脱硫烟塔合一技术介绍.

脱硫烟塔合一技术介绍.
脱硫烟塔合一技术介绍.

脱硫烟塔合一技术介绍

从上个世纪八十年代初期开始,以德国为代表的一些发达国家开始尝试利用冷却塔排放湿法脱硫后的烟气,目的是节省较大的烟气再热器的投资和提高烟气排放的扩散效果,经过二十年的发展,到目前为止,全世界大概已经有三十多台机组采用了这种技术。

烟气通过冷却塔排放,是将烟气用烟气管道送入塔内配水装置的上方集中排放。这对冷却塔带来了两个方面的影响,一方面,烟气排入会使配水装置上方的气体流量增加,流速有所增加,带来额外的流动阻力,但冷却塔内烟气的流速很低,一般都在1.0m/s左右,即使流速增加30%,带来额外的流动阻力增加也非常有限,与冷却塔的其他阻力(人字柱、进风口、淋水装置、淋水、出口等阻力)相比,还是较小的。考虑这部分额外的流动阻力增加和烟气管道带来的局部阻力,将冷却塔的总阻力系数增加3。另一方面,烟气排入冷却塔与配水装置上方的湿空气发生混合换热现象,改变了塔内气体的密度。

锅炉在设计工况运行时,吸收塔出口烟气温度范围为43-50℃(主要决定于吸收塔入口烟气温度),考虑到烟道长度和环境温度变化带来的温度降低,进入冷却塔的烟气温度为36-43℃。

以下是就烟塔合一时可能遇到的问题进行探讨:

一、烟气能否从烟塔顺利排出

烟气能否从烟塔顺利排出,根本是看烟塔内填料上方混合气体的密度是否比环境空气的密度低。这两个密度差越大,通风量越大,混合气体的热浮力越大,烟气从烟塔排放的扩散效果就越好。在烟塔运行的绝大多数时间里,烟塔内填料上方混合气体的密度都比环境空气的密度低,烟气都会顺利排放。当夏季环境温度达到38℃,烟气温度只有为40℃时,烟气仍然可以通过烟塔顺利排出。但我们必须保证在机组运行的任何情况下,烟塔都能顺利排烟,就必须考虑到烟塔运行的极端情况。对烟塔来说,最极端恶劣的烟气排放工况就是:环境温度为极热(42℃),并且烟塔不通循环水。这时如果使烟气顺利排放,烟气温度必须达到52.5℃以上。环境温度为38℃,并且烟塔不进循环水时,使烟气顺利排放的最低烟气温度为48℃。但从吸收塔的热力计算可知,吸收塔出口的烟气温度变化范围有限,一般在43-50℃之间,从吸收塔出口到冷去塔出口还有一定的温度损失,为使烟气在极端工况时也能顺利从冷却塔排出,必须考虑设有对净烟气进行加热的措施。最简单实用的办法就是用一部分烟气走脱硫旁路的办法应付这种极端情况。

二、烟气通过冷却塔排放后,对冷却塔冷却效率影响

判别烟气通过冷却塔排烟对冷却塔冷却效率影响的依据是:烟气密度是否低于填料上方空气的密度。当烟气密度比填料上方空气的密度低时,烟气的排入会使冷

却塔填料上面的混合气体的密度比原来填料上方的空气密度低,从而增大了塔内外气体的密度差,导致冷却塔的通风量增加,冷却效率提高;反之则会使冷却效率降低。烟气密度与填料上方空气密度的差距越大, 冷却效率提高的幅度越大;填料上方的空气密度受环境温度、循环水量、循环水进水温度的影响,其中,环境温度的影响最大,在冷却塔的设计温度(干球温度25.8℃——意味着夏季最热三个月的平均温度有90%的时间低于此温度)下,在烟气温度为43℃(考虑克服附加阻力带来的负面影响,提高1℃烟气温度,从42℃提高到43℃)时,夏季有90%的时间都不会产生负面的影响,相对于全年(假设其它月份的温度最高温度都没有超过25.8℃),就是有97.5%的时间不产生负面影响,也就意味着在全年有97.5%的时间里,烟气通过冷却塔排放都会使循环水温降比同工况运行的旧塔大或相等,使机组总体热效率向好。当然这种估算偏乐观,保守估计,烟塔全年应该有90%以上的时间都会比相同条件下的冷却塔效率高。但烟气温度降低时,使烟塔热效率向好的时间将有所缩短。环境温度提高时,对烟塔冷却效率起正面影响的临界烟气温度也将提高,环境温度为38℃时,这个临界温度大约为51-52℃。

不难理解,当烟气的排入对冷却塔的冷却效率起正面影响时,烟气量降低(锅炉降负荷)会削弱冷却效率,而当烟气的排入对冷却的塔冷却效率起负面影响时,烟气量降低(锅炉降负荷)会提高冷却效果,在炎热的夏季,就可以通过降低锅炉负荷的方法提高烟塔的冷却效率和扩散效果。

三、烟气温度对烟塔冷却效率和的烟气扩散效果的影响

从上面的分析可以看出:进入冷却塔的烟气温度对机组的经济性和安全性都至关重要,温度越高越好。但吸收塔出口的烟气温度相对固定,一般在43-50℃之间,应该在系统布置和烟道保温方面想办法,尽量提高排入烟塔的烟气温度,从而提高机组的经济性、烟气排放的安全性和扩散效果。

四、对机组运行的经济性影响

从前面的分析又可知,当进入烟塔的烟气温度为43℃以上时,全年至少有90%的时间,烟塔的冷却效果都比旧塔好。冬季烟气温度如果为30℃时,温降提高0.33℃, 如果假设烟塔循环水温降全年平均提高0.1℃。一般300MW的机组,循环水温降增加1℃,可以降低煤耗2-2.5克, 相当于降低燃煤0.7%左右。

