飞机复合材料装配连接技术

飞机复合材料装配连接技术
飞机复合材料装配连接技术

飞机复合材料结构装

配连接技术

哈尔滨飞机工业集团有限责任公司 常仕军 肖 红 侯兆珂 董 楹

Assembly and Fastening for Composite Structure in Aircraft

随着复合材料在飞机结构上应用比例的大幅度提高,复合材料结构装配连接方面存在的问题逐渐突出。与国外飞机制造公司相比,我国复合材料结构制造装配基础差、技术水平低,复合材料结构装配连接技术已成为我国飞机研制过程中的关键技术之一。

常仕军

毕业于西北工业大学航空宇航制造工程专业,现为中航工业哈尔滨飞机工业集团有限责任公司主管工艺员,主

要从事直升机和通用飞机的胶接、

铆接、

总装工艺指导工作。

近年来,复合材料以其较高的比强度、比模量、较好的延展性、热膨胀系数小、抗疲劳能力和抗振能力强、抗腐蚀、独特的耐烧蚀性、各向异性和可设计性等特点,以及采用共固化、共胶接为核心的整体成型技术;之一。

复合材料结构装配

连接方法

由于受实际生产中复合材料成型工艺技术水平的限制,并考虑到设计、工艺、维修、运输等方面的需求,从制造、装配、使用和维护的实际需要出发,复合材料结构设计还保留着大量的设计分离面和工艺分离面,这些分离面需要在装配阶段与其他复合材料结构件或金属结构件进行装配连接。与金属结构相比,复合材料层间强度低、抗冲击能力差等弱点[3],决定了其结构的装配连接难度大、技术要求高。合理和灵活地运

能够大幅度地减少零件、紧固件和模具数量,简化装配工序,提高整体结构的综合性能,缩短生产周期,降低制造成本,成为新一代飞机机体结构四大主要材料之一。从空客A380飞机上复合材料用量占机体重量的

25%,到波音787飞机的50%,再到A350的52%,复合材料在机体结构上的应用以年均9%的速率增长[1-2]。随着复合材料在飞机结构上应用比

例的大幅度提高,复合材料结构装配连接方面存在的问题逐渐突出。与国外飞机制造公司相比,我国复合材料结构制造装配基础差、技术水平低,复合材料结构装配连接技术已成为我国飞机研制过程中的关键技术

用复合材料的连接形式及方法,是提高复合材料结构件强度、减轻结构重量、充分发挥复合材料优异特性的重要条件之一。

复合材料零件之间或复合材料与金属零件之间的装配连接,通常有机械连接、胶接和混合连接3种方法。

在复合材料连接工艺技术中,选用何种连接方法,主要根据实际使用要求而定。一般来讲,当承载较大、可靠性要求较高时,宜采用机械连接;当承载较小、构件较薄、环境条件不十分恶劣时,宜采用胶接连接;在某些特殊情况下,为提高结构的破损-安全特性时,可采用混合连接。1 机械连接

复合材料的机械连接是指将复合材料被连接件局部开孔,然后用铆钉、销钉和螺栓等将其紧固连接成整体。在复合材料的连接中,机械连接仍是主要的连接方法。

机械连接的优点是:

·连接的结构强度比较稳定,能传递大载荷;

·抗剥离能力强,安全可靠;

·维修方便,连接质量便于检查;

·便于拆装,可重复装配。

机械连接的缺点是:

·复合材料结构件装配前钻孔困

难,刀具磨损快,孔的出口端易产生

分层;

·开孔部位引起应力集中,强度

局部降低,孔边易过早出现挤压破

坏;

·金属紧固件易产生电化学腐

蚀,需采取防护措施;

·复合材料结构在实施机械连接

过程中易发生损伤;

·增加紧固件或铆钉的重量,连

接效率低。

按照所用紧固件及连接工艺的

不同,机械连接又可分为铆接、螺接

和专用紧固件连接。其中铆接是一

种不可拆卸的连接;螺接可传递大

载荷,便于装卸,其安装工艺基本与

金属结构相同;为了满足某些特殊

要求,如在结构不开敞、难于触及、密

封、表面曲率大等情况下,可采用特

殊紧固件连接,如高锁螺栓、环槽钉、

锥形螺栓、单面抽钉等。

(1)铆接。

铆接是复合材料结构机械连接

的主要形式,铆接连接就是利用铆钉

的塑性变形而产生的夹紧力,使2个

零件成为一个整体。其主要工艺流

程是:制铆钉孔→锪埋头窝→放钉

→压紧铆接件→形成镦头→完成铆

接→检查。常见的铆接方法有压铆

和锤铆[4]。

压铆是利用挤压力而形成镦头

的铆接方法,其主要特点有:

·铆钉杆在形成过程中膨胀较均

匀,对孔的填充较好;

·钉杆端头镦粗也比较均匀,能

控制镦头一定的高度,不易发生鼓

包、压伤、铆缝下陷及其他表面缺陷;

·铆接时零件紧密贴合,外形好,

连接强度较高;

