模糊层次分析法基本理论基础

模糊层次分析法基本理论基础
模糊层次分析法基本理论基础

模糊层次分析法基本理论基础

FAHP及计算过程层次分析法(AHP)是20世纪70年代美国运筹学家T.L.Saaty教授提出的一种定性与定量相结合的系统分析方法,该方法对于量化评价指标,选择最优方案提供了依据,并得到了广泛的应用。然而,AHP存在如下方面的缺陷:检验判断矩阵是否一致非常困难,且检验判断矩阵是否具有一致性的标准CR<0.1缺乏科学依据;判断矩阵的一致性与人类思维的一致性有显著差异。

为此,结合模糊数学理论,首先介绍了模糊层次分析法(Fuzzy-AHP)FAHP,然后用FAHP对公共场所安全性指标权重进行了处理。

1.1模糊一致矩阵及有关概念

1.1.1定义1.1

设矩阵R=(rij)n×n,若满足:0≤(rij)≤1,(i=1,2,……n,j=1,2,……n),则称R为模糊矩阵

1.1.2定义1.2

若模糊矩阵R=(rij)n×n,若满足:Πi,j,k有rij=rik-rij+0.5,则称模糊矩阵R为模糊一致矩阵。

1.1.3定理1.1

设模糊矩阵R=(rij)n×n是模糊一致矩阵,则有

(1)Πi(i=1,2,…n),则rij=0.5;

(2)Πi,j(i=1,2,…n,j=1,2,…n),有rij+rji=1;

(3)R的第i行和第i列元素之和为n;

(4)从R中划掉任一行及其对应列所得的矩阵仍然是模糊一致矩阵;

(5)R满足中分传递性,即当λ≥0.5时,若rij≥λ,rjk≥λ,则rij≥λ;当λ≤0.5时,若rij≤λ,rjk≤λ,则rij≤λ。(证明见文献1)。

1.1.4定理1.2

模糊矩阵R=(rij)n×n是模糊一致矩阵的充要条件是任意指定行和其余各行对应元素之差是一个常数。

1.1.5定理1.3

如果对模糊互补矩阵F=(fij)n×n按行求和,记为ri=6nk=1fik(i=1,2,…,n),并施之如下数学变换:rij=ri-rj2m+0.5(1),则由此建立的矩阵是模糊一致的。

1.2模糊一致判断矩阵的建立

模糊一致判断矩阵的建立R表是针对上一层某元素,本层次与之有关元素之间相对重要性的比较,假定上一层次元素T同下一层次元素a1,a2,…,an有关系,则模糊一致判断矩阵可表示为:

rij的实际意义是:元素ai和元素aj相对于元素T进行比较时,ai

和aj具有模糊关系“…比…重要得多”的隶属度,表1采用0.1~0.9数量标度来说明其模糊关系。

有了上述数字标度之后,元素a1,a2……an相对于上一层元素进行比较,从而得到如下的模糊一致矩阵:

R具有如下性质:

(1)Πi(i=1,2,…n),则rij=0.5;

(2)Πi,j(i=1,2,…n,j=1,2,…n),有rij+rji=1;

因此,R为模糊一致矩阵,模糊判断矩阵R的一致性反映了人们思维判断的一致性,在构造模糊判断矩阵时非常重要,但在实际的决策分析中,由于研究问题的复杂性和人们认识上可能产生的片面性,构造出的模糊矩阵往往不具有一致性,可由模糊一致矩阵的充要条件来进行调整。

将模糊不一致矩阵调整为模糊一致矩阵的方法:

1.确定一个同其余元素的重要性相比较得出的判断有把握的元素,不失一般性,设决策者认为对判断r11、r12、……r1n有把握。

2.用R的第一行元素减去对应的第二行元素,若得到的n为常数,则不需要调整第二行的元素,否则对其调整。

由R的性质rij+rji=1,可得r11+r22=r12+r21=1;

R11-r21=r22-r12=a(a为常数);

R23=r13-a,r24=r14-a,…,r2n=r1n-a.

3.同理,用r的第一行元素减去对应的第三行元素,若得到的n 差为常数,则不需要调整第三行的元素,否则对其调整。

由R的性质rij+rji=1,可得r11+r33=r13+r31=1;

R11-r31=r33-r13=b(b为常数);

R32=r13-b,r34=r14-b,…,r3n=r1n-b.

4.同理,用r的第一行元素减去对应的第k行元素,若得到的n 差为常数,则不需要调整第k行的元素,否则对其调整。

由R的性质rij+rji=1,可得r11+rkk=r1k+rk1=1;

R11-rk1=rkk-r1k=c(c为常数);

Rk2=r1k-c,rk4=r1k-c,…,rkj=r1k-c(j=2,3,…,n;k=/j).