五、对循环水系统的影响

湿式氧化镁法烟气脱硫中吸收塔系统的设计与应用

通道的能力。 3结语在煤炭行业所运用的多级安全数据库系统,其经典的BLP 模型的“向上写”违反了数据库的完整性,而随之带来的是会产生隐通道问题。事务间的提交和回退依赖也会产生隐通道。然后,通过分析隐通 道的产生的原因,提出了利用并发控制上锁机制进行隐蔽通信的方式,通过提出算法,来消除用户通过并发控制上锁机制泄漏信息的途径。算法中当高安全级事务将数据读入私有区后,低安全级事务更新数据后,系统将通知用户,由用户自行处理。文中对于事务并发执行时事务间的安全问题,只讨论了隐通道问题这个方面,而如何去提高避免 隐通道算法的性能将是未来研究的主力方向。 参考文献: [1]谷千军,王越.BLP 模型的安全性分析与研究[J].计算机工程,2006 (22):157-158.[2]肖卫军, 卢正鼎,洪帆.安全数据库系统中的事务[J].小型微型计算机系统,2004(4):591-594.[3]朱虹,冯玉才.避免隐通道的并发控制机制[J].小型微型计算机系统,2000(8):844-846. (责任编辑赵勤)收稿日期:2012-08-18;修订日期:2012-10-22 基金项目:河北省教育厅自然科学计划项目(Z2012198) 作者简介:闫志谦(1973-),男,河北晋州人,副教授,硕士,研究方向:化学工程。0前言 锅炉烟气中的SO 2与氧化镁反应后生成的亚硫酸镁,再氧化反应生成为硫酸镁(MgSO 4)溶液。氧化镁湿法烟气脱硫,具有脱硫效率高,操作简单,不易结垢等优点[1],以氧化镁(MgO)作为脱硫剂,可有效防止沉淀、积垢、堵塞、结块;运行可靠性高,电耗低,取得了较高的脱硫效率。1吸收塔装置设计脱硫吸收塔选用逆流喷淋结构,塔身为圆柱体,底部为锥形的循环浆液池。吸收塔的上部为喷淋洗涤区,共布置了3层喷嘴。氢氧化镁/亚硫酸镁/硫酸镁浆液通过喷嘴向吸收塔下方成雾罩形状喷射,形成液雾高度叠加的喷淋区,含有SO 2的烟气与浆液中悬浮的氧化镁微粒发生化学反应而被洗涤吸收。为了避免烟气和喷淋浆液在接触区形成沉淀,采用 工业水定期喷水,清洗吸收塔入口部分的内壁。吸收塔下部的浆池与吸收塔体为一体的结构。吸收塔内所有部件能承受最大入口气流及最高进口烟气温度的冲击。 吸收塔体为碳钢加防腐衬里的结构,在烟气进口处采取预冷却喷水的防高温措施。 1个吸收塔共配有3台离心式浆液循环泵,整个脱硫区配有罗茨型强制氧化风机,吸收塔选用的材料适合工艺过程的特性,并且能承受烟气飞灰和脱硫工艺固体悬浮物的磨损。所有部件包括塔体和内部结构设计上都考虑了腐蚀度。吸收塔设计成气密性结构,防止液体泄漏。为保证壳体结构的完整性,使用焊接连接,法兰和螺栓连接仅在必要时使用。塔体上的入孔、通道、连接管道等需要在壳体穿孔的地方进行密封,防止泄漏。 第32卷第2期2013年2期煤炭技术Coal Technology Vol.32,No.02February,2013湿式氧化镁法烟气脱硫中吸收塔系统的设计与应用 闫志谦,程艳坤,张 滨,霍鹏(河北化工医药职业技术学院化工与环境工程系,石家庄050026)摘要:介绍了湿法氧化镁烟气脱硫技术应用的原理及工艺,对吸收氧化反应所在的吸收塔系统进行了装置的设 计与应用,并提供理论依据和参考影响吸收因素。 关键词:氧化镁;烟气脱硫;吸收塔 中图分类号:X701.3文献标识码:A 文章编号:1008-8725(2013)02-0181-03 Application of Absorbing Tower System in Wet Process of Magnesium Flue Gas Desulfurization YAN Zhi-qian ,CHENG Yan-kun ,ZHANG Bin ,HUO Peng (Department of Chemical and Environmental Engineering,Hebei Chemical and Pharmaceutical Vocational Technology College,Shijiazhuang 050026,China ) Abstract:Introduced the application of the principle of wet magnesia flue gas desulphurization technology and process,this paper absorption oxidation reaction in which the absorber tower system design and application of the device,and provides a theoretical basis and reference. Key words:magnesium oxide;flue gas desulfurization;absorbing tower system !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

烟塔合一新技术

烟塔合一新技术 0 概述 三河发电厂地处北京周边,电厂厂址位于河北省三河市燕郊,地处燕郊经济技术开发区东侧,厂址西距通州区17km、北京市区37.5km,东距三河市17km。电厂规划容量为1300MW~1400MW。一期工程已安装2台350MW凝汽式汽轮发电机组,#1、#2机组分别于 1999年12月、2000年4月投产。二期工程将安装2台300MW供热机组,烟气采用脱硫、脱硝、“烟塔合一” 技术,计划将于2007年10月、12月投产发电。 国华三河电厂扩建的二期工程为热电联产扩建工程,采用“烟塔合一”技术并将一、二期机组同步建设脱硫,达 到了整个电厂“增产不增污、增产减排污”的目的。 1“烟塔合一”技术的优点 “烟塔合一”技术是针对电力企业研制的当今世界上先进的环保技术,在城市规划和环境改善方面具有以下明显 优势:一是充分利用冷却塔的巨大能量,对除尘、脱硫后的湿烟气进行有效抬升,促进净烟气中未脱除污染物 的扩散,降低其落地浓度。二是由于机组不必再建设烟囱及脱硫系统的烟气再加热装置。这样不仅可缓解城市