·劳动强度低,无振动和噪声,有

利于复合材料结构件的铆接,可防止

复合材料的局部损伤。

锤铆就是在铆接过程中,用铆枪

或榔头锤击铆卡,铆卡锤击铆钉,产

生间隙冲击力和顶铁的反作用力,使

铆钉杆镦粗而形成镦头的铆接方法。

锤铆分为正铆和反铆2种,正铆法是

用顶铁顶住铆钉头,铆卡锤击铆钉杆

而形成镦头的铆接法;反铆法则是

用顶铁顶住铆钉杆,用铆卡锤击铆钉

头的铆接方法。正铆铆接变形小,表

面质量好,铆接强度较高,适于薄壁

复合材料结构件的铆接;但劳动强

度大,顶铁较重,铆接件不易自动压

紧,容易使铆缝产生间隙,层压复合

材料易产生分层缺陷。反铆顶铁较

轻,能促使铆接件贴紧,削除铆接件

间的间隙,但铆接件易变形,铆钉处

会产生局部凹陷,容易导致薄壁复合

材料结构件产生裂纹,铆接件表面易

产生伤痕,不光滑。

复合材料结构件铆接时,铆钉杆

的镦粗使孔区产生较大的变形,由于

复合材料的相对延伸率较小,很容易

导致破坏特征,而压铆可以获得较为

稳定的铆接接头,所以压铆在复合材

料结构件的铆接中获得了广泛应用。

(2)螺接。

复合材料结构的螺接连接包括

螺纹连接和螺栓连接。螺纹连接需

要在连接件上攻螺纹,

为解决在复合

材料结构上攻丝出现崩扣和掉渣现象的难题,实际装配过程中要在复合材料件上预埋螺钉或钢丝螺套。由于螺栓连接的预紧力容易控制,而且拆卸方便,所以复合材料结构的螺接工艺中多采用螺栓连接。

螺接过程中,锪窝容易造成复合材料结构件孔边周围的损伤,降低连接强度,最好在螺母下加金属垫圈,以防止过大的拧紧力矩造成复合材料结构表面出现凹坑和裂纹等缺陷。

(3)专用紧固件连接。

飞机上有一些特殊的部位对连接有特殊的要求,如结构不开敞、只能从单面安装,结构表面倾斜度大或结构有密封要求等。在这些情况下,前面提到的螺接和铆接方法往往难以实现或达不到要求,因此国内外又研制出了一些特种紧固件,常见的有环槽钉、螺纹抽钉等。这些紧固件因具有装配力小、夹紧力可控、密封等优点而在复合材料结构上得到了广泛的应用。

2 胶接

复合材料的胶接是指借助胶粘剂将胶接零件连接成不可拆卸的整体,是一种较实用、有效的连接工艺技术,在复合材料结构连接中应用较普遍。

胶接连接的优点是:

·表面光滑,外观美观,工艺简便,操作容易,可缩短生产周期;

·不会因钻孔和焊点周围应力集中而引起疲劳龟裂;

·胶层对金属有防腐保护作用,可以绝缘,防止电化学腐蚀;

·胶接件通常表现出良好的阻尼特性,可有效降低噪声和振动;

·可以减轻结构重量,提高连接效率。

胶接连接的缺点是:

·质量控制比较困难,并且不能检测胶接强度;

·胶接性能受环境(湿、热、腐蚀介质)的影响;

·被胶接件必须进行严格的表面

处理;

·存在一定的老化问题;