1.3由模糊一致矩阵求元素的权重

(1)a1,a2……an进行两两重要性比较后得到模糊一致矩阵

R=(rij)n×m,其权重值ω1,ω2,…ωn有如下关系成立:

rij=0.5+a(ωi-ωj)(i,j=1,2,…,n)

(2)其中0

时,a可以取较大值;另外,决策者还可以通过调整a的大小,求出若干个不同的权向量,在从中选择一个比较满意的权向量。

1.4几点说明

(1)定理1.1中第4条的意义在于:当设计好模糊一致矩阵后,如果又要删除某一个元素,则不必重新设计模糊一致矩阵,说明模糊一致矩阵具有良好的鲁棒性;

(2)定理1.1中第5条的中分传递性符合人们决策思维的心理特性;

(3)在实际决策分析中,由于所研究问题的复杂性和人们认识上可能产生的片面性,使构造出的判断矩阵不具有一致性,可以按定理1.2或1.3进行调整。

基于层次分析法的模糊综合评价模型

基于层次分析法的模糊综 合评价模型 Prepared on 22 November 2020

2016江西财经大学数学建模竞赛A题 城市交通模型分析 参赛队员:黄汉秦、乐晨阳、金霞 参赛队编号:2016018 2016年5月20日~5月25日

承诺书 我们仔细阅读了江西财经大学数学建模竞赛的竞赛章程。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C中选择一项填写):A 我们的参赛队编号为2016018 参赛队员(打印并签名): 队员1.姓名专业班级计算机141 队员2.姓名专业班级计算机141 队员3.姓名专业班级计算机141 日期:2016年5月25日

编号和阅卷专用页 2016年5月15日制定

城市交通模型分析 摘要 随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,交通出行结构发生了根本变化,城市道路交通拥挤堵塞问题已成为制约经济发展、降低人民生活质量、削弱经济活力的瓶颈之一。本篇论文针对道路拥挤的问题采用层次分析法进行数学建模分析,讨论拥堵的深层次问题及解决方案。 首先建立绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。 其次,建立评价集V=(优,良,中,差)。对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u),B(u),C(u),D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5) 然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式 []R W R W R W R W R W W R W O 5 5 4 4 3 3 2 2 1 1 ,,,,==计算出权重值,经过一致性检验公式 RI CI CR = 检验后,均有0.1CR <,由此得出各层次的权向量()12,,T n W W W W =。然后 后,给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。 接着在改进方案中,我们具体以交叉口为中心建立模型,其中包括道路长度、宽度、车辆平均长度、车速等等考虑因素。通过车辆排队长度可以间接判断交通拥堵情况,不需要测量车速、时间等因素而浪费的人力物力和财力,有效的提高了工作成本和效率。为管理城市交通要道提供了良好的模型和依据。 【关键字】交通拥堵层次分析法模糊综合评判绩效评价隶属度 一、问题重述 随着我国经济社会持续快速发展,群众购车刚性需求旺盛,汽车保有量继续呈快速增长趋势,2015年新注册登记的汽车达2385万辆,保有量净增1781万辆,均为历史最高水平。汽车占机动车的比率迅速提高,近五年汽车占机动车比率从%提高到%,群众机动化出行方式经历了从摩托车到汽车的转变,交通出行结构发生了根本性变化。 2015年,小型载客汽车达亿辆,其中,以个人名义登记的小型载客汽车(私家车)达到亿辆,占小型载客汽车的%。与2014年相比,私家车增加1877万辆,增长%。全国有40个城市的汽车保有量超过百万辆,北京、成都、深圳、上海、重庆、天津、苏州、郑州、杭州、广州、西安11个城市汽车保有量超过200万辆。全国平均每百户家庭拥有31辆私家车,北京、成都、深圳等大城市每百户家庭拥有私家车超过60辆。