建设用地紧张和建筑物限高等问题,并且可以显著改善城市周边电厂建设同城市整体规划的适应性和灵活度,有利于缩小热源、电源与负荷中心间的距离,提高电厂的经济性并有利于城市供热、供电的可靠性。?此项技术在国外已成功实施近二十多年,技术已臻成熟。目前我国有许多电厂正在实施这种技术。 2“烟塔合一”技术在三河电厂的应用 目前,河北三河电厂、天津国电津能公司和华能北京热电公司在新建机组均采用“烟塔合一”技术进行除尘、脱硝和脱硫排放,三河电厂是第一个采用国产化的“烟塔合一”技术的机组。 国华三河电厂为满足城市社会经济的快速发展,改善北京市区的大气环境质量,三河电厂二期工程(2×300MW机组)项目决定采用烟塔合一技术,主要基于以下几方面考虑: 第一、由于采用石灰石一石膏湿法脱硫系统,脱硫系统排放烟气温度只有50℃左右,若采用烟囱排放须对其进行再加热,温度达到S02的露点温度(72℃)以上。而 采用冷却塔排烟则无此限制,还可节省GGH系统和烟囱初期投资及运行费用。 第二、由于该项目选址距北京顺义机场较近,采用烟塔合一技术可有效避开对航空影响。 第三、脱硫系统所用的增压风机与锅炉所用的吸风机合而为一既节省了设备的初期投资,又为整个机组的经济 运行打下了良好的基础。 经测算,通过120米高的冷却塔排烟,对地面造成的SO2和PM10、NOX年均落地浓度总体好于240米高烟 囱排烟对地面造成的落地浓度。工程建成后,每年可减少排放SO2?2万多吨,烟尘100多吨,具有良好的环 保效益。 2.1本工程技术特点 本工程采用了烟塔合一的技术,取消了传统的烟囱,将经脱硫后的烟气通过穿过冷却塔筒壁的烟道送入塔中心, 随塔内蒸发气体一同排放。利用冷却塔排烟在国外已是先进成熟的技术,但在国内刚开始应用,本工程完全立足于自主开发设计和建造的工程尚无先例。 1、本工程排烟冷却塔技术取消了传统的高烟囱,将脱硫后的烟气通过烟道直接引入自然通风冷却水塔与水蒸气混合后,由冷却塔出口排入大气。经环评分析,尽管传统烟囱一般比双曲线冷却塔要高,烟囱排放的烟气温度也比冷却塔排出混合气体的温度要高,但冷却塔排放烟气时其热抬升高度及扩散效果是相当的。原因主要有以下两个方面:由于烟气通过冷却塔排放,烟气和冷却塔的热汽混合一起排放,具有巨大的热释放率。对于一个大型电厂来说,汽轮机的排汽通过冷却水带走的热量按热效

脱硫烟塔合一技术介绍.

脱硫烟塔合一技术介绍 从上个世纪八十年代初期开始,以德国为代表的一些发达国家开始尝试利用冷却塔排放湿法脱硫后的烟气,目的是节省较大的烟气再热器的投资和提高烟气排放的扩散效果,经过二十年的发展,到目前为止,全世界大概已经有三十多台机组采用了这种技术。 烟气通过冷却塔排放,是将烟气用烟气管道送入塔内配水装置的上方集中排放。这对冷却塔带来了两个方面的影响,一方面,烟气排入会使配水装置上方的气体流量增加,流速有所增加,带来额外的流动阻力,但冷却塔内烟气的流速很低,一般都在1.0m/s左右,即使流速增加30%,带来额外的流动阻力增加也非常有限,与冷却塔的其他阻力(人字柱、进风口、淋水装置、淋水、出口等阻力)相比,还是较小的。考虑这部分额外的流动阻力增加和烟气管道带来的局部阻力,将冷却塔的总阻力系数增加3。另一方面,烟气排入冷却塔与配水装置上方的湿空气发生混合换热现象,改变了塔内气体的密度。 锅炉在设计工况运行时,吸收塔出口烟气温度范围为43-50℃(主要决定于吸收塔入口烟气温度),考虑到烟道长度和环境温度变化带来的温度降低,进入冷却塔的烟气温度为36-43℃。 以下是就烟塔合一时可能遇到的问题进行探讨: 一、烟气能否从烟塔顺利排出 烟气能否从烟塔顺利排出,根本是看烟塔内填料上方混合气体的密度是否比环境空气的密度低。这两个密度差越大,通风量越大,混合气体的热浮力越大,烟气从烟塔排放的扩散效果就越好。在烟塔运行的绝大多数时间里,烟塔内填料上方混合气体的密度都比环境空气的密度低,烟气都会顺利排放。当夏季环境温度达到38℃,烟气温度只有为40℃时,烟气仍然可以通过烟塔顺利排出。但我们必须保证在机组运行的任何情况下,烟塔都能顺利排烟,就必须考虑到烟塔运行的极端情况。对烟塔来说,最极端恶劣的烟气排放工况就是:环境温度为极热(42℃),并且烟塔不通循环水。这时如果使烟气顺利排放,烟气温度必须达到52.5℃以上。环境温度为38℃,并且烟塔不进循环水时,使烟气顺利排放的最低烟气温度为48℃。但从吸收塔的热力计算可知,吸收塔出口的烟气温度变化范围有限,一般在43-50℃之间,从吸收塔出口到冷去塔出口还有一定的温度损失,为使烟气在极端工况时也能顺利从冷却塔排出,必须考虑设有对净烟气进行加热的措施。最简单实用的办法就是用一部分烟气走脱硫旁路的办法应付这种极端情况。 二、烟气通过冷却塔排放后,对冷却塔冷却效率影响 判别烟气通过冷却塔排烟对冷却塔冷却效率影响的依据是:烟气密度是否低于填料上方空气的密度。当烟气密度比填料上方空气的密度低时,烟气的排入会使冷