·胶接连接后一般不可拆卸。

值得注意的是,胶接接头传递载

荷是不均匀的,主要集中在两端,中

间是低载弹性槽。这个槽形分布低

载部分的作用是抑制胶层蠕变破坏,

当出现缺陷时为应力重新分布留有

余地。这对防止蠕变损伤积累、提高

胶接接头的耐久性是非常重要的。

除此之外,复合材料的胶接接头承载

能力与所选用的胶粘剂性能密切相

关,在实际应用中除考虑胶接静强度

外,更重要的是考察其疲劳性能和湿

热环境效应,以确保复合材料构件连

接质量稳妥可靠[5]。

3 混合连接

将胶接与机械连接结合起来,从

工艺技术上严格保证两者变形一致、

同时受载,其承载能力和耐久性将

会大幅度提高,可以排除2种连接方

法各自的固有缺点。混合连接主要

用于提高破损安全性、胶接连接的维

修、改善胶接剥离性能等。

复合材料结构装配

连接关键技术

飞机的复合材料结构装配连接

是一个复杂的过程,涉及多个环节,

包括复合材料零部件的设计、生产、

工装设计和制造、复合材料切边钻

孔、零件在工装上的定位和夹紧、测

量等过程。过程中每一个环节都对

装配连接的质量和效率有着或多或

少的影响。

随着复合材料在机体结构中比

例的增加,复合材料结构件的制造和

装配连接技术也逐步发展起来。在

集柔性装配、自动钻铆等先进技术于

一体的航空复合材料大型部件自动

装配中,涉及到了飞机产品数字化定

义、柔性装配流程、装配工装设计、装

配工艺优化、数字化装配技术、自动

定位与控制、精密切钻、柔性夹持、自

动检测和测量等关键技术。通过这

些关键技术来减少装配工装的数量

和种类、提高零部件的制造精度和装

配协调度、缩短装配周期、降低生产

成本、满足设备和工装模块化可重组

的先进装配技术。

先进装配连接工艺和方法

随着航空制造技术的进一步发

展,先进装配连接技术(如自动钻铆

技术、电磁铆接技术、干涉配合铆接、

新型紧固件、孔挤压强化技术、自动

化装配技术等)在国内外发展极为

迅速,不断提高复合材料结构件装配

连接的工作效率,改善装配连接的质

量,使装配连接结构达到飞机对疲劳

寿命、防腐、密封性和减轻结构重量

的要求。

(1)自动钻铆技术。

自动钻铆是指在一台设备上一

次性地连续完成夹紧、钻孔、锪窝、注

胶、放铆、铣平等工序。自动钻铆技

术是为了保证连接质量、提高机体的

疲劳寿命。自动钻铆多采用硬质切

削刀具,分步钻孔,以保证复合材料

结构件不分层、层间不会产生毛刺和

进入切屑,保持孔周围结构的完整

性。采用精密自动化工装夹具,使铆

钉镦头高度保持一致,以减小疲劳载

荷下发生磨蚀损伤的程度,有利于提

高接头的疲劳强度。

目前我国飞机制造的机铆系数

仅为15%,且多是在转包生产中为了

满足国外装配要求而使用了自动钻

铆系统。而国外从20世纪70年代

起就在普遍采用该技术[6],其机铆系

数已高达80%,如A380机翼装配就

采用了自动化可移动钻孔设备。

(2)电磁铆接技术。

电磁铆接是在电磁成形工艺的

基础上发展起来的一种新型铆接工

艺,目前只有美国、俄罗斯和中国能

够制造电磁铆接设备。电磁铆接加

载速率极高,铆钉在几百μs到1ms

的瞬间完成镦头的成形,它是冲击距

离为0的一次脉冲加载,不会引起工件的振动,对结构产生的冲击损伤远小于普通锤铆方法,能够防止复合材料结构件的挤压破坏。因此,复合材料结构采用电磁铆接是提高连接质量的一条有效途径。目前关于复合材料结构电磁铆接工艺研究虽然已有一定的基础,但要进入工程应用还需进一步研究。

国外电磁铆接技术应用已比较普遍,多个型号的飞机均采用了电磁铆接技术,在波音、空客系列飞机制造中得到了应用,最新研制的A380 飞机也采用了电磁铆接技术。尽管西北工业大学、北京航空制造工程研究所、成都飞机工业(集团)有限责任公司等单位在电磁铆接设备和电磁铆接工艺方面已进行了一定的研究,但我国目前该技术在型号中的应用还是一个空白[7]。

(3)干涉配合铆接。

所谓干涉配合,就是过盈配合。施铆时钉杆膨胀,对孔壁造成径向压缩,钉孔受钉杆挤压而产生一种径向应力,这样就形成了干涉配合。干涉配合铆接是沿整个叠层厚度的埋头窝和孔内都获得规定的钉-孔干涉量的铆接方法,即铆接后铆钉杆与钉孔之间为紧配合。它是一种连接强化技术,能显著提高结构的疲劳寿命,并能获得良好的密封性。

复合材料结构的干涉配合连接在国内外已有多年研究历史,国内在

复合材料结构干涉配合连接工艺研

究以及复合材料结构干涉配合紧固

件开发方面也开展了一些工作,但都

处于试验阶段。

(4)新型紧固件。

飞机上有一些特殊的部位对连

接有特殊的要求,如结构不开敞、只

能从单面,安装结构表面倾斜度大

或者结构有密封要求等。在这些情

况下,前面提到的螺接和铆接常难以

实现或达不到要求,因此国内外又研

制出了一些特种紧固件,常见的有环

槽钉、高锁螺栓、单面抽钉、螺纹抽钉

等。这些紧固件因具有装配力小、夹

紧力可控、密封等优点而在复合材料

结构装配连接上得到了广泛的应用。

(5)孔挤压强化技术。

孔挤压是一种使孔的内表面获

得形变强化的工艺措施,效果明显。

孔挤压是利用棒、衬套、模具等特殊

的工具,对零件孔或周边连续、缓慢、

均匀地挤压,形成塑性变形硬化层。

塑性变形层内组织结构发生变化,引

起形变强化,并产生残余压应力,降

低了孔壁粗糙度,对提高材料疲劳强

度和应力腐蚀能力很有效。

在复合材料结构件的装配连接

中,通常针对螺接,在孔内装衬套,使

其获得均匀、适量的干涉量,以提高

连接强度和疲劳寿命。

(6)自动化装配技术。

自动化装配对保证装配质量和

提高装配效率起到了很好的作用。

复合材料结构自动化装配技术包括

自动化精确制孔、自动化铆接、自动

化检测技术、自动化无损探伤技术、

自动化装配过程在线检测技术等。

国外发展的自动化装配系统主

要有柔性机翼壁板装配系统、柔性翼

梁装配系统、复合材料升降舵柔性装

配系统、机身壁板集成单元(IPAC)、

机器人柔性装配系统、机身柔性装配

系统等[8]。飞机复合材料结构自动

化装配系统的最新进展是波音787

机身第43段的复合材料整体筒体与

钛合金框件的自动化装配[9]。该系

统采用内外2套独立的装置,在装配

时实现自动定位、夹紧、制孔、安装环

槽钉,并完成环圈自动镦铆,铆接驱

动依靠电磁铆接动力头实现,目前已

在日本三菱重工投入使用。

参 考 文 献

[1] 陈绍杰.复合材料技术与大型

飞机.航空学报,2008(3): 606-610.

[2] S A R A B L A C K.A d v a n c e d

materials for aircraft interiors. High

performance composites, 2006, 14(6): 24.

[3] 曹增强.新机研制中的复合材

料结构装配关键技术.航空制造技术,

2009,52(15):40-42.

[4] 胡宝刚.复合材料结构件的机

械连接工艺.导弹与航天运载技术,1995

(6):46-52.

[5] 沃西源.复合材料连接方法.

航天返回与遥感,2007,18(4):31-39.

[6] 陈先有.先进装配连接技术在

航空领域的应用分析.机械制作,2007,45

(519):53-55.

[7] Assadi M D,Boad C L,Osawa T.

True off set fastening [R] . SAE Paper,2006-

01-3170 , 2006.

[8] 曹增强.应对我国打飞机研制

的装配连接技术.航空制造技术,2009,18

(2):88-91.

[9] 许国康.大型飞机自动化装配技

术.航空学报,2008,29(3):735-740.

