由于烟气不断卷入具有负浮力的环境空气,同时又受到环境中正位温梯度的抑制,它的抬升高度路径会逐渐变平,直至终止抬升。 湿烟气也遵循以上抬升规律,不同的是饱和的湿烟气在抬升过程中,会因为压强的降低及饱和比湿的减小而出现水蒸气凝结。水蒸气凝结会释放凝

醇胺法脱硫工艺流程图

1.醇胺法脱硫工艺流程图。 (一) 工艺流程 醇胺法脱硫脱碳的典型工艺流程见图2-2。由图可知,该流程由吸收、闪蒸、换热和再生(汽提)四部分组成。其中,吸收部分是 将原料气中的酸性组分脱除至规定指标或要求;闪蒸部分是将富液 (即吸收了酸性组分后的溶液)在吸收酸性组分时所吸收的一部分烃 类通过闪蒸除去;换热是回收离开再生塔的贫液热量;再生是将富液 中吸收的酸性组分解吸出来成为贫液循环使用。 图2-2中,原料气经进口分离器除去游离液体和携带的固体杂质后进入吸收塔底部,与由塔顶自上而下流动的醇胺溶液逆流接 触,吸收其中的酸性组分。离开吸收塔顶部的是含饱和水的湿净化气, 经出口分离器除去携带的溶液液滴后出装置。通常,都要将此湿净化 气脱水后再作为商品气或管输,或去下游的NGL回收装置或LNG生产 装置。 由吸收塔底部流出的富液降压后进入闪蒸罐,以脱除被醇胺溶液吸收的烃类。然后,富液再经过滤器进贫富液换热器,利用热贫 液将其加热后进入在低压下操作的再生塔上部,使一部分酸性组分在 再生塔顶部塔板上从富液中闪蒸出来。随着溶液自上而下流至底部, 溶液中剩余的酸性组分就会被在重沸器中加热汽化的气体(主要是水 蒸气)进一步汽提出来。因此,离开再生塔的是贫液,只含少量未汽 提出来的残余酸性气体。此热贫液经贫富液换热器、溶液冷却器冷却 和贫液泵增压,温度降至比塔内气体烃露点高5~6℃以上,然后进 入吸收塔循环使用。有时,贫液在换热与增压后也经过一个过滤器。 从富液中汽提出来的酸性组分和水蒸气离开再生塔顶,经冷凝器冷却与冷凝后,冷凝水作为回流返回再生塔顶部。由回流罐分出 的酸气根据其组成和流量,或去硫磺回收装置,或压缩后回注地层以 提高原油采收率,或经处理后去火炬等 2.甘醇法吸收脱水工艺流程 1. 工艺流程 图3-5为典型的三甘醇脱水装置工艺流程。该装置由高压吸收系统和低压再生系统两部分组成。通常将再生后提浓的甘醇溶液称为贫甘醇,吸收气体中水蒸 气后浓度降低的甘醇溶液称为富甘醇。

脱硫系统工艺说明

脱硫系统工艺说明 工程概况 本工程建设2×300MW亚临界抽凝供热机组,编号为1号机(炉)、2号机(炉),烟气脱硫工程FGD按2台机组统一规划。采用石灰石—石膏湿法烟气脱硫工艺(以下简称FGD)、采用1炉1塔脱硫装置,脱硫系统不设置旁路烟道和增压风机,不带GGH,烟气脱硫后排入烟塔排至大气,即采用“烟塔合一”排烟方案,两炉合用一座烟塔用于排烟。FGD装置由上海龙净环保科技有限公司设计,采用湿式强制氧化、石灰石-石膏回收工艺,吸收塔的类型是目前广泛采用的逆流喷淋空塔,吸收塔反应罐的设计采取了富有特色的射流泵浆液搅拌装置。整个FGD工艺系统分为:烟气系统、吸收塔系统、石膏脱水系统、回流水和废水处理系统、石灰石粉储运系统、制浆和供浆系统、工艺水和压缩空气系统。脱硫效率不小于97%。事故浆液系统、石膏脱水系统、废水处理系统和石灰石粉制浆系统公用。 2.2工艺过程简述 (1)工艺描述