脱硫吸收塔SO2吸收系统

共享知识分享快乐 第三章SO 2吸收系统 3. 1、系统简介 SO2吸收系统是整个脱硫装置的核心系统,对烟气除去SO等有害成分的过程主要在这个系统完 成。本系统主要是由吸收塔、浆液循环泵、除雾器、吸收塔搅拌器及氧化风机等组成。石灰石- 石膏湿法烟气脱硫是由物理吸收和化学吸收两个过程组成。在物理吸收过程中SQ溶解于吸收剂 中,只要气相中被吸收气体的分压大于液相呈平衡时该气体分压时,吸收过程就会进行,吸收过程取决于气-液平衡,满足亨利定律。由于物理吸收过程的推动力很小,所以吸收速率较低。 而化学吸收过程使被吸收的气体组分发生化学反应从而有效地降低了溶液表面上被吸收气体的 分压,增加了吸收过程的推动力,吸收速率较快。FG[反应速率取决于四个速率控制步骤,即SQ 的吸收、HSO氧化、石灰石的溶解和石膏的结晶。 3.2、吸收反应原理 3.2.1、物理过程原理 SQ吸收是从气相传递到液相的相间传质过程。对于吸收机理以双膜理论模型的应用较广, 双膜理论模型如图所示。图中p表示SQ在气相主体中的分压,p表示在界面上的分压,c和e 则分别表示SC2组分在液相主体及界面上的浓度。把吸收过程简化为通过气膜和液膜的分子扩 散,通过两层膜的分子扩散阻力就是吸收过程的总阻力。 气体吸收质在单位时间内通过单位面积界面而被吸收剂吸收的量称为吸收速率。根据双膜 理论,在稳定吸收操作中,从气相传递到界面吸收质的通量等于从界面传递到液相主体吸收质 的通量。吸收传质速率方程一般表达式为:吸收速率=吸收推动力x吸收系数,或者吸收速率=吸收推动力/吸收阻力。吸收系数和吸收阻力互为倒数。

共享知识分享快乐 3.2.2 、化学过程原理 321.1 、SQ、SQ和HCI 的吸收: 烟气中的SQ和SQ与浆液液滴中的水发生如下反应: —+ SQ + H2Q T HSQ3 + H SQ3 + H2Q T H 2SQ HCI 遇到液滴中的水即可迅速被水吸收而形成盐酸。 3.2.1.2 、与石灰石反应 浆液水相中的石灰石首先发生溶解,吸收塔浆池中石灰石溶解过程如下 CaCQ3 + H 2Q t Ca2+ + HCQ3—+ QH— 水中石灰石的溶解是一个缓慢的过程,其过程取决于以下几个因素: a. 固态石灰石颗粒的颗粒尺寸。颗粒细小的石灰石粉要比颗粒粗大的石灰石粉溶解要快。 b. 石灰石的反应率。活性石灰石的溶解率要比没有活性的石灰石溶解率要快。 c.吸收塔浆液的pH值。pH值越低,石灰石溶解得越快。 高的pH值对酸性气体的脱除效率有利,但是不利于石灰石的溶解。 的脱除效率,但是有利于石灰石的溶解。 SQ2、SQ3、HCI 等与石灰石浆液发生以下离子反应: 2+ — Ca2+ + HCQ3—+ QH—+ HSQ3—+ + 2H + 2+ — t Ca 2+ + HSQ + CQ 2 f +2H2Q 氧化反应:2HSQ3—+ Q2 t2SQ42—+ 2H + Ca2+ + HCQ3—+ QH —+ SQ42— + 2H +t Ca 2+ + SQ 42— + CQ2 f +2H2Q Ca2+ + HCQ3—+ QH—+ 2H+ + 2CI —t Ca 2+ + 2CI —+ CQ2f+ 2H 2Q 经验显示,吸收剂浆液的pH值控制在5.5?6.0之间,pH值为5.6时最佳,此时酸性气 体的脱除率和石灰石的溶解速度都很高。吸收塔浆液池中的pH值是通过调节石灰石浆液的投放 量来控制的,而加入塔内的新制备石灰石浆液的量取决于预计的锅炉负荷、SQ含量以及实际的吸收塔浆液的pH值。 3.2.1.3 、氧化反应通入吸收塔浆液池内的氧气将亚硫酸氢根氧化成硫酸根: —2—+ 2HSQ3—+ Q2 t 2SQ42—+ 2H + 3.2.1.4 、石膏形成: Ca2+ + SQ 42—+ 2H 2Q t CaSQ4 ? 2H2Q 石膏的结晶主要发生在吸收塔浆液池内,浆液在吸收塔内的停留时间、通入空气的体积和方式 低的pH值不利于酸性气体

利用冷却塔排放烟气

烟塔合一技术是将火电厂烟囱和冷却塔合二为一,取消烟囱,利用冷却塔排放烟气,冷却塔既有原有的散热功能,又替代烟囱排放脱硫后的洁净烟气。此项技术首先在德国使用,从20世纪70年代开始,已有了多座大型火电厂采用。在德国新建火电厂中,已经广泛地利用冷却塔排放脱硫烟气,成为没有烟囱的火电厂。2003年投产的1 000 MW 级Neideraussem电厂也采用此项技术。 采用“烟塔合一”技术的前提是对烟气的品质有一定的要求。以往我国电厂锅炉的排烟,含尘量和含SO2 量高,如由冷却塔排出,将使塔内盛水装置产生污垢,冷却水质变坏,塔筒的腐蚀 影响增大。 在我国新的火电厂排放标准中,规定烟气含尘量不大于50 mg/m3 , SO2 含量不大于400 mg/m3 ,NO x 含量不大于450 mg/m3 (对烟煤) 。在实际工程中,由于装设了脱硫效率90% ~95%的脱硫装置,烟气中SO2 含量可以达到200~300 mg/m3;采用低NO x 燃烧系统, NO x 含量不大于350mg /m3 。这样,便与德国“烟塔合一”电厂的烟气品质基本在同一水平。 烟塔合一工艺系统通常有2种排放形式,分别为外置式和内置式。 ? 外置式 把脱硫装置安装在冷却塔外,脱硫后的洁净烟气引入冷却塔内排放。 脱硫装置安装在冷却塔外,净烟气直接引到冷却塔喷淋层的上部,通过安装在塔内的除雾器除雾后均匀排放,与冷却水不接触。国外早期当脱硫系统运行故障时,由于原烟气的温度和二氧化硫的含量相对较高,不适于通过冷却塔排放,需经干式烟囱排放。目前由于脱硫装置运行稳定,冷却塔外一般不设