(责编小颖

复合材料在飞机上的应用

新视点 NEW VIEWPOINT 64航空制造技术2006年第3期 目前,复合材料在飞机上的应用已非常广泛,但在20世纪90年代初复合材料市场曾一度陷入低靡,究其原因是由于复合材料设计制造的复杂性造成了成本壁垒,人们开始认识到只有重视性能和成本的平衡,才能使复合材料展现辉煌。随着复合材料先进技术的成熟,使其性能最优和低成本成为可能,大大推动了复合材料在飞机上的广泛应用。本文在介绍国外复合材料在飞机上广泛应用的基础 上,对作为技术保障的数字化设计技术和先进制造技术进行了分析研究。从国外情况看,各种先进的飞机都与复合材料的应用密不可分,复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一。下面介绍复合材料在飞机上应用的发展趋势。 (1) 复合材料在飞机上的用量日益增多。 复合材料在飞机上 的应用评述 北京航空航天大学机械工程及自动化学院 张丽华 范玉青 复合材料用量通常用其所占飞机机体结构重量的百分比表示,纵观复合材料在民机上的发展情况发现,无论是波音公司还是空中客车公司,随着时间推移,复合材料的用量都呈增长趋势。最具代表意义的是空客公司的A380客机和波音公司最新推出的787客机。在A380上仅碳纤维复合材料的用量就达32t左右,占结构总重的15%,再加上其他种类的复合材料,估计其总用量可达25%左右。787 上初步估计复合材料用量可达50%,远远超过了A380。另外,复合材料 在军机和直升机上的用量也有同样的 增长趋势。(2) 应用部位由次承力结构向主承力结构过渡。 飞机上最初采用复合材料的部位有舱门、整流罩、安定面等次承力结 构,目前已广泛应用于机翼、机身等部位,向主承力结构过渡。从1982年开始用复合材料制造飞行操纵面(如A310-200飞机的升降舵和方向舵),空客公司在主承力结构上使用复合材 料已有20多年的经验。在A380上采用的碳纤维复合材料大型构件主要有中央翼盒、翼肋、机身上蒙皮壁板、机身后段、机身尾段、地板梁、后承压框、垂尾等,大量的主承力结构都采用了复合材料。787复合材料的应用则更让世人瞩目,其机身和机翼部位采用碳纤维增强层合板结构代替铝合金;发动机短舱、水平尾翼和垂直尾翼、舵面、翼尖等部位采用碳纤维增强夹芯板结构;机身与机翼衔接处的整流蒙皮采用玻璃纤维增强复合材料。与A380相比其用量更大,主承载部位的应用更加广泛,这将是世界上采用复合材料最多的大型商用喷气客机。 (3) 复合材料在复杂曲面构件上的应用越来越多。 飞机上复杂曲面零件很多,复合材料的应用也越来越多,比如A380机身19段、19.1段和球面后压力隔框等均为采用复合材料的具有复杂曲 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障 复合材料在飞机上的应用

大型飞机复合材料机身结构设计

大型飞机复合材料机身结构设计 李晓乐 (北京航空航天大学航空科学与工程学院,北京 100083) 摘要:本文研究了复合材料在大型飞机机身上的应用。利用相关机身结构数据,进行了结构形式的分析和选 择。参照有关规定,针对所设计的飞机机身在气密载荷作用下的情况进行了强度分析,并用这些分析结果来指 导复合材料的结构设计。复合材料选择为层合结构。并依据层合复合材料的特性,进行了层合板的铺层角度设 计和铺层顺序设计。对所设计的大型飞机复合材料机身结构进行了刚度分析,给出了主要构件的应力、应变结 果,证明了这种层合复合材料设计是合理可行的,为复合材料在我国大飞机项目上的应用提供了参考。 关键词:复合材料;大型飞机;机身结构;刚度 The Structural Design of Composites of Large Airplane Fuselage LI Xiaole (School of Aeronautical Science and Engineering, Beihang University, Beijing 100083, China) Abstract: This paper discusses the application of composite material in the large airplane fuselage. The concrete form of fuselage was analyzed and determined, which based on the data of some existing fuselage structure. Compared with some standard, the strength of the fuselage was analyzed under the pressure load. The result can conduct the structures design. The laminate of composites was chosen. The degree and the order of composite were also determined. The stiffness of the designed composite fuselage was computed, which also showed the result of strain and stress. Analysis manifested that the composites is designed appropriately, and the result can be consulted in the large-aircraft program. Keywords: Composites, Large Airplane, Fuselage Structure, Stiffness 机身是飞机的重要部件之一,它把机翼、尾翼、起落架等部件连接在一起,形成一架完整的飞机。对大型民用飞机来说,机身还能安置空勤组人员、旅客、装载燃油、设备和货物。现代飞机的机身是一种加强的壳体,这种壳体的设计通常称为“半硬壳式设计”。为了防止蒙皮在受压和受剪时失稳,就需要安装隔框、桁条等加强构件[1~2]。 随着时代的发展,复合材料在飞机设计中的用量越来越大,除了以前的非承力构件,现在主承力构件上也开始采用大量的复合材料设计。但到现在为止,虽然复合材料的用量有了相应的增加,可飞机机身仍然是有金属参加的[1]。 本文针对机身所承受的载荷,确定飞机机身的整体刚度、强度。然后以刚度、强度为基准,设计复合材料的结构形式,并对这种形式的机身进行初步的性能计算,旨在为复合材料在我国大飞机项目上的应用提供一些参考。 1 机身结构设计 作者介绍:李晓乐(1985-), 男, 硕士研究生. ft4331789@https://www.360docs.net/doc/be12649491.html,