模糊方法

模糊数学方法 在自然科学或社会科学研究中,存在着许多定义不很严格或者说具有模糊性的概念。这里所谓的模糊性,主要是指客观事物的差异在中间过渡中的不分明性,如某一生态条件对某种害虫、某种作物的存活或适应性可以评价为“有利、比较有利、不那么有利、不利”;灾害性霜冻气候对农业产量的影响程度为“较重、严重、很严重”,等等。这些通常是本来就属于模糊的概念,为处理分析这些“模糊”概念的数据,便产生了模糊集合论。 根据集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一,且仅居其一。这样的集合论本身并无法处理具体的模糊概念。为处理这些模糊概念而进行的种种努力,催生了模糊数学。模糊数学的理论基础是模糊集。模糊集的理论是1965年美国自动控制专家查德(L. A. Zadeh)教授首先提出来的,近10多年来发展很快。 模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。实践证明,模糊数学在农业中主要用于病虫测报、种植区划、品种选育等方面,在图像识别、天气预报、地质地震、交通运输、医疗诊断、信息控制、人工智能等诸多领域的应用也已初见成效。从该学科的发展趋势来看,它具有极其强大的生命力和渗透力。 在侧重于应用的模糊数学分析中,经常应用到聚类分析、模式识别和综合评判等方法。在DPS系统中,我们将模糊数学的分析方法与一般常规统计方法区别开来,列专章介绍其分析原理及系统设计的有关功能模块程序的操作要领,供用户参考和使用。 第1节模糊聚类分析 1. 模糊集的概念 对于一个普通的集合A,空间中任一元素x,要么x∈A,要么x?A,二者必居其一。这一特征可用一个函数表示为: A x x A x A ()= ∈ ?? ? ? 1 A(x)即为集合A的特征函数。将特征函数推广到模糊集,在普通集合中只取0、1两值推广到模糊集中为[0, 1]区间。 定义1 设X为全域,若A为X上取值[0, 1]的一个函数,则称A为模糊集。 如给5个同学的性格稳重程度打分,按百分制给分,再除以100,这样给定了一个从域X={x1 , x2 , x3 , x4, x5}到[0, 1]闭区间的映射。 x1:85分,即A(x1)=0.85 x2:75分,A(x2)=0.75 x3:98分,A(x3)=0.98 x4:30分,A(x4)=0.30 x5:60分,A(x5)=0.60 这样确定出一个模糊子集A=(0.85, 0.75, 0.98, 0.30, 0.60)。 定义2 若A为X上的任一模糊集,对任意0 ≤λ≤ 1,记Aλ={x|x∈X, A(x)≥λ},称Aλ为A的λ截集。 Aλ是普通集合而不是模糊集。由于模糊集的边界是模糊的, 如果要把模糊概念转化为数学语言,需要选取不同的置信水平λ (0 ≤λ≤ 1) 来确定其隶属关系。λ截集就是将模糊集转化为普通集的方法。模糊集A是一个具有游移边界的集合,它随λ值的变小而增大,即当λ1 <λ2时,有Aλ1∩Aλ2。

模糊层次分析法

模糊层次分析法理论基础 FAHP及计算过程层次分析法(AHP)是20世纪70年代美国运筹学家T.L. Saaty教授提出的一种定性与定量相结合的系统分析方法,该方法对于量化评价指标,选择最优方案提供了依据,并得到了广泛的应用。然而, AHP存在如下方面的缺陷:检验判断矩阵是否一致非常困难,且检验判断矩阵是否具有一致性的标准CR < 0. 1缺乏科学依据;判断矩阵的一致性与人类思维的一致性有显著差异。为此,本文结合模糊数学理论,首先介绍了模糊层次分析法(Fuzzy - AHP) FAHP ,然后用FAHP对公共场所安全性指标权重进行了处理。 1. 1 模糊一致矩阵及有关概念[4 ,5 ] 1. 1. 1 定义1. 1 设矩阵R = ( rij) n×n ,若满足: 0 ≤( rij) ≤ 1 , ( i = 1 ,2 , ……n , j = 1 ,2 , ……n),则称R 为模糊矩阵 1. 1. 2 定义1. 2 若模糊矩阵R = ( rij) n×n ,若满足: Πi , j , k 有rij= rik - rij + 0. 5 ,则称模糊矩阵R 为模糊一致矩阵。 1. 1. 3 定理1. 1 设模糊矩阵R = ( rij) n×n是模糊一致矩阵,则有 (1) Πi ( i = 1 ,2 , …n) ,则rij = 0. 5 ; (2) Πi , j ( i = 1 ,2 , …n , j = 1 ,2 , …n) ,有rij + rji= 1 ; (3) R 的第i 行和第i 列元素之和为n ; (4)从R 中划掉任一行及其对应列所得的矩阵仍然是模糊一致矩阵; (5) R 满足中分传递性,即当λ≥0. 5 时,若rij≥λ, rjk ≥λ,则rij ≥λ;当λ≤0. 5 时,若rij ≤λ, rjk ≤λ,则rij ≤λ。(证明见文献1) 。 1. 1. 4 定理1. 2 模糊矩阵R = ( rij) n×n是模糊一致矩阵的充要条件是任意指定行和其余各行对应元素之差是一个常数。 1. 1. 5 定理1. 3 如果对模糊互补矩阵 F = ( f ij) n×n按行求和,记为ri = 6nk = 1f ik ( i = 1 ,2 , …, n) ,并施之如下数学变换:rij =ri - rj2 m + 0. 5 (1),则由此建立的矩阵是模糊一致的。 1. 2 模糊一致判断矩阵的建立 模糊一致判断矩阵的建立R 表是针对上一层某元素,本层次与之有关元素之间相对重要性的比较,假定上一层次元素T 同下一层次元素a1 , a2 ,…, an 有关系,则模糊一致判断矩阵可表示为: rij的实际意义是:元素ai 和元素aj 相对于元素T 进行比较时, ai 和aj 具有模糊关系“…比…重要得多”的隶属度,表1采用0. 1~0. 9 数量标度来说明其模糊关系。