旁路烟囱 ?内置式 近几年国外的烟塔合一技术进一 步发展,开始趋向将脱硫装置布置 在冷却塔里面。使布置更加紧凑, 节省用地。其脱硫后的烟气直接从 冷却塔顶部排放。由于省去了烟 囱、烟气热交换器,减少了用地, 可大大降低初投资,并节约运行和 维护费用。 采用烟塔合一技术对烟气的影响 从环保角度来看,冷却塔排烟和烟囱排烟的根本区别在于: ?烟气或烟气混合物的温度不同。 ?混合物的排出速度不同。 ?混合处的初始浓度不同。 从图中可以看出烟塔合一技术与传统烟囱排烟有较大的不同。 n烟气抬升高度 理论分析: 从塔中排放出的净化烟气温度约50 ℃,高于塔内湿空气温度,发生混合换热现象,混合后的结果改变了塔内气体流动工况。由于进入塔内的烟气密度低于塔内空气的密度,对冷却塔内空气的热浮力产生正面影响。此外,进入冷却塔的烟气很少,其体积只占冷却塔空气体积的10%以下。故烟气能够通过自然冷却塔顺利排放。烟气的排入对塔内空气的抬升和速度等影响起到了正面作用。 在排放源附近,烟气的抬升受环境湍流影响较小。大气层的温度层不是很稳定时,烟气抬升路径主要受自身湍流影响,决定于烟气的浮力通量、动量通量及环境风速等。这段时间大约为几十秒至上百秒,这段时间内烟气上升路径呈曲线形式。烟气在抬升过程中,由于自身湍流的作用,会不断卷入环境空气。由于烟气不断卷入具有负浮力的环境空气,同时又受到环境中正位温梯度的抑制,它的抬升高度路径会逐渐变平,直至终止抬升。 湿烟气也遵循以上抬升规律,不同的是饱和的湿烟气在抬升过程中,会因为压强的降低及饱和比湿的减小而出现水蒸气凝结。水蒸气凝结会释放凝

防腐技术协议模板

4 技术要求 4.1 总则 防腐材料(玻璃钢、玻璃鳞片和橡胶衬里)的设计、制造、施工检验和试验应符合国内最新标准协议的有关要求。施工前按照本协议书的要求,编制质量控制计划和质量检验计划报需方认可。 对于招标文件要求的技术标准,供方可根据自身的技术特点,提出不低于招标文件要求的标准和技术方案。 4.2性能要求 4.2.1对玻璃钢衬里的要求 4.2.1.1一般要求 4.2.1.1.1 本协议书包括了玻璃钢衬里的设计、制造、安装和质量控制的最低要求。 4.2.1.1.2 对于在此没明确指定的条款。供方遵守严格的制造和检查规定标准。 4.2.1.1.3 总的系统设计应考虑:本项目的设计条件(液体、温度、压力、安装条件和气候等) 4.2.1.1.4 供方提供的玻璃钢内衬的设计和制造标准供需方确认。 4.2.1.1.5 本协议书中所有玻璃钢内衬由合格的单位完成。 4.2.1.1.6 所有投标单位应证明他们有丰富的经验、具有进行设计、制造、安装 及其检查的高素质的工作人员 4.2.1.2材料和施工 4.2.1.2.1 接头和附件保持额定管径。 4.2.1.2.2 由于接头将传递应力,采用胶粘承插式连接,接头外部有覆盖层。4.2.1.2.3 内衬由连接层和树脂基质中断续的玻璃绞线组成。结构层为缠绕的细 线,组件结构为手工叠加和纤维缠绕相结合。所有FRP部件都有外层树 脂保护。以防止紫外线和腐蚀性大气造成损伤。 4.2.1.2.4 供方应要求树脂合同商提供: ?树脂的技术数据单。 ?推荐的处理系统(添加剂、浓度、温度)。 ?反应曲线。

?树脂验收说明书。 4.2.1.2.5 对于现场贮存和使用的特别建议 4.2.2 对鳞片衬里的施工、检验要求 4.2.2.1 一般要求 4.2.2.1.1 本协议包含了在钢结构表面上进行内衬的最低要求。但并没有包含内 衬的所有技术协议。供方应使用最新工业标准和提供最好的工艺设计。 鳞片采用进口材料或优质国产产品(分别报价)。 4.2.2.1.2 供方应提供采用的标准和制定质量保证计划并经过需方同意,以保证 根据设计要求正确施工。提供检查备忘录,检查备忘录包括以下内容:?表面检查 ?内衬记录(温度等) ?内衬检查 ?验收报告 4.2.2.1.3 在内衬完成后不进行任何种类的焊接。 4.2.2.1.4 设备壳体相对的两面作上标记,在每一面顶部的醒目位置写下字体至少150mm高的以下文字“鳞片内衬,不允许焊接”。 4.2.2.2 表面准备 4.2.2.2.1部件填角焊缝被加工成圆弧形,所有需内衬的纵向焊缝连续,并同相接表面保持平滑。 4.2.2.2.2 表面焊接缺陷(如裂缝和凹陷)通过重新焊接加以填补,同邻近表面保持平滑。 4.2.2.2.3 清除表面上所有焊渣,采用切削的方式,最后打磨至平滑。 4.2.2.2.4 所有内、外的加固件,吊环、支撑和夹子都应在内衬施工开始前焊接到容器或管道上。临时性的夹子或吊环在施工前去掉,并且将该区域打磨平滑,所有内衬的拐角和边缘加工成圆弧形。 4.2.2.3 喷吹 4.2.2.3.1 需要内衬的金属表面应根据协议进行喷吹处理,以获得“白色金属”表面。 4.2.2.3.2喷吹介质应由使用者选择并在备忘录中说明。喷吹介质清洁干燥。压