现代飞机装配技术知识点.培训讲学

《现代飞机装配技术》知识点总结 南京航空航天大学 第一章 1、飞行器数字化和传统制造的最大区别特点 (1改模拟量传递为数字量传递。 (2把串行工作模式变为并行工作模式。 带来的必然结果是缩短产品研制周期,提高产品质量,降低研制成本。 2、 MBD 的定义,其数据集应包括的内容,采用的技术意义。 MBD 技术定义 :用集成的三维实体模型来完整表达产品定义信息,详细规定了三维实体模型中产品定义、公差标注准则和工艺信息的表达方法。 数据集包括的内容 :相关设计数据、实体模型、零件坐标系统、三维标注尺寸、公差和注释工程注释、材料要求、其它定义数据及要求。 技术意义:1. 改双数据源定义为单源定义,定义数据统一 2. 提高了工程质量 3. 减少了零件设计准备时间 4.电子化的存储和传递 , 协调性好 5.减少成本 6.易于向下兼容 (派生出平面信息 3、国外飞机数字化技术发展的三个主要历程: 部件数字样机阶段 1986—— 1992 全机数字样机阶段 1990—— 1995 数字化生产方式阶段 1996—— 2003 4、飞机结构的特点

零件多、尺寸大、刚度小、外形复杂、结构复杂、精度要求高、其装配具有与一般机械产品不同的技术和特点。 5、什么是飞机装配,发展历程? 根据尺寸协调原则, 将飞机零件或组件按照设计和技术要求进行组合、连接形成更高一级的装配件或整机的过程。 自动化装配 6、飞机数字化制造的三个主要内容 CAD 、 CAM 、 CAPP 第二章 1、产品数字建模的发展过程中提出的产品信息模型有哪三种概念? 面向几何的产品信息模型 (geometry- oriented product model 面向特征的产品信息模型 (feature- oriented product model 集成产品信息模型 IPIM(integrated product information model 2、物料清单(BOM 的定义,企业三种主要的 BOM 表, EBOM 、 PBOM 、MBOM BOM 定义 :又称为产品结构表或产品结构树;在 ERP 系统中,物料一词有着广泛的含义,它是所有与生产有关的物料的统称。 EBOM 设计确定零部件的关系 PBOM 工艺工艺规划、加工归属计划分工表 MBOM 制造主要按照装配顺序流程来确定

飞机复合材料损伤检测与维修【毕业作品】

BI YE SHE JI (20 届) 飞机复合材料损伤检测与维修 所在学院 专业班级飞机结构修理 学生姓名学号 指导教师职称 完成日期年月

摘要 复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。其应用在航空领域越来越广泛。对于现代飞机来说复合材料的应用对减重、耐腐蚀和降低成本有着重要的作用。对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料在飞机上的应用日趋广泛,其应用和修理水平亟待提高。论文介绍了飞机复合材料的损伤特征和可用于飞机复合材料损伤无损检测的目视、敲击、阻抗、谐振、超声、射线照像、红外热图和声发射等检测法,并结合实际介绍了不同类型复合材料结构和缺陷检测方法的选择。 关键词:复合材料;损伤检测;维修

ABSTRACT Composite materials are composed of two or more than two kinds of raw materials. Its application in aviation field is more and more extensive. For modern aircraft, the application of composite materials has an important role in weight loss, corrosion resistance and cost reduction. It plays an important role in the light weight, small size and high performance of the aircraft structure. The application of composite materials in aircraft is becoming more and more extensive, and its application and repair level need to be improved. This paper introduces the damage characteristics of aircraft composite material and can be used for nondestructive detection of visual, percussion, impedance, resonance, ultrasound, X-ray, infrared thermography and acoustic emission detection method of damaged aircraft composite materials, and introduces different types of composite structure and defect detection method combined with the actual choice. Key words:composite material; damage detection; maintenance

飞 机 复 合 材 料 及 应 用

飞机复合材料及应用 【摘要】 本文重点讲述了复合材料的构成、种类、性能以及在飞机上的应用。复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。对于一个现代飞机来说复合材料的应用对减重﹑耐腐蚀和降低成本有着重要的作用。对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料结构特点和应用效果,在高性能战斗机实现隐身、超声速巡航、过失速飞行控制,前翼飞机先进气动布局的实际应用。 关键词:复合材料层合板 1概述 复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。它既可以保持原材料的某些特点,又具有原材料所不具备的新特征,并可根据需要进行设计,与单一均质材料相比它具有较多的优越性。复合材料飞机结构技术是以实现高结构效率和改善飞机气动弹性与隐身等综合性能为目标的高新技术,对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料结构特点和应用效果,在高性能战斗机实现隐身、超声速巡航、过失速飞行控制,前翼飞机先进气动布局的实际应用,以“飞翼”著称的B-2巨型轰炸机的隐身飞行,舰载攻击∕战斗机耐腐蚀性改善和轻质化,对于客机来说复合材料的应用对减重﹑耐腐蚀和降低成本有着重要作用,如波音777和空中客车A330∕A340上的应用,标志着飞机复合材料结构设计发展已经成熟。 我国从20世纪80年代开始,将复合材料应用技术研究列入重点发展领域。复合材料应用基本实现了从次承力构件到主承力构件的转变。复合材料的垂直安定面﹑水平尾翼、方向舵、前机身等构件已在多种型号飞机上使用,可以小批量生产。带整体油箱复合材料机翼等主承力结构已装机试飞成功。航空先进复合材料已进入实际应用阶段。 2 复合材料的探究 2.1 复合材料的构成 复合材料是由两种或两种以上材料独立物理相,通过复合工艺组合构成的新型材料。其中,连续相称为基体、分散相称为增强体,两相彼此之间有明显的界面。它既保留原组分材料的主要特点,并通过复合效应获得原组分材料所不具备