图1 石灰石-石膏湿法脱硫工艺流程图 石灰石-石膏湿法脱硫工艺流程图如图1所示。该工艺类型是:圆柱形空塔、吸收剂与烟气在塔内逆向流动、吸收和氧化在同一个塔内进行、塔内设置喷淋层、氧化方式采用强制氧化。 石灰石-石膏湿法脱硫工艺为当今世界先进的脱硫工艺,与其他脱硫工艺相比,其主要特点为: ·具有较高的脱硫效率,脱硫效率可达97%以上; ·具有较低的吸收剂化学剂量比,可低至1.03; ·较大幅度降低了液/气比(L/G),使脱硫系统的能耗降低; ·可得到纯度很高的脱硫副产品-石膏,为脱硫副产品的综合利用创造了有利条件; ·采用空塔型式,使得烟气流速有较大幅度的提高,吸收塔内径有大幅度的减小,同时减少了占地面积; ·采用价廉易得的石灰石作为吸收剂,能够有效地控制运行成本;

[“烟塔合一”技术在环评中有关问题的探讨] 烟塔合一.doc

摘要:介绍了国内外燃煤电厂“烟塔合一”技术的应用现状,阐述了“烟塔合一”的工艺流程及技术特点,重点进行 了“烟塔合一”排烟方案与常规的烟囱排烟方案对环境影响的对比分析,并针对燃煤电厂“烟塔合一”技术在环评过程 中存在的问题进行探讨。 关键词:燃煤电厂;烟塔合一;环境影响评价 中图分类号:X169 文献标识码:B 文章编号:1005-569X(2010)06-0098-03 1 引言 “烟塔合一”技术是将火电厂烟囱和冷却塔合二为一,取消烟囱,利用冷却塔巨大热量和热空气量对脱硫后湿烟气进 行抬升,在大多数情况下,其混合气体的抬升高度高于比冷却塔高几十米的烟囱,从而促进烟气内污染物的扩散。“烟塔 合一”技术起源于德国。我国燃煤电厂自2005年开始引用“烟塔合一”技术,该技术不仅可以提高火力发电系统的能源 利用效率,而且大大简化了火电厂的烟气系统,减少了设备投资并节约了有限的土地资源。 2 “烟塔合一”技术的应用现状 2.1 国外应用现状 德国于20世纪70年代开始研究“烟塔合一”技术,于1982年建设第一座“烟塔合一”火电厂,即Volklingen电厂。 1985年完成一系列测评。自此,“烟塔合一”技术在德国新建电厂中得到了广泛应用。同时,德国结合工程实际制订了 “烟塔合一”技术的相关技术标准和评价准则。随着“烟塔合一”技术的逐步成熟,德国、波兰、土耳其、希腊等国家 改建和新建了很多无烟囱电厂,其中大部分集中在德国。目前,德国采用“烟塔合一”技术且已运行的有20多座电厂,装 机总容量超过12000MW,最大单机容量已达到1000MW[1],如德国的Neurath电厂,装设2×1100MW机组。 德国要求“烟塔合一”的塔入口SO2质量浓度为400mg/m3,NOx质量浓度为200mg/m3。对一些燃烧褐煤且采用“烟塔 合一”技术的电厂,则未要求其对排烟进行脱硝(比如黑泵电厂)处理。