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

脱硫防腐项目技术协议

烟气脱硫防腐技术协议 烟气脱硫防腐技术协议 发包方:****有限公司 承包方:****有限公司 日期:2016 年**月**日

第一章编制依据 一.GBJ46—88《施工现场临时用电安全技术规范》 二.GB50046—95《工业建筑防腐蚀设计规范》 三.GB50212—2002《建筑防腐蚀工程施工及验收规范》 四.HG/T2640—2004《玻璃鳞片衬里施工技术条件》 五.公司ISO9000:2000质量体系控制书 六.GB8923-88《涂装前钢材表面锈蚀和除锈等级》 七.GB50205-2001《钢结构工程施工质量验收规范》 八.HGJ229-91《工业设备、管道防腐蚀工程施工及验收规范》 第二章防腐施工方案 第一节本工程的内衬要求 (1)出口烟道衬1.8mm普通玻璃鳞片 (2)吸收塔进烟口衬1.8mm高温玻璃鳞片。 (3)吸收塔底部以上的浆液区(循环池)和以上的气液接触区衬2mm普通玻璃鳞片。 (4)吸收塔浆液喷淋区及塔内件支撑梁衬耐磨玻璃鳞片+FRP,总厚度达4mm。 (5)吸收塔除雾器区衬2mm普通玻璃鳞片。 (6)吸收塔顶流分配箱、事故浆液池、废水池、滤液池、吸收塔地坑、白泥化浆池等内衬2mm普通玻璃鳞片。 (7)沟槽内表面衬1.5mmFRP。 第二节玻璃鳞片树脂防腐衬里结构图 5

2 1 钢基体中温结构 钢基体高温结构 第1层 钢基体 第1层 钢基体 第2层 中温底涂 第2层 高温底涂 第3层 一遍中温鳞片 第3层 一遍高温鳞片 第4层 二遍中温鳞片 第4层 二遍高温鳞片 第5层 中温面漆 第5层 高温面漆 钢基体中温耐磨结 构 钢基体中温加强结 构 第1层 钢基体 第1层 钢基体 第2层 中温底涂 第2层 中温底涂 第3层 一遍中温鳞片 第3层 一遍中温鳞片 第4层 二遍中温鳞片 第4层 二遍中温鳞片 第5层 中温耐磨层 第5层 FRP 加强层 第6层 中温面漆 第6层 中温面漆 第三节 施工准备 一.准备针对本工程的开工报告,中间验收报告,施工记录,隐蔽施工记录及质量检查表格,并做好本工程的施工方案。 2 1 2 1 2 1

电厂脱硫吸收塔的改造方案

XX电厂吸收塔的改造方案 一、工程概况 1.1XXX烟气脱硫装置增容改造工程安装工程。本次脱硫改造对象为#1、#2机组配套的脱硫装置及公用系统。 1.2 原吸收塔为(16.5米*37.8)分两次截塔。一是从吸收塔浆池底部截塔加高4m,相应修改调整搅拌器、循环泵、安装门、液位计等各接口及吸收塔进出口烟道;二是从顶层喷淋层上方截塔加高2m,也就是在原塔标高27.5米处。本机组脱硫系统原增压风机已设置了增压风机旁路,改造后保留原增压风机旁路烟道和增压风机,只需根据要求拆除脱硫大旁路及旁路挡板门。 二、编制依据 1.1本次吸收塔改造增容招标文件以及设计图纸。 1.2 GB50205-95《钢结构工程施工及验收规范》 1.3 GB150-98《钢制压力容器》 1.4 DL/T869-2004《火力发电厂焊接技术规程》 1.5 DL/T5047-95《电力建设施工及验收技术规范》(锅炉机组篇) 1.6 GBJ128-90《立式圆筒型钢制焊接油罐施工及验收规范》 1.7 SH3530-93《石油化工立式圆筒型钢制储罐施工工艺标准》 1.8 JB4708-2000《钢制压力容器焊接工艺评定》 1.9 JB/T4709-2000《钢制压力容器焊接规程》 1.10 JB4735-97《压力容器无损检测》 1.11 吸收塔设备改造技术协议及规范书 1.12国电龙源FGD制作验收规范 1.13现场踏勘记录等 三、项目管理组织机构和人员配置 我公司对本工程非常重视,经领导班子研究,为了按期保质圆满完成本工程任务,由管理经验丰富的国家建造师 XXX、副经理XXX 组建现场项目部。

四、施工综合进度 4.1 工程里程碑进度 里程碑计划 工程项目完工时间 施工准备10天 浆液池部分改造15天 喷淋层改造25天包括交叉施工 移交防腐10天 其他工作完善20天 4.2 图纸交付进度(分项工程开工前20天应提供相应图纸,详见施工进度计划)

防腐合同范本

防腐工程合同 甲方:侯马市安达商品混凝土有限责任公司 乙方:河南省特种防腐有限公司 为了保护企业财产,延长设备的使用寿命,经甲、乙双方协商同意订立如下合同条款: 一、工程名称:水泥贮罐设备除锈防腐 二、施工地点:侯马市安达商品混凝土有限责任公司 三、承包方式:乙方包工包料,所用工具及安全用具均由乙方自负,生活自理,甲方提供住宿场所。 四、施工范围及技术要求甲方委派同志作为工程代表,乙方委派李山同志为工程代表,共同对施工进行监理,乙方对甲方单位的水泥贮罐及设备进行除锈防腐处理,除锈应达st2级标准,然后刷两底两面共四道漆,共五道工序,(第一遍底漆15微米,第二遍底漆18微米,两遍面漆共40微米),施工所用的主要材料应与提供施工方案中提供的品牌、型号一致,严格按照施工方案中提供的程序和技术要求进行,质保期为三年,质保期内如发现脱漆生锈现象,免费维护(维护时用同样的材料和同样的操作步骤)。 五、工程结算方式工程造价:28 元/㎡(不含税),按实际面积结算,工人进入工地后,工程进行第三道工序付20000元,工程验收合格后,2011 年10月25日前付到总价的90%,留总价的10%作为质保金(一年以后视情况再付)。