超大型复合材料机体部件应用技术的新进展_飞机制造技术的新跨越

第30卷 第3期航 空 学 报 Vol 130No 13 2009年 3月ACTA A ERONAU TICA ET ASTRONAU TICA SIN ICA Mar. 2009 收稿日期:2007212212;修订日期:2008204210通讯作者:范玉青E 2mail :fanyq @https://www.360docs.net/doc/be12649491.html, 文章编号:100026893(2009)0320534210 超大型复合材料机体部件应用技术的新进展 ———飞机制造技术的新跨越 范玉青,张丽华 (北京航空航天大学机械工程及自动化学院,北京 100191) N e w Development of Extra Large Composite Aircraft Components Application T echnology —Advance of Aircraft Manufacture T echnology Fan Yuqing ,Zhang Lihua (School of Mechanical Engineering and Automation ,Beijing University of Aeronautics and Astronautics ,Beijing 100191,China ) 摘 要:从超大型复合材料部件在军/民用飞机上的应用进展入手,重点介绍了复合材料在波音787机体主要结构上的应用,给出了机身复合材料部件应用的特殊性及空客公司对其所持的争议。分析了波音和空客公司在复合材料应用方面的竞争,分别以波音787和空客A380为例介绍了两公司相应的技术策略:机体整体复合材料部件制造技术和大型复合材料壁板组装成机体技术,以及迫于竞争的压力,空客公司新的应对措施,即采用全复合材料机身壁板结构,将复合材料在A3502XWB 上的用量提高到52%。最后总结了复合材料部件设计制造的独特性和复杂性,并得到对中国研制大型飞机的启示。关键词:复合材料;飞机制造;波音787;空客A3502XWB 中图分类号:V261;T H166 文献标识码:A Abstract :Starting from the evolution of the application of composites to military and civil aircraft ,this article provided a survey of the application of composites in aircraft structures ,especially in the main structure of Boe 2ing 787.The specific issues in applying composites to f uselage components and the dispute between Boeing and Airbus were presented.The competition between Boeing and Airbus in applying composites was analyzed and their respective strategy was discussed using Boeing 787and A380as an example ,which dealt with the manu 2facture technology of monolithic f uselage composite components and the technology of using large 2scale com 2posite panels to assemble a f uselage.The new measures of Airbus in coping with the pressure of competition were presented ,which was using composite paneled f uselage skins and increasing the amount of composites on A3502XWB to 52%.Finally ,the uniqueness and complexity of composite component design and manufacture were summarized ,which could shed light on China ’s development of large 2scale aircraft.K ey w ords :composite materials ;aircraft manufacture ;Boeing 787;Airbus A3502XWB 2007年7月8日,世界航空界的目光聚集在 波音公司,目睹美国飞机制造巨头的首架波音787梦想客机的下线揭幕仪式。由于波音公司在研制波音787客机的过程中,大胆地采用了两大高技术措施:全球数字化协同制造和机体主要结构大规模采用复合材料,机身和机翼外壳几乎都由碳纤维增强复合材料制成。这种飞机和现今同等大小的飞机相比,能够节省燃油20%,在如今燃油价飞涨阶段,这一优点对航空业界有着不言而喻的意义,并且维修成本可节省30%,飞行的 舒适性也有很大提高。因此,国际上各航空公司期望着这一“绿色”客机能给空中旅行带来革命性的变化。这种中等尺寸的波音787客机是波音公司13年来的第1种全新研制的机型,它已展示在300家媒体面前,它不仅牵动着世界航空界的目光和航空旅行者的期待,对波音公司本身来说,也投入了大量资金和心血,实现了基于金属材料机体制造技术向基于复合材料机体制造技术的新跨越,直接涉及到波音与空客公司竞争的成败,关系到波音商用飞机公司的生存前景。对于波音的竞争对手空客公司来说,客机的超大型复合材料部件的制造技术是一个难以逾越的巨大挑战。而对

飞机数字化装配技术发展与应用

龙源期刊网 https://www.360docs.net/doc/be12649491.html, 飞机数字化装配技术发展与应用 作者:赵鹏 来源:《科学与信息化》2017年第33期 摘要数字化技术的应用是飞机研制发展史上的一次重大飞跃。数字化装配技术由数字化装配工艺技术、柔性工装技术、激光检测与补偿技术、数字化钻铆技术、数字化数据管理以及集成技术等组成,是机械、电子、控制、计算机等多学科交叉融合的高新技术。本文就飞机数字化装配技术发展与应用进行了讨论。 关键词飞机;数字化装配技术;发展;应用 1 数字化装配 数字化装配是现代航空制造企业装配技术的发展方向。从20世纪90年代开始,国外的波音、空客等先进航空制造企业陆续开发和应用了三维虚拟制造软件,多以飞机装配典型结构为应用对象,建立飞机装配的数字化设计制造模式和数字化协调技术体系,利用网络技术及数字化技术,建立工艺设计流程,实现3D装配工艺设计及验证、仿真,实现车间、工厂布局数字化及仿真,实现现场工人操作的可视化等[1]。 2 飞机数字化装配技术国内发展现状 国内的飞机装配,虽然在局部上也采用了较为先进的技术,如采用catia技术进行了包括建立型架标准件库和优化型架及参数设计,对工装、工具和产品的装配过程进行了三维仿真等,开始采用激光测量+数控驱动的定位方式,部分机型还采用了自动钻铆技术等,但总体上与发达国家相比还存在较大差距,具体表现在:①飞机设计制造仍主要采用串行模式,工装、工艺设计与产品设计脱节,制造模式未真正实现到并行模式的转换,导致飞机装配协调困难、返工率高;②尚未实现人机交互的装配仿真以及装配路径的优化;③仍然采用以专用工装为主的刚性定位装配方式,导致飞机制造成本居高不下;④数字化装配应用规模有限,尚未实现一个完整型号真正意义上的全面数字化[2]。 3 飞机数字化装配技术应用 3.1 数字化定位技术 以数字化为基础的定位技术包括数字测量定位技术、特征定位技术、柔性定位技术等。数字测量定位技术是指针对飞机产品的结构特点、定位要求,借助数字化测量设备或系统进行飞机零部件的定位;特征定位技术利用数字化定义、数控加工的具有配合关系的配合面、装配孔或工艺凸台、工艺孔等设计或工艺特征,实现零件之间的相互定位,保证装配的一致性和高装配质量;柔性定位技术是指通过采用柔性工装满足不同产品的定位需要。随着飞机装配质量越来越高的要求,数字化定位技术已经成为飞机零部件高效、高精度定位的重要保障。