其他国家投运的“烟塔合一”机组台数不多,目前 尚未见到相关要求。 2.2 国内应用现状 冷却塔排烟技术在国内工程中刚开始应用。华能北京热电厂建设了国内第一座排烟冷却塔,该烟塔由GEA公司总承包。三河电厂二期工程则是国内第一个自主设计、建设的烟塔合一工程,由北京国电负责全部设计、研发工作。目前国内在建的烟塔合一工程还有天津东北郊热电厂、哈尔滨第一热电厂、大唐锦州热电厂、天津军粮城热电厂和大连甘井子热电厂等。 2009年12月,环保部门召开了“火电项目烟塔合一方案环境影响研讨会”,明确指出:烟塔合一排烟方案在我国的适 用区域或情况主要包括北方干燥、半干燥地区有建筑物限高的区域(如机场附近的净空要求限制了烟囱高度);景观环境 有特殊要求的地区。且采用烟塔合一排烟方案时,其污染物治理应采用国内最先进的大气污染控制技术和最好的环境管理水平。 3 “烟塔合一”工艺流程及技术特点 “烟塔合一”的典型流程,除常规的锅炉、汽轮机、发电机等主系统与普通脱硫电厂基本相同外,主要特点在于锅炉 尾部的烟风系统。该技术是利用冷却塔巨大热量和热空气量对脱硫后湿烟气进行抬升,在大多数情况下,其混合气体的抬升高度远高于比冷却塔高几十至一百米的烟囱,从而促进烟气内污染物的扩散。同时,该技术可提高电力系统能源的利用效率,简化电厂烟气系统的工艺设计,在一定程度上降低了电厂投资。下图为“烟塔合一”的工艺流程示意图。 图1 “烟塔合一”工艺流程图“烟塔合一”就是将经脱硫后的烟气通过烟道直接穿过冷却塔塔筒伸到塔中央位置,烟道直角转弯朝上,烟气随着冷 却塔塔筒内上升水气一起排入大气中,进塔烟道水平布置,高度在冷却塔除水器上方,烟道一般采用玻璃钢材料制作,主要 是因为玻璃钢材料轻质、高强、耐腐蚀,适宜于大跨度布置,塔筒需事先开设大孔,孔径一般为6~10m,空洞须加固。 冷却塔设计技术为“烟塔合一”技术核心,基本要求是冷却塔在保证正常汽轮机循环冷却水冷却的情况下,使排入的 脱硫净烟气达到环保要求正常排放,其关键技术为冷却塔线形及尺寸、冷却塔强度(开孔技术)、冷却塔防腐和汽轮机循 环冷却水冷却几个方面[2]。设计的主要原则包括以下两方面。(1)最低热负荷要求。采用脱硫净烟气在冷却塔中心、淋水层上方高速(16~20m/s)排放,冷却塔巨大的热湿空气对 脱硫后净烟气形成一个环状气幕,对脱硫净烟气形成包裹和抬升。为保证脱硫后净烟气正常排放和抬升,“烟塔合一”的 设计要求为汽轮机冷却循环水水量不能小于设计值的50%或者不能低于冷却塔热负荷的30%。 (2)冷却塔防腐和脱硫后净烟气排烟温度限制:冷却塔内部需施以一层基层和二层表层防腐,总厚度不小于150 μm;冷却塔外部需施以一层基层和一层表层防腐,总厚度不小于80μm。冷却塔的寿命取决于防腐层厚度,因此需限制高 温烟气排入。