层次分析法与模糊综合评价的区别

层次分析法与模糊综合判别的区别与联系 1、层次分析法 [ 参考文献:吋义成, 柯丽华, 黄德育. 系统综合评价技术及其应用[M]. 北京: 冶金工业出版社,2006] 人们在日常生活中经常要从一堆同样大小的物品中挑选出最重要的物品,如重量最大的物品,即至少要确定各物品的相对重量。这时,经验和常识告诉我们,可以利用两两比较的方法来达到目的。 若在没有称量仪器的条件下对一组物体的重量进行估计,则可以通过爱对比较这组物体相对重量的方法,得出每对物体相对重量比的判断,从而形成比较判断矩阵,再通过求解判断矩阵的最大特征根和它所对应的特征向量问题,就能计算出这组物体的相对重量。 将此方法应用到复杂的社会、经济和科学管理等领域中,就能确定各种方案、措施、政策等 相对于总目标的重要性排序情况,以供领导者决策。 一般的层次分析法模型由图5-1 所示,分为目标层、准则层、指标层、方案层组成。需要注意几点: (1)层次分析法的评价结构并非是上述部分一成不变的,其中的当指标层因素较少时准则层可以省去(图5-2 ),当某一准则对应的指标层元素过多时可以将其指标层细分为“子准则层和指标层”(图5-4 )。由于层次分析法是利用两两比较完成的,为了便于人的比较与判别,每层的元素个数在3~7 之间为佳,超过7 以后增加了比较判断的难度,因此当元素过多时,可以将其分类后分成两层或多层来判别。 (2)准则层与指标层之间的关系可以对比一下图5-1 和图5-4 ,即每个准则可能有独 用的指标体系,也可能是各准则之间共用某几个指标。 (3)层次分析法的特点是基于某个目标,对多个待评价方案进行评价,从而得到方案的重要性排序。具体到某个问题,其并无相应的数据。而模糊综合判别有相应的基础数据。两者可以结合一起用,比如常用的是模糊综合评判过程中,权重可以由层次分析法计算。 层次分析法的骤如下: 1)在作者建立评价模型后,根据经验对每层里的各个元素建立重要性判别矩阵,从判 别矩阵中可以得到某一层中各个指标的归一化权重(表5-1中的W B,W C1,W C2,W C3,W C4)。(表5-1和5-2 的数据为图5-1 模型的) 2)由层与层之间权重的传递可以得到最低层(具体指标层)的综合权重。如图5-1 所示的图中有得到各个C ij的综合权重W ij(表5-2第2列)。 3)最后,在指标层与方案层之间建立判别矩阵,针对每一个指标C ij 都需要建立一个各 方案A i的比较矩阵,判别A针对C j的重要性w A i (表5-2的每一行)。最后将指标C ij的综合权重W ij与W Ai进行乘法求和,从而得到方案A的最终综合权重刀(W ij心Ai),即为续表5-2的最后一行。

模糊层次分析法的Matlab实现

一、引言 层析分析法是将定量与定性相结合的多目标决策法,是一种使用频率很高的方法,在经济管理、城市规划等许多领域得到了广泛应用。由于其结果受主观思维的影响较大,许多科研工作者对其进行了深入的研究,将模糊理论与层次分析法相结合,提出了模糊层次分析法。为克服层次分析法中判断矩阵的一致性与人类思维的一致性存在的显著差异,文献[1-2]引入了模糊一致矩阵。为解决解的精度及收敛问题,文献[3-4]引入幂法来求排序向量。运用模糊层次分析法研究实际问题时,常采用迭代法来得到精度更高的排序向量,这就要求选择合适的初始值并通过大量的计算,为此,文中利用三种方法计算了初始排序向量,并给出了算法的Matlab程序,最后通过实例说明。 二、模糊层次分析法 为解决AHP种所存在的问题,模糊层次分析法引入模糊一致矩阵,无需再进行一致性检验,同时使用幂法来计算排序向量,可以减少迭代齿数,提高收敛速度,满足计算精度的要求.具体步骤: 1.构造优先关系矩阵 采用0.1~0.9标度[2],建立优先判断矩阵 2.将优先关系矩阵转化为模糊一致矩阵 3.计算排序向量 (1)和行归一法: (2)方根法: (3)利用排序法: (4)利用幂法[5-6]求精度更高的排序向量: 否则,继续迭代。 三、模糊层次分析法的程序实现 给出模糊层次分析法的Matlab程序。 clear; clc; E=input('输入计算精度e:') Max=input('输入最大迭代次数Max:')