飞机复合材料设计

目录 复合材料 (2) 1. 复合材料特点 (2) 1.1 复合材料的应用 (2) 1.2 设计规范的演变 (2) 1.3 复合材料适航验证试验程序 (3) 1.4 碳纤维树脂基复合材料优点 (3) 1.5 碳纤维树脂基复合材料缺点: (4) 2. 材料种类 (4) 2.1 树脂基体 (4) 2.1.1 热塑性复合材料 (4) 2.1.2 热固性复合材料 (5) 2.1.3 树脂材料性能对比 (5) 2.2 增强纤维 (6) 2.2.1 碳纤维 (6) 2.2.2 玻璃纤维 (7) 2.2.3 芳纶纤维 (7) 2.2.4 材料性能对比 (7) 2.3 预浸料 (7) 2.4 芯材 (8) 2.4.1 蜂窝芯 (8) 2.4.2 泡沫芯 (8) 2.5 胶粘剂 (9) 3. 复合材料试验验证步骤 (9) 4. 复合材料结构设计 (9) 4.1 复合材料设计基本要求 (9) 4.2 设计选材 (9) 4.2.1 设计选材需求 (9) 4.2.2 夹层结构的选材 (10) 4.3 层压板设计 (10) 4.3.1 铺层方向和比例 (10) 4.3.2 铺层设计 (10) 4.3.3 丢层要求 (10) 4.3.4 拼接 (11) 4.3.5 开口设计要求 (11) 4.4 夹层结构设计 (11) 4.4.1 制造方法 (11) 4.4.2 面板设计准则 (11) 4.4.3 芯材 (12) 4.5 细节设计 (12) 4.6 复合材料设计优化 (12) 4.7 复合材料连接 (13) 4.7.1 胶接结构 (13) 4.8 垂尾复合材料结构设计 (14)

4.9 复合材料检测 (14) 5. 复合材料制造 (14) 5.1 复合材料的成型方法和特点 (14) 5.2 成型工艺过程 (15) 5.2.1 热压罐工艺 (16) 5.2.2 RTM工艺 (16) 5.2.3 机加工艺 (16) 5.3 制造缺陷 (16) 复合材料 1.复合材料特点 复合材料主要由基体和增强材料组成。非金属基体包括树脂、陶瓷等,增强材料包括碳纤维、芳纶、玻璃纤维等。应用最多的是树脂基碳纤维复合材料,其次是芳纶纤维。玻璃纤维因其强度、刚度较差,难以用在受力结构上,但因为价格便宜,民机上有较多应用。 复合材料的韧性和对环境的耐受能力主要取决于树脂。 韧性:表示材料在塑性变形和破裂过程中吸收能量的能力,韧性越好,则发生脆性断裂的可能性越小。 1.1复合材料的应用 复合材料首次应用于空客A310-300(1985年)的垂尾上,后来应用到了扰流板、方向舵、起落架舱门、整流罩等部位。A340(2001年)首次将复合材料用在机身上,后气密压力框;A380(2005年)将中央翼盒用复合材料,将后压力框后部机身用复合材料,上层客舱底板、龙骨梁。A400M(2009年)第一架使用全碳纤维增强树脂基复合材料的机翼飞机。波音787(2009年)第一家引入全复材机体结构,整个机身结构用了碳纤维增强树脂复合材料。空客后来的A350XWB也是全复材机身。 1.2设计规范的演变 FAA针对复合材料结构合格审定中的新问题,于1978年颁布咨询通告AC-20-107A“复合材料飞机结构”,制定了一个可接受但不是唯一的验证方法,适用于FAR23、25、27和29涉及的所有航空器的复合材料结构,成为制定满足