烧结机脱硫烟道振动流场分析及消振措施

烧结机脱硫烟道振动流场分析及消振措施 【摘要】对烧结机脱硫烟道进行常规处理减振效果不明显的情况下,对振动烟道按原型的实际尺寸在GAMBIT上以1:1的比例建立模型并划分网格,利用FLUENT流体工程仿真计算软件选取模拟湍流流动的标准k-ε湍流双方程模型进行模拟计算,根据模拟结果,对振动烟道进行导流,减振效果良好。 【关键词】烧结机;脱硫烟道;振动;流场模拟;导流 在钢铁生产过程中,二氧化硫是主要污染物之一,主要来自于烧结烟气工序产生的烟气。据统计,烧结工序排放的二氧化硫约占钢铁生产总排放量的60%以上,甚至会达到90%左右。如果二氧化硫实现回收利用,可以给企业带来一定的经济效益,二氧化硫的直接排放不仅污染了环境,还给企业造成了一定的经济损失。因此烧结工序的脱硫成为钢铁企业环境治理的首要任务。 在本公司承担的某钢厂烧结机烟气脱硫总承包工程中,采用石灰石-石膏法,烟塔合一技术。烧结机脱硫入口烟道由乙方从原主抽风机出口烟道接口接出,至脱硫后的合格烟气进入直排烟囱入口。在前期脱硫系统未投入的情况下,原烟气挡板门关闭,烟气通过主烟道进入原有烟囱。在运行过程中,主烟道振动较大,主抽风机振动慢慢向新旧烟道交接处扩大,主抽风机出口金属膨胀节失效,三通烟道底部靠与旧烟道交接处的钢板对接部位部分撕裂,旁路挡板门连杆振动,现场声音较大。 一、振动原因分析 本工程烧结烟气脱硫工程烟道对主烟道的改变,就是将主烟道上的消声器用新增的三通烟道替代,烟气进入旁进入烟囱或者通过原烟道进行脱硫。因新增的烟道只是烟气通道,自身不会产生振动,振动的原因考虑以下两个方面: 1、主抽风机的机械振动。风机自身振动通过主烟道扩压段,传递到新增三通烟道,且振动有扩大效应。 2、主抽风机扩压段较短,烟气流速不均。 二、对烟道机械振动的减振常规处理 根据现场情况,对振动烟道进行了如下减振措施: 1、烟道自身加固。参考火力发电厂烟道设计规程,对三通烟道面板按1米间距增加槽钢纵向加固肋。与之前的横向加固肋一起形成网格,在烟道内用圆钢φ76×4做内撑杆来消除振动[1]。

脱硫工艺流程

现运行得各种脱硫工艺流程图汇总

通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况得分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫与燃烧后脱硫等3类、 其中燃烧后脱硫,又称烟气脱硫(Flue gasdesulfurization,简称FGD),在FGD技术中,按脱硫剂得种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础得钙法,以MgO为基础得镁法,以Na2SO3为基础得钠法,以NH3为基础得氨法,以有机碱为基础得有机碱法、世界上普 遍使用得商业化技术就是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中得干湿状态又可将脱硫技术分为湿法、干法与半干(半湿)法。湿法FGD技术就是用含有吸收剂得溶液或浆液在湿状态下脱硫与处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术得脱硫吸收与产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。 半干法FGD技术就是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)得烟气脱硫技术。特别就是在湿状态下脱硫、在干状态下处理脱硫产物得半干

法,以其既有湿法脱硫反应速度快、脱硫效率高得优点,又有干法无污水废酸排出、脱硫后产物易于处理得优势而受到人们广泛得关注。按脱硫产物得用途,可分为抛弃法与回收法两种、 烧结烟气脱硫

某工程烟塔合一应用可行性分析报告

某滨海热电厂工程采用“烟塔合一”排烟方案 的可行性分析

【内容摘要】本报告论述了某滨海热电厂排烟采用烟囱及排烟塔两种不同方式,对设计采用海水冷却塔或采用“烟塔合一”在技术上的可行性、经济上的合理性以及从国家环境保护政策进行了分析论证,结论是本工程不宜推荐“烟塔合一”方案。 关键词电厂,烟塔合一,海水,环保

1概述 1.1 工程概况 某滨海热电厂工程(以下简称“本工程”)规模为,本期建设2×350MW 超临界燃煤机组,规划容量4×350MW超临界燃煤供热机组,工程厂址滨海,不在机场净空限制区域。 本工程供水系统拟采用海水冷却塔二次循环供水系统,海水补给水取自厂址附近海域。 1.2 “烟塔合一”技术国内应用概况 火电厂锅炉排出的烟气通过冷却塔排放,即简称为“烟塔合一”的技术是国内2006年以来在电力工程设计中引起关注的一项新技术。 由于火电厂烟气湿法脱硫技术的采用,脱硫后烟气温度低,烟囱排烟存在烟气抬升高度不足和腐蚀问题。为增加脱硫后烟气抬升高度,提出烟气从冷却塔排放的“烟塔合一”方案。 据文献介绍,用冷却塔排烟,理论上有利于烟气的抬升与扩散,从而可以弥补冷却塔几何高度的不足,满足环境保护要求,具有一定的环境可行性。但是,由于冷却塔防腐费用较高,一般烟塔合一方案的投资远高于常规的烟囱排烟方