F=input('输入优先关系矩阵F:'); %计算模糊一致矩阵 N=size(F); r=sum(F'); for i=1:N(1) for j=1:N(2) R(i,j)=(r(i)-r(j))/(2*N(1))+0.5; end end E=R./R'; % 计算初始向量---------- % W=sum(R')./sum(sum(R)); % 和行归一法 %--------------------------------------------------------- for i=1:N(1) S(i)=R(i,1); for j=2:N(2) S(i)=S(i)*R(i,j); end end S=S^(1/N(1)); W = S./sum(S);%方根法%-------------------------------------------------------- % a=input('参数a=?'); %W=sum(R')/(N(1)*a)-1/(2*a)+1/N(1); %排序法 % 利用幂法计算排序向量----V(:,1)=W'/max(abs(W)); %归一化 for i=1:Max V(:,i+1)=E*V(:,i); V(:,i+1)=V(:,i+1)/max(abs(V(:,i+1))); if max(abs(V(:,i+1)-V(:,i)))k=i; A=V(:,i+1)./sum(V(:,i+1)); break Else End End 四、计算实例

层次分析法具体应用及实例

层次分析法步骤与实例 1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序. 2 次分析法的步骤:

3 以一个具体案例进行说明: 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。 目标层A 准则层B 准则层C 措施层D 图1 递阶层次结构示意图

模糊数学评价方法教程

模糊综合评价法(见课件) 模糊数学是从量的角度研究和处理模糊现象的科学.这里模糊性是指客观事物的差异在中介过渡时所呈现的“亦此亦比”性.比如用某种方法治疗某病的疗效“显效”与“好转”、某医院管理工作“达标”与“基本达标”、某篇学术论文水平“很高”与“较高”等等.从一个等级到另一个等级间没有一个明确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫中介过渡.由这种中介过渡引起的划分上的“亦此亦比”性就是模糊性. 一、单因素模糊综合评价的步骤 1. 根据评价目的确定评价指标(evaluation indicator )集 合 },,,{21m u u u U = 例如评价某项科研成果,评价指标集合为U ={学术水平,社会效益,经济效益}. 2. 给出评价等级(evaluation grade )集合 },,,{21n v v v V = 如评价等级集合为V ={很好,好,一般,差}. 3. 确定各评价指标的权重(weight ) },,,{21m W μμμ = 权重反映各评价指标在综合评价中的重要性程度,且∑=1i μ. 例如假设评价科研成果,评价指标集合U ={学术水平,社会效益,

经济效益}其各因素权重设为}4.0,3.0,3.0{=W . 4.确定评价矩阵R 请该领域专家若干位,分别对此项成果每一因素进行单因素评价(one-way evaluation ),例如对学术水平,有50%的专家认为“很好”,30%的专家认为“好”,20%的专家认为“一般”,由此得出学术水平的单因素评价结果为()0,2.0,3.0,5.01=R 同样如果社会效益,经济效益两项单因素评价结果分别为 ()1.0,2.0,4.0,3.02=R ()2.0,3.0,2.0,2 .03=R 那么该项成果的评价矩阵为 ???? ? ??=????? ??=2.03.02.02.01.02.04.03.002.03.05.0321R R R R 5.进行综合评价 通过权系数矩阵W 与评价矩阵R 的模糊变换得到模糊评判集S : 设m j W ?=1)(μ,n m ji r R ?=)(,那么 ()()n mn m m n n m s s s r r r r r r r r r R W S ,,,,,,212 1 22221 11211 21 =???? ?? ? ??==μμμ 其中“ ”为模糊合成算子. 进行模糊变换时要选择适宜的模糊合成算子,模糊合成算子通 常有四种: (1) ),(∨∧M 算子

层次分析法的应用实例汇总

第二节 层次分析法的应用实例 设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。 此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。 例 过河的代价与效益分析。 (a) 过河效益层次结构 (b) 过河代价层次结构 图5-3 过河的效益与代价层次结构图 过河的效益 A 过河的效益 2B 经济效益 1B 过河的效益 3B 隧 道 2D 桥 梁 1D 渡 船 3D 美化 11 C 进出方便 10 C 舒适 9 C 自豪感 8 C 交往沟通 7C 安全可靠 6 C 建筑就业 5 C 当地商业4C 岸间商业3C 收入2C 节省时间1 C 过河的代价 A 社会代价 2B 经济代价 1B 环境代价 3B 隧 道 2D 桥 梁 1D 渡 船 3D 对生态的污染 9 C 对水的污染 8 C 汽车的排放物 7 C 居民搬迁 6 C 交往拥挤 5C 安全可靠 4 C 冲击渡船业 3 C 操作维护 2 C 投入资金 1 C

关于效益的各个判断矩阵如表5-9—表5-23所示。 表5-9 表5-10 表5-11 表5-12 表5-13 表5-14 表5-15 表5-16

表5-17 表5-18 表 5-19 表 5-20 表5-21 表5-22 表 5-23 这样我们得到方案关于效益的合成顺序为 T )07.0 ,36.0 ,57.0()4(=益ω 效益层次模型的整体一致性比例C.R.(4)<0.1(最后一个矩阵的一致性较差,但因