六、施工期间乙方工作人员应遵守甲方企业规章制度,在施工期间,由于乙方责任造成的安全事故由乙方承担。 七、开工时间2011年8月25日,竣工时间:2011年10月25日。 八、如超过规定的施工期限,没超过一天罚总工程款的2%,最高不超过10%。(由于甲方原因、自然灾害,乙方工期顺延) 九、本合同未尽事宜,经双方代表协商可做补充修改。 十、本合同一式肆份,甲、乙双方各执贰份,自合同签字之日起生效。 甲方(签字):乙方(签字): 签订日期:年月日

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1)喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总 传质系数,a为塔内单位体积中有效的传质面积。) NTU为传质单元数,近似数值为NTU=(y 1-y 2 )/ △y m ,即气相总的浓度 变化除于平均推动力△y m =(△y 1 -△y 2 )/ln(△y 1 /△y 2 )(NTU是表征吸收困难程度 的量,NTU越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =×1025.07.04W G -]4[ 82 .0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a ) x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B) G 气相空塔质量流速,kg/(m 2﹒h) W 液相空塔质量流速,kg/(m 2﹒h) y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲) k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa) k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3) 式(2)中?为常数,其数值根据表2[4] 表3 温度与?值的关系 采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

脱硫系统工艺说明

脱硫系统工艺说明 工程概况 本工程建设2×300MW亚临界抽凝供热机组,编号为1号机(炉)、2号机(炉),烟气脱硫工程FGD按2台机组统一规划。采用石灰石—石膏湿法烟气脱硫工艺(以下简称FGD)、采用1炉1塔脱硫装置,脱硫系统不设置旁路烟道和增压风机,不带GGH,烟气脱硫后排入烟塔排至大气,即采用“烟塔合一”排烟方案,两炉合用一座烟塔用于排烟。FGD装置由上海龙净环保科技有限公司设计,采用湿式强制氧化、石灰石-石膏回收工艺,吸收塔的类型是目前广泛采用的逆流喷淋空塔,吸收塔反应罐的设计采取了富有特色的射流泵浆液搅拌装置。整个FGD工艺系统分为:烟气系统、吸收塔系统、石膏脱水系统、回流水和废水处理系统、石灰石粉储运系统、制浆和供浆系统、工艺水和压缩空气系统。脱硫效率不小于97%。事故浆液系统、石膏脱水系统、废水处理系统和石灰石粉制浆系统公用。 2.2工艺过程简述 (1)工艺描述

图1 石灰石-石膏湿法脱硫工艺流程图 石灰石-石膏湿法脱硫工艺流程图如图1所示。该工艺类型是:圆柱形空塔、吸收剂与烟气在塔内逆向流动、吸收和氧化在同一个塔内进行、塔内设置喷淋层、氧化方式采用强制氧化。 石灰石-石膏湿法脱硫工艺为当今世界先进的脱硫工艺,与其他脱硫工艺相比,其主要特点为: ·具有较高的脱硫效率,脱硫效率可达97%以上; ·具有较低的吸收剂化学剂量比,可低至1.03; ·较大幅度降低了液/气比(L/G),使脱硫系统的能耗降低; ·可得到纯度很高的脱硫副产品-石膏,为脱硫副产品的综合利用创造了有利条件; ·采用空塔型式,使得烟气流速有较大幅度的提高,吸收塔内径有大幅度的减小,同时减少了占地面积; ·采用价廉易得的石灰石作为吸收剂,能够有效地控制运行成本;