案。随环保标准的提高,烟气脱硝已不可廻避,使采用烟塔合一与常规的烟囱排烟方案的投资差距已在缩小。 自2006年华能高碑店热电厂第一座排烟冷却塔投运以来,在国内火电行业引起了强烈反响,出于对新技术的敏感,国内一些工程纷纷准备采用“烟塔合一”。据了解采用了“烟塔合一”的工程有华能热电厂、国华三河电力XX二期、XX东北郊热电厂、XX良村热电厂、大唐XX第一热电厂、XX热电厂、XX干井子热电厂、XX热电厂、XX军粮城电厂、国华XX电厂、XX第二发电厂、XXXX热电厂、XX平南热电厂等,这些工程已通过了环境影响评价,有的在建,有的已投产。这些工程采用“烟塔合一”的原因大都是由于电厂的烟囱高度受到厂址附近机场的限制。 某些工程,如XXXX电厂二期,采用海水二次循环冷却系统,采用烟塔合一冷却塔可不必另外采取防腐措施,这既利用了海水冷却塔的防腐措施,又省去了烟囱,从而节约了投资,因此业主对此饶有兴趣,后因某些原因最终未采用。 2本工程排烟与冷却方案简介 2.1 烟囱+海水塔方案 本工程二台锅炉合用一座钢筋混凝土烟囱,烟囱高度为180m,出口直径为7.5m。冷却设施为每台机组配一座淋水面积为3845m2的双曲线自然通风海水冷却塔。 2.2 烟塔合一方案 2.2.1 海水排烟塔 根据优化比选,每台机组配一座淋水面积为3845m2的双曲线自然通风冷却塔。冷却塔为海水细高型排烟冷却塔,高130m,承担机组的排烟和冷却功能。 2.2.2 烟气系统流程和系统配置方案 “烟塔合一”的烟气排放系统由烟道和冷却塔构成。其烟气流程为自空预

脱硫工艺流程

脱硫工艺流程 1、石灰石/石膏湿法脱硫工艺过程简介 石灰石/石膏湿法脱硫工艺是以石灰石溶解后制成的碱性溶液作为吸收剂对烟气中含有的酸性气体污染物(主要是二氧化硫)进行吸收处理的一种工艺。湿法脱硫工艺的主要过程可分为以下几个部分: (1)混合和加入新鲜的吸收液;(2)吸收烟气中的二氧化硫并反应生成亚硫酸钙;(3)氧化亚硫酸钙生成石膏;(4)从吸收液中分离石膏。 2 、吸收塔系统在湿法脱硫工艺中的重要地位 吸收塔系统是石灰石/石膏湿法脱硫工艺的核心部分,在湿法脱硫工艺的四个部分中,(1)~(3)三个部分是在吸收塔系统中实现的,即在吸收塔系统中完成了对烟气中二氧化硫进行吸收、氧化和结晶的整个反应过程。 2.1吸收塔系统的构成 吸收塔系统主要由如下几个子系统构成:吸收塔本体系统、石灰石浆液供应系统、氧化空气供应系统、石膏浆液排出系统。此外,石膏一级脱水系统及排空系统等也与吸收塔系统的运行密切相关。 2.2 吸收塔系统的工作原理 2.2.1 吸收塔本体吸收系统:在吸收塔的喷淋区,石灰石、副产物和水等混合物形成的吸收液经循环浆液泵打至喷淋层,在喷嘴处雾化成细小的液滴,自上而下地落下,而含有二氧化硫的烟气则逆流而上,气液接触过程中,发生如下反应: CaCO3+2 SO2+H2O <=> Ca(HSO3)2+CO2 除SO2外,烟气中三氧化硫、氯化氢和氟化氢等酸性组分也以很高的效率从烟气中去除。浆液中的水将烟气冷却至绝热饱和温度,消耗的水量由工艺水补偿。为优化吸收塔的水利用,这部分补充水被用来清洗吸收塔顶部的除雾器。 2.2.2氧化空气供应系统 在吸收塔的浆池区,通过鼓入空气,使亚硫酸氢钙在吸收塔氧化生成石膏,反应如下: Ca(HSO3)2+O2+ CaCO3+3 H2O 2CaSO4.2H2O+CO2