模糊评价方法的基本步骤

模糊综合评价 模糊综合评价法是一种基于模糊数学的综合评标方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。其基本步骤可以归纳为: ①首先确定评价对象的因素论域 可以设N 个评价指标,12(,, ...)n X X X X =; ②确定评语等级论域 设12n =(W ,W , ...W )A ,每一个等级可对应一个模糊子集,即等级集合。 ③建立模糊关系矩阵 在构造了等级模糊子集后,要逐个对被评事物从每个因素(=1,2,,n)i X i ……上 进行量化,即确定从单因素来看被评事物对等级模糊子集的隶属度i X (R ),进而 得到模糊关系矩阵11112122122212nm ......=..................m m n n n nm X r r r X r r r X r r r ??????????????????????????(R )(R )R=(R ),其中,第i 行第j 列元素,表示某个被评事物i X 从因素来看对j W 等级模糊子集的隶属度。 ④确定评价因素的权向量 在模糊综合评价中,确定评价因素的权向量:12(,, ...)n U u u u =。一般采用层 次分析法确定评价指标间的相对重要性次序。从而确定权系数,并且在合成之前归一化。 ⑤合成模糊综合评价结果向量 利用合适的算子将U 与各被评事物的R 进行合成,得到各被评事物的模糊综合评价结果向量B 即:

111212122 2121212nm ......(,, ...)(,, ...)...............m m n m n n nm r r r r r r U R u u u b b b B r r r ??????===?????? 其中,i b 表示被评事物从整体上看对j W 等级模糊子集的隶属程度。 ⑥对模糊综合评价结果向量进行分析 实际中最常用的方法是最大隶属度原则,但在某些情况下使用会有些很勉强,损失信息很多,甚至得出不合理的评价结果。提出使用加权平均求隶属等级的方法,对于多个被评事物并可以依据其等级位置进行排序。

模糊综合评价法的数学建模方法简介_任丽华

8 《商场现代化》2006年7月(中旬刊)总第473期 20世纪80年代初,汪培庄提出了对绿色供应链绩效进行评价的模糊综合评价模型,此模型以它简单实用的特点迅速波及到国民经济和工农业生产的方方面面,广大实际工作者运用此模型取得了一个又一个的成果。本文简单介绍模糊综合评价法的数学模型方法。 一、构造评价指标体系 模糊综合评价的第一步就是根据具体情况建立评价指标体系的层次结构图,如图所示: 二、确定评价指标体系的权重 确定各指标的权重是模糊综合评价法的步骤之一。本文根据绿色供应链评价体系的层次结构特点,采用层次分析法确定其权重。尽管层次分析法中也选用了专家调查法,具有一定的主观性,但是由于本文在使用该方法的过程中,对多位专家的调查进行了数学处理,并对处理后的结果进行了一致性检验,笔者认为,运用层次分析法能够从很大程度上消除主观因素带来的影响,使权重的确定更加具有客观性,也更加符合实际情况。 在此设各级指标的权重都用百分数表示,且第一级指标各指标的权重为Wi,i=1,2,…,n,n为一级指标个数。一级指标权重向量为: W=(W1,…,Wi,…Wn) 各一级指标所包含的二级指标权重向量为: W=(Wi1,…,Wis,…Wim),m为各一级指标所包含的二级指标个数,s=1,2,…,m。 各二级指标所包含的三级指标权重向量为: Wis=(Wis1,…Wis2,…Wimq),q为各二级指标所包含的三级指标个数。三、确定评价指标体系的权重建立模糊综合评价因素集将因素集X作一种划分,即把X分为n个因素子集X1,X2,…Xn,并且必须满足: 同时,对于任意的i≠j,i,j=1,2,…,均有 即对因素X的划分既要把因素集的诸评价指标分完,而任一个评 价指标又应只在一个子因素集Xi中。 再以Xi表示的第i个子因素指标集又有ki个评价指标即:Xi={Xi1,Xi2,…,XiKi},i=1,2,…,n 这样,由于每个Xi含有Ki个评价指标,于是总因素指标集X其有 个评价指标。 四、 进行单因素评价,建立模糊关系矩阵R 在上一步构造了模糊子集后,需要对评价目标从每个因素集Xi上进行量化,即确定从单因素来看评价目标对各模糊子集的隶属度,进而得到模糊关系矩阵: 其中si(i=1,2,…,m)表示第i个方案,而矩阵R中第h行第j列元素rhj表示指标Xih在方案sj下的隶属度。对于隶属度的确定可分为两种 情况:定量指标和定性指标。 (1)定量指标隶属度的确定 对于成本型评价因素可以用下式计算: 对于效益型评价因素可以用下式计算:对于区间型评价因素可以用下式计算:上面三个式子中:f(x)为特征值,sup(f),inf(f)分别为对应于同一个指标的所有特征值的上下界,即是同一指标特征值的最大值和最小 模糊综合评价法的数学建模方法简介 任丽华 东营职业学院 [摘 要] 本文一种数学模型方法构造了一种对绿色供应链绩效进行评价的模糊综合评价法,主要从构造评价指标体系,确定评价指标体系的权重,确定评价指标体系的权重,建立模糊综合评价因素集,进行单因素评价、建立模糊关系矩阵R,计算模糊评价结果向量B等五个方面介绍这种评价方法。 [关键词] 绿色供应链绩效评价 模糊综合评价法 数学模型方法 流通论坛