[“烟塔合一”技术在环评中有关问题的探讨] 烟塔合一.doc

摘要:介绍了国内外燃煤电厂“烟塔合一”技术的应用现状,阐述了“烟塔合一”的工艺流程及技术特点,重点进行 了“烟塔合一”排烟方案与常规的烟囱排烟方案对环境影响的对比分析,并针对燃煤电厂“烟塔合一”技术在环评过程 中存在的问题进行探讨。 关键词:燃煤电厂;烟塔合一;环境影响评价 中图分类号:X169 文献标识码:B 文章编号:1005-569X(2010)06-0098-03 1 引言 “烟塔合一”技术是将火电厂烟囱和冷却塔合二为一,取消烟囱,利用冷却塔巨大热量和热空气量对脱硫后湿烟气进 行抬升,在大多数情况下,其混合气体的抬升高度高于比冷却塔高几十米的烟囱,从而促进烟气内污染物的扩散。“烟塔 合一”技术起源于德国。我国燃煤电厂自2005年开始引用“烟塔合一”技术,该技术不仅可以提高火力发电系统的能源 利用效率,而且大大简化了火电厂的烟气系统,减少了设备投资并节约了有限的土地资源。 2 “烟塔合一”技术的应用现状 2.1 国外应用现状 德国于20世纪70年代开始研究“烟塔合一”技术,于1982年建设第一座“烟塔合一”火电厂,即Volklingen电厂。 1985年完成一系列测评。自此,“烟塔合一”技术在德国新建电厂中得到了广泛应用。同时,德国结合工程实际制订了 “烟塔合一”技术的相关技术标准和评价准则。随着“烟塔合一”技术的逐步成熟,德国、波兰、土耳其、希腊等国家 改建和新建了很多无烟囱电厂,其中大部分集中在德国。目前,德国采用“烟塔合一”技术且已运行的有20多座电厂,装 机总容量超过12000MW,最大单机容量已达到1000MW[1],如德国的Neurath电厂,装设2×1100MW机组。 德国要求“烟塔合一”的塔入口SO2质量浓度为400mg/m3,NOx质量浓度为200mg/m3。对一些燃烧褐煤且采用“烟塔 合一”技术的电厂,则未要求其对排烟进行脱硝(比如黑泵电厂)处理。其他国家投运的“烟塔合一”机组台数不多,目前 尚未见到相关要求。 2.2 国内应用现状 冷却塔排烟技术在国内工程中刚开始应用。华能北京热电厂建设了国内第一座排烟冷却塔,该烟塔由GEA公司总承包。三河电厂二期工程则是国内第一个自主设计、建设的烟塔合一工程,由北京国电负责全部设计、研发工作。目前国内在建的烟塔合一工程还有天津东北郊热电厂、哈尔滨第一热电厂、大唐锦州热电厂、天津军粮城热电厂和大连甘井子热电厂等。 2009年12月,环保部门召开了“火电项目烟塔合一方案环境影响研讨会”,明确指出:烟塔合一排烟方案在我国的适 用区域或情况主要包括北方干燥、半干燥地区有建筑物限高的区域(如机场附近的净空要求限制了烟囱高度);景观环境 有特殊要求的地区。且采用烟塔合一排烟方案时,其污染物治理应采用国内最先进的大气污染控制技术和最好的环境管理水平。 3 “烟塔合一”工艺流程及技术特点 “烟塔合一”的典型流程,除常规的锅炉、汽轮机、发电机等主系统与普通脱硫电厂基本相同外,主要特点在于锅炉 尾部的烟风系统。该技术是利用冷却塔巨大热量和热空气量对脱硫后湿烟气进行抬升,在大多数情况下,其混合气体的抬升高度远高于比冷却塔高几十至一百米的烟囱,从而促进烟气内污染物的扩散。同时,该技术可提高电力系统能源的利用效率,简化电厂烟气系统的工艺设计,在一定程度上降低了电厂投资。下图为“烟塔合一”的工艺流程示意图。 图1 “烟塔合一”工艺流程图“烟塔合一”就是将经脱硫后的烟气通过烟道直接穿过冷却塔塔筒伸到塔中央位置,烟道直角转弯朝上,烟气随着冷 却塔塔筒内上升水气一起排入大气中,进塔烟道水平布置,高度在冷却塔除水器上方,烟道一般采用玻璃钢材料制作,主要 是因为玻璃钢材料轻质、高强、耐腐蚀,适宜于大跨度布置,塔筒需事先开设大孔,孔径一般为6~10m,空洞须加固。 冷却塔设计技术为“烟塔合一”技术核心,基本要求是冷却塔在保证正常汽轮机循环冷却水冷却的情况下,使排入的 脱硫净烟气达到环保要求正常排放,其关键技术为冷却塔线形及尺寸、冷却塔强度(开孔技术)、冷却塔防腐和汽轮机循 环冷却水冷却几个方面[2]。设计的主要原则包括以下两方面。(1)最低热负荷要求。采用脱硫净烟气在冷却塔中心、淋水层上方高速(16~20m/s)排放,冷却塔巨大的热湿空气对 脱硫后净烟气形成一个环状气幕,对脱硫净烟气形成包裹和抬升。为保证脱硫后净烟气正常排放和抬升,“烟塔合一”的 设计要求为汽轮机冷却循环水水量不能小于设计值的50%或者不能低于冷却塔热负荷的30%。 (2)冷却塔防腐和脱硫后净烟气排烟温度限制:冷却塔内部需施以一层基层和二层表层防腐,总厚度不小于150 μm;冷却塔外部需施以一层基层和一层表层防腐,总厚度不小于80μm。冷却塔的寿命取决于防腐层厚度,因此需限制高 温烟气排入。

烧结机脱硫烟道振动流场分析及消振措施

烧结机脱硫烟道振动流场分析及消振措施 【摘要】对烧结机脱硫烟道进行常规处理减振效果不明显的情况下,对振动烟道按原型的实际尺寸在GAMBIT上以1:1的比例建立模型并划分网格,利用FLUENT流体工程仿真计算软件选取模拟湍流流动的标准k-ε湍流双方程模型进行模拟计算,根据模拟结果,对振动烟道进行导流,减振效果良好。 【关键词】烧结机;脱硫烟道;振动;流场模拟;导流 在钢铁生产过程中,二氧化硫是主要污染物之一,主要来自于烧结烟气工序产生的烟气。据统计,烧结工序排放的二氧化硫约占钢铁生产总排放量的60%以上,甚至会达到90%左右。如果二氧化硫实现回收利用,可以给企业带来一定的经济效益,二氧化硫的直接排放不仅污染了环境,还给企业造成了一定的经济损失。因此烧结工序的脱硫成为钢铁企业环境治理的首要任务。 在本公司承担的某钢厂烧结机烟气脱硫总承包工程中,采用石灰石-石膏法,烟塔合一技术。烧结机脱硫入口烟道由乙方从原主抽风机出口烟道接口接出,至脱硫后的合格烟气进入直排烟囱入口。在前期脱硫系统未投入的情况下,原烟气挡板门关闭,烟气通过主烟道进入原有烟囱。在运行过程中,主烟道振动较大,主抽风机振动慢慢向新旧烟道交接处扩大,主抽风机出口金属膨胀节失效,三通烟道底部靠与旧烟道交接处的钢板对接部位部分撕裂,旁路挡板门连杆振动,现场声音较大。 一、振动原因分析 本工程烧结烟气脱硫工程烟道对主烟道的改变,就是将主烟道上的消声器用新增的三通烟道替代,烟气进入旁进入烟囱或者通过原烟道进行脱硫。因新增的烟道只是烟气通道,自身不会产生振动,振动的原因考虑以下两个方面: 1、主抽风机的机械振动。风机自身振动通过主烟道扩压段,传递到新增三通烟道,且振动有扩大效应。 2、主抽风机扩压段较短,烟气流速不均。 二、对烟道机械振动的减振常规处理 根据现场情况,对振动烟道进行了如下减振措施: 1、烟道自身加固。参考火力发电厂烟道设计规程,对三通烟道面板按1米间距增加槽钢纵向加固肋。与之前的横向加固肋一起形成网格,在烟道内用圆钢φ76×4做内撑杆来消除振动[1]。

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在 2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ= h C K V Q η = (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273 *4.22641η+ (7) 在喷淋塔操作温度 10050 752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

相关文档
最新文档