烟塔合一技术特点和工程数据_林勇

收稿日期:2004-09-25 作者简介:林勇(1961-),男,广东中山人,高级工程师. 烟塔合一技术特点和工程数据 林 勇 (华能国际电力股份有限公司,北京 100031) 摘要:剖析了德国烟塔合一技术特点和工程数据。烟塔合一技术可以提高能源效率,简化烟气系统设计,减少烟囱和GG H 换热器,可以合并锅炉引风机和脱硫增压风机,降低电厂建设费用,有利于降低发电成本。更为重要的是,烟塔合一技术可提高脱硫后净烟气的抬升高度,有利于降低污染。关键词:烟塔合一;湿法脱硫;抬升高度;冷却塔;净烟道 中图分类号:X169 文献标识码:A 文章编号:1001-6929(2005)01-0035-05 国内新建火电厂开始大规模脱硫后,广泛采用了湿法脱硫技术。电力行业面临如何处理脱硫后烟气热量低、含湿量大的技术问题。对电厂内部来讲,脱硫后净烟道、旁路烟道和烟囱造价大幅度上升;对环境管理来讲,脱硫后(低热、湿)烟气从烟囱排放污染特点如何,国内经验还不多。因此脱硫烟气排放成为电力行业和环境管理部门共同关注的一个问题。 烟塔合一技术是利用冷却塔巨大热量和热空气量对脱硫后湿烟气进行抬升,在大多数情况下,其混合气体的抬升高度远高于比冷却塔高几十~100m 的烟囱,从而促进烟气内污染物的扩散。同时,该技术可提高电力系统能源利用效率,简化电厂烟气系统的工艺设计,在一定程度上降低电厂投资。 德国从1982年开始建设烟塔合一的火电厂,现已运行的电厂有20多座,并对一批老机组也进行了改造,近年来新建机组基本都采用了烟塔合一方式。华能集团公司计划在北京热电厂脱硫改造后采用烟塔合一方案,并已对德国尼德劳森(Niederausse m )和黑泵(Schwarze Pumpe)电厂进行了考察。 1 烟塔合一技术 德国火电厂烟气脱硫主要采用石灰石湿法脱硫技术,脱硫后的净烟气达到烟气饱和温度点,一般为45~65 。为增加脱硫后烟气抬升高度,电厂只能在采用 对烟气再加热方式从烟囱排放和借助冷却塔热空气抬升烟气从冷却塔排放2种方式中选择。1977年德国研究技术部和Saarbergwergwerke AG 公司联合设计了V lklingen 电厂,该厂烟塔合一机组于1982年8月开始运行,1985年完成一系列测评。自此烟塔合一技术在德国新建厂广泛采用,同时部分老机组也完成改造工作。目前采用烟塔合一技术运行的20多座电厂,装机总容量超过12000MW,最大单机容量已达到978 MW 。德国主要采用烟塔合一技术的电厂见表1。 表1 德国主要烟塔合一电厂[1] Table 1 The power plan t name list of NDC T wi th flue gas rejection in German 电厂燃煤种类机组数 台单机容量 MW 总容量 MW Neurath 褐煤2 1100 2200Niederaussem 褐煤3900Fri mmersdorf 褐煤2400Weis weiler 褐煤2300Boxberg 褐煤 1900900 J nschwalde 褐煤65003000Schwarze Pumpe 褐煤28001600Lippendorf 褐煤29201840V l klingen 烟煤1300300Rostock D 烟煤1500500Staudinger 5 烟煤 1 510 510 德国环境界认为,由于冷却塔热空气的作用将脱硫后净烟气抬升排入大气,其抬升效果比传统的烟囱排放要好。 一台300MW 机组锅炉排放的烟气量约为100万m 3 h,烟气排放温度120 时其热量为燃烧总热量的5%,含水量为8%。而脱硫后净烟气的湿度(饱和点为45~65 )大幅度增加,即使将烟气加热到80 ,实际排放温度仅在72 左右,绝对含热量大幅度降低,靠对烟气加热其抬升高度也难以提高。而采用烟塔合一方式可以借助汽轮机循环冷却水放出的巨大热量增加脱硫后净烟气抬升高度,对于300MW 凝气机组循环冷却水放热为锅炉热量的40%~45%,按照年均气象条件估算冷却塔热空气量约为1800万m 3 h,脱硫净烟气和冷却塔热空气量之比为1 18,二者混合后总热量上升到锅炉热量的50%,而且混合气温度常年较环境温度高12~18 左右。在风速较小的条件下,脱硫后净烟气的抬升高度借助于冷却塔热空气作用被大幅度提高,从而有利于降低烟气中剩余污染物的地面浓度。 第18卷 第1期 环 境 科 学 研 究Research of Environmental Sciences Vol.18,No.1,2005