模糊层次分析法

5.结论 由以上计算过程可以看出,模糊层次分析法同普通层次分析法相比具有以下优点:(1)检验一次性更方便。根据定理2.1或定理2.2可直接检验模糊矩阵是否具有一致性。(2)调整过程更简洁。通过调整模糊矩阵的元素可很快使模糊矩阵具有模糊一致性。(3)判断依据更合理。根据定理2.1或定理2.2作为检验一致性的标准更科学简便。 参考文献[1]张吉军.模糊层次分析法.模糊系统与数学,2000,14(2):80-88 [2]吕跃进.基于模糊一致矩阵的模糊层次分析法的排序.模糊系统与数学,2002,16(2):79-85 [3]JohnMGleason.Fuzzysetcomputationalprocessesinriskanalysis.IEEETransactionson EngineeringManagement,1991,38(2):177-178 4.3.2层次总排序 同理,可求得其他矩阵对应元素的权重,并得到C层次总排序如下: 4.3.5结论 球面网壳动力稳定临界力简化计算 王节1黄显民2 (1.黑龙江省林业设计研究院2.哈尔滨工业大学建筑设计研究院150008) 摘要:球面网壳动力稳定临界力简化估算公式是针对跨度30m ̄60m,矢跨比1/10 ̄1/6的单层球面网壳,对于其它类型的网壳结构要具体分析。 关键词:单层球面网壳动力稳定动力稳定临界力中图分类号:TB122文献标识码:A 网壳结构是杆件沿曲面有规律布置而组成的空间杆系结构。具有刚度大、自重轻、受力均匀、在水平、竖向及多维地震作用下的动内力分布均匀且较小,结构抗震性能良好。结构在罕遇地震作用下的动力失稳临界峰值较高,随着矢跨比增加,结构刚度增大,地震作用稳定性提高。而且造型丰富美观、综合技术指标好等特点,是大跨度、大空间结构的主要结构形式之一。目前世界上跨度最大的网壳结构是美国新奥尔良体育馆的超级穹顶,跨度213米。近年来,网壳结构在我国获得了迅速的发展,哈尔滨速滑馆,由筒壳及两个半球壳组成的组合网壳,网壳平面投影86.2m×191.2m,是已建成最大的网壳结构。 在我国,单层球面网壳多应用在跨度较小的结构中,主要原因是该类结构为缺陷敏感性结构,在大雪、强风和强烈地震作用下,杆件进入塑性,结构通过塑性变形吸收地震能量,随着地震输入能量的增加,结构产生很大的塑性变形甚至失稳倒塌破坏。目前关于球面网壳的研究主要集中在结构静力稳定性及静力后屈

模糊层次分析法基本理论基础

模糊层次分析法基本理论基础 FAHP及计算过程层次分析法(AHP)是20世纪70年代美国运筹学家T.L.Saaty教授提出的一种定性与定量相结合的系统分析方法,该方法对于量化评价指标,选择最优方案提供了依据,并得到了广泛的应用。然而,AHP存在如下方面的缺陷:检验判断矩阵是否一致非常困难,且检验判断矩阵是否具有一致性的标准CR<0.1缺乏科学依据;判断矩阵的一致性与人类思维的一致性有显著差异。 为此,结合模糊数学理论,首先介绍了模糊层次分析法(Fuzzy-AHP)FAHP,然后用FAHP对公共场所安全性指标权重进行了处理。 1.1模糊一致矩阵及有关概念 1.1.1定义1.1 设矩阵R=(rij)n×n,若满足:0≤(rij)≤1,(i=1,2,……n,j=1,2,……n),则称R为模糊矩阵 1.1.2定义1.2 若模糊矩阵R=(rij)n×n,若满足:Πi,j,k有rij=rik-rij+0.5,则称模糊矩阵R为模糊一致矩阵。 1.1.3定理1.1 设模糊矩阵R=(rij)n×n是模糊一致矩阵,则有 (1)Πi(i=1,2,…n),则rij=0.5; (2)Πi,j(i=1,2,…n,j=1,2,…n),有rij+rji=1;

(3)R的第i行和第i列元素之和为n; (4)从R中划掉任一行及其对应列所得的矩阵仍然是模糊一致矩阵; (5)R满足中分传递性,即当λ≥0.5时,若rij≥λ,rjk≥λ,则rij≥λ;当λ≤0.5时,若rij≤λ,rjk≤λ,则rij≤λ。(证明见文献1)。 1.1.4定理1.2 模糊矩阵R=(rij)n×n是模糊一致矩阵的充要条件是任意指定行和其余各行对应元素之差是一个常数。 1.1.5定理1.3 如果对模糊互补矩阵F=(fij)n×n按行求和,记为ri=6nk=1fik(i=1,2,…,n),并施之如下数学变换:rij=ri-rj2m+0.5(1),则由此建立的矩阵是模糊一致的。 1.2模糊一致判断矩阵的建立 模糊一致判断矩阵的建立R表是针对上一层某元素,本层次与之有关元素之间相对重要性的比较,假定上一层次元素T同下一层次元素a1,a2,…,an有关系,则模糊一致判断矩阵可表示为: rij的实际意义是:元素ai和元素aj相对于元素T进行比较时,ai