“三塔合一”技术在660MW机组的应用

“三塔合一”技术在国内660MW机组的成功应用 杨立铭刘明华 国电宝鸡发电有限责任公司, 陕西宝鸡 721405 【摘要】本文以国电宝鸡发电公司2×660MW机组为例介绍了海勒式空冷系统、烟气排放和烟气脱硫“三塔合一”方案的工程应用,通过对该系统主要设备、运行情况的介绍,说明该技术可以成功应用于600MW级超临界机组,机组经过各工况下运行,性能指标达到设计要求,整塔装置达到冷却、脱硫、排烟三种功效,取得良好的经济效益和社会效益,“三塔合一”技术的应用前景一片光明。对于我国北方地区火力发电厂的建设提供了实例,具有较好的借鉴作用和应用前景。 【关键字】三塔合一;混合式凝汽器;脱硫;排烟 近年来,我国北方地区火力发电厂建设主要采用直接空冷技术,很少采用间接空冷技术。国电宝鸡发电有限责任公司2×660MW超临界燃煤机组,采用海勒式间接空冷系统,是目前国内首家投入运行的高参数、大容量采用“三塔合一”技术的海勒式间接空冷系统的燃煤机组。空冷塔为海勒型双曲线形混凝土结构自然通风塔,整套烟气脱硫装置(FGD)位于冷却塔中心位置,烟道通过Χ支柱空档进入空冷塔与脱硫岛连接,脱硫净烟气从脱硫塔顶部钢制烟筒排出。整塔装置具有冷却、脱硫、排烟三种功效,简称此技术为“三塔合一”技术,在600MW以上大容量机组上应用属于世界首创,自2010年12月机组投产发电以来,三塔合一的运行状况良好,各项指标均达到设计要求,系统设备均能有效满足机组各种工况的运行要求。 一、“三塔合一”设备系统介绍 1.海勒式间接系统及相关设备 国电宝鸡第二发电厂2×660MW机组采用海勒式间接空冷系统,是海勒式间冷系统在世界上首次应用于600MW级超临界机组。系统主要由喷射式凝汽器、水力机械组和间冷冷却塔三部分组成。在两个低压缸下各布置一台混合式凝汽器,低压缸排汽与喷射的冷却水混合,将汽轮机排汽冷却。凝汽器中有约3%的凝结水进入锅炉给水系统,其余约97%的水被循环水泵打入冷却塔散热管束被空气冷却后经与循环水泵电机同轴布置的水轮机调压后再进入混合式凝汽器喷射。此系统中循环水水质与凝结水水质相同。系统简图见图1。

脱硫工艺过程介绍及控制方法

石灰石-石膏湿法烟气脱硫 脱硫工艺过程介绍及控制方法 摘要:从煤燃烧中降低SO2的排放的方法包括流化床燃烧(CFB)和整体气化燃烧循环(IGCC)发电。常规的火力电厂主要通过加装烟气脱硫装置(FGD)进行烟气脱硫。基于对烟气脱硫工艺过程和自动化控制的认识变得迫切,本文重点介绍几种常用电厂脱硫工艺原理和控制方法。 1.常用烟气脱硫工艺原理: 目前,几种常用成功的电厂烟气脱硫工艺原理介绍如下。 1.1 石灰/石灰石洗涤脱硫工艺:(后面详细介绍) 石灰/石灰石洗涤器一般用于大型的燃煤电厂,包括现有电厂的改造。湿法石灰/石灰石是最广泛使用的FGD系统,当前流行的石灰/石灰石FGD系统的典型流程如图所示。石灰石的FGD几乎总能达到与石灰一样的脱硫效率,但成本比石灰低得多。 从除尘器出来的烟气进入FGD吸收塔,在吸收塔里S02直接和磨细的石灰石悬浮液接触并被吸收去除。新鲜的石灰石浆液不断地喷人到吸收塔中,被洗涤后的烟气通过除雾器,然后通过烟囱或冷却塔释放到大气中。反应产物从塔中取出,然后被送去脱水或进一步进行处理。 湿法石灰石根据其氧化方式不同一般可以分为强制氧化方式和自然氧化方式。氧化方式由化学反应,吸收浆液的PH值和副产品决定。其中强制氧化方式(PH值在5—6 之间)在湿法石灰石洗涤器中较为普遍,化学反应方程式如下: CaCO3 +SO2+1/2O2+2H2O=CaSO4·2H2O+CO2 图示是石灰石洗涤器中最简单的布置,目前已成为FGD的主流。所有的化学反应都是在一个一体化的单塔中进行的。这种布置可以降低投资和能耗,单塔结构占地少,非常适用于现有电厂的改造。因其投资低,脱硫效率高,十分普及。 1.2 海水洗涤脱硫工艺: 由于海水中含有碳酸氢盐,因而是碱性的,这说明在洗涤器中有很高的SO2脱除效率。被吸收的SO2形成硫酸根离子,而硫酸根离子是海水中的一种自然组分,因而可以直接排放到海水中。此工艺设备简单,不需要大量的化学药剂,基建投资和运行费用低。脱硫率高,可连续保持99%的二氧化硫除去率,能够满足严格的环保要求。

石灰石石膏湿法脱硫原理

深度脱硫工艺流程简介 班级:应化141 :段小龙寇润宋蒙蒙 王春维贺学磊

石灰石-石膏湿法烟气脱硫工艺 石灰石(石灰)-石膏湿法脱硫工艺是湿法脱硫的一种,是目前世界上应 用范围最广、工艺技术最成熟的标准脱硫工艺技术。是当前国际上通行的大机组 火电厂烟气脱硫的基本工艺。它采用价廉易得的石灰石或石灰作脱硫吸收剂,石 灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰 粉经消化处理后加水制成吸收剂浆液。在吸收塔内,吸收浆液与烟气接触混合, 烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除, 最终反应产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加 热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。由于吸收浆液循环利用, 脱硫吸收剂的利用率很高。最初这一技术是为发电容量在100MW以上、要求脱硫 效率较高的矿物燃料发电设备配套的,但近几年来,这一脱硫工艺也在工业锅炉 和垃圾电站上得到了应用. 根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是: 1、技术成熟,脱硫效率高,可达95%以上。 2、原料来源广泛、易取得、价格优惠 3、大型化技术成熟,容量可大可小,应用范围广 4、系统运行稳定,变负荷运行特性优良 5、副产品可充分利用,是良好的建筑材料 6、只有少量的废物排放,并且可实现无废物排放 7、技术进步快。 石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道, 主要有:工艺系统、DCS控制系统、电气系统三个分统。 基本工艺过程 在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO )的基本工艺 2

脱硫工艺流程

现运行的各种脱硫工艺流程图汇总

脱硫技术简介

通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普 遍使用的商业化技术是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。 半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的

半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 烧结烟气脱硫

相关文档
最新文档