数学建模方法详解模糊数学

数学建模方法详解--模糊数学 在生产实践、科学实验以及日常生活中,人们经常会遇到模糊概念(或现象)。例如,大与小、轻与重、快与慢、动与静、深与浅、美与丑等都包含着一定的模糊概念。随着科学技术的发展,各学科领域对于这些模糊概念有关的实际问题往往都需要给出定量的分析,这就需要利用模糊数学这一工具来解决。 模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定性的领域扩大到了模糊领域,即从精确现象到模糊现象。在各科学领域中,所涉及的各种量总是可以分为确定性和不确定性两大类。对于不确定性问题,又可分为随机不确定性和模糊不确定性两类。模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法。本章对于实际中具有模糊性的问题,利用模糊数学的理论知识建立数学模型解决问题。 1.1 模糊数学的基本概念 1.1.1 模糊集与隶属函数 1. 模糊集与隶属函数 一般来说,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象的全体构成的集合为U ,则称之为论域(或称为全域、全集、空间、话题)。如果U 是论域 ,则U 的所有子集组成的集合称之为U 的幂集,记作)(U F 。在此,总是假设问题的论域是非空的。为了与模糊集相区别,在这里称通常的集合为普通集。 对于论域U 的每一个元素U x ∈和某一个子集U A ?,有A x ∈或A x ?,二者有且仅有一个成立。于是,对于子集A 定义映射 }1,0{:→U A μ 即 ?? ??∈=,0, ,1)(A x A x x A ,μ 则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定。 所谓论域U 上的模糊集A 是指:对于任意U x ∈总以某个程度)]1,0[(∈A A μμ属于A ,而不能用A x ∈或A x ?描述。若将普通集的特征函数的概念推广到模糊集上,即得到模糊集的隶属函数。 定义1.1 设U 是一个论域,如果给定了一个映射 ]1,0[)(]1,0[:∈→x x U A A μμα 则就确定了一个模糊集A ,其映射A μ称为模糊集A 的隶属函数,A μ称为x 对模糊集A 的隶属度。 定义1.1表明,论域U 上的模糊集A 由隶属函数A μ来表征,A μ的取值范围为闭区间]1,0[,A μ的大小反映了x 对模糊集A 的从属程度,A μ值接近于1,表示x 从属A 的程度很高,A μ值接近于0,表示x 从属A 的程度很低,使5 .0=A μ

基于层次分析法的模糊综合评价模型

2016江西财经大学数学建模竞赛 A题 城市交通模型分析 参赛队员: 黄汉秦、乐晨阳、金霞 参赛队编号:2016018 2016年5月20日~5月25日

承诺书 我们仔细阅读了江西财经大学数学建模竞赛的竞赛章程。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C中选择一项填写): A 我们的参赛队编号为2016018 参赛队员(打印并签名) : 队员1. 姓名专业班级计算机141 队员2. 姓名专业班级计算机141 队员3. 姓名专业班级计算机141 日期: 2016 年 5 月 25 日

编号和阅卷专用页 江西财经大学数学建模竞赛组委会 2016年5月15日制定

城市交通模型分析 摘要 随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,交通出行结构发生了根本变化,城市道路交通拥挤堵塞问题已成为制约经济发展、降低人民生活质量、削弱经济活力的瓶颈之一。本篇论文针对道路拥挤的问题采用层次分析法进行数学建模分析,讨论拥堵的深层次问题及解决方案。 首先建立绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。 其次,建立评价集V=(优,良,中,差)。对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5) 然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式 1 ,ij ij n kj k u u u == ∑ 1 ,n i i j j w u ==∑ 1 ,i i n j j w w w == ∑ []R W R W R W R W R W W R W O 5 5 4 4 3 3 2 2 1 1 ,,,,==计算出权重值,经过一致性检验公式 RI CI CR = 检验后,均有0.1CR <,由此得出各层次的权向量()12,,T n W W W W =。然后后, 给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。 接着在改进方案中,我们具体以交叉口为中心建立模型,其中包括道路长度、宽度、车辆平均长度、车速等等考虑因素。通过车辆排队长度可以间接判断交通拥堵情况,不需要测量车速、时间等因素而浪费的人力物力和财力,有效的提高了工作成本和效率。为管理城市交通要道提供了良好的模型和依据。 【关键字】交通拥堵 层次分析法 模糊综合评判 绩效评价 隶属度

相关文档
最新文档