新一代大型客机复合材料结构一体化设计的若干特点

2017年2月第20卷第4期 中国管理信息化 China Management Informationization Feb.,2017 Vol.20,No.4 新一代大型客机主要指使用效率(Efficiency)、经济(Economics)、超凡的乘坐舒适和便利(Extraordinary comfort and convenience)以及环保(Environmental)等综合性能比当前航线使用的客机有很大提高的大型商用运输机。 新一代大型客机的概念指导了波音787飞机和空客A350飞机的研发。新一代大型客机机体结构的突出特点是广泛采用复合材料,复合材料不仅减轻了飞机结构的质量、提高了飞机结构的使用寿命、降低了飞机的维护费用,还可以增加舱内压力和空气湿度,提高民用飞机的经济性、舒适性、环保性。先进复合材料在飞机结构上的应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能和由军机应用扩展到民机的发展道路。 基于近20多年经验的积累和认知的共识,按照适航规章要求,结合民机工程实际,聚合物基纤维增强复合材料在飞机结构中实现了规模化的应用。要实现复合材料结构规模化的应用,结构设计必须要着重考虑复合材料结构在使用寿命期内、安全使用前提下,同时取得较好的经济效益。结构设计在满足型号设计要求的同时,必须要考虑结构规模化应用对制造、使用、维修提出的新需求,在设计主导下,形成“设计—制造—使用—维修”一体化的结构设计,实现飞机复合材料结构的安全性与经济性。 1 新一代大型客机复合材料结构规模化应用的决策 新一代大型客机机体结构需用新材料的决策是依据未来20~30年内大型客机在总体布局上与目前航线飞机不会有很大差别,但在综合性能、安全性、经济性和环保要求等方面,将有很大的提高发展趋势和航线宽体客机的需求增长制定。 新一代大型客机复合材料结构规模化应用的决策主要考虑: ①实现飞机结构明显减重,机翼、机身主结构均采用复合材料制造;②中模量高强碳纤维/增韧环氧(180℃固化)复合材料已经过工程应用的验证,可满足大型客机主结构对材料的要求;③复合材料制造工艺技术革新和新工艺技术发展,可使复合材料大型结构件制造成本明显下降;④先进设计技术和设计—制造一体化、并行工程技术的应用,使结构设计结果更科学合理,可实现异地设计和制造,为复合材料结构制造国际化创造了条件;⑤半个世纪复合材料应用经验的积累和复合材料结构设计理念与验证技术的更新,使新一代飞机研制周期大大缩短、研发费用减少。 因此,波音公司率先将21世纪初开始研制的现代宽体客机波音787复合材料的用量占到机体结构重量的50%,大大提高了结构效率,与同级别客机相比可节省燃油20%。 空中客车公司于2005年5月宣布空客A350项目启动(A350后称A350XWB,extra Wide-Body,型号系列为A350-900)。空中客车公司面对竞争对手的压力和用户的要求,在A350项目推出的三年间,曾对A350的设计方案进行多次重要修改,选材方案的修改多达6次,包括机身由计划初期采用铝和铝锂合金,改为机体由复合材料制造。 2 复合材料关键结构设计的新问题 飞机机体复合材料结构规模化应用的核心问题是突破飞机机体关键结构复合材料的应用技术。 飞机机体关键结构是指其完整性对保持飞机总体安全是至关重要的承受飞行、地面和增压载荷的结构或元件(其破坏会降低飞机结构完整性)。如:机翼、中央翼盒、机身等主结构,对运输类飞机还包括主要结构元件。 复合材料在飞机机体关键结构的应用,首先要考虑飞机总体安全对结构完整性的要求。同时,还应考虑复合材料用量大幅增加带来的固有特性潜在的危害威胁,如对结构制造缺陷、闪电防护及使用、维修提出的一系列要求。复合材料关键结构设计的新问题、新考虑,大致可归纳为以下几方面。 (1)基于对飞行安全性的认知,机体结构疲劳和损伤容限设计是重点,按《运输类飞机适航标准》对复合材料飞机结构的要求,飞机在整个使用寿命期内将避免由于疲劳、环境影响、制造缺陷或意外损伤引起的灾难性破坏。特别关注考虑的是外来物冲击、目视可见损伤及其扩展特性,两垮元件损伤、结构胶结以及“地—空—地”或“飞—续—飞”重复加载引起的材料性能退化和“高—低—高”温度交变引起的附加应力。 (2)质量、产量、成本综合平衡的大型整体结构制造技术。主结构零构件大型化、整体化设计,如翼面加筋壁板、翼梁、机身筒壳壁板、地板梁、中央翼盒壁板等,对制造技术提出了应通过充分的试制和试验,并进行合格鉴定,以保证其可重复生产性和设计的可靠性,结构制造生产能力应满足飞机按期交付的需求。采用成熟的制造技术,如数字化、自动化(包括检测自动化)、减少或消除人为因素影响的制造方法,可实现降低结构的制造成本,设计、制造一体化是必由的技术途径。 (3)复合材料结构闪电防护设计的地位很重要。复合材料(以碳/环氧复合材料为代表)导电性比标准铝合金大约低1 000倍的固有特性,决定了如果不提供恰当的导电闪电防护,闪电雷击可能造成结构破坏或大面积损伤,并可能在金属液压管路、燃油系统管路和电缆诱导上产生高闪电电流和电压。闪电防护可细分为结构完整性、燃油系统、电气和电子系统三个方面进行考虑,复合材料结构闪电防护给飞机带来了重量和成本的增加。 (4)结构耐撞损性的设计要求。飞机的耐撞损性由机身的冲击响应特性控制。对耐撞损性,规章一直随着实际飞机运行使用得到的经验而改变。机群经验还没有证实需要整机级耐撞损性的标 新一代大型客机复合材料结构一体化设计的若干特点 何长川,梁 伟,杨乃宾 (北京航空航天大学 航空科学与工程学院,北京 100083) [摘 要]大量采用复合材料结构是新一代大型客机机体结构设计的突出特点。飞机机体复合材料结构规模化应用的核心问题是突破飞机机体关键结构复合材料应用技术。复合材料结构一体化综合设计是在确保使用寿命期内、飞机安全飞行使用的前提下,实现复合材料结构规模化应用并取得良好经济的、多设计要素变量的综合设计。本文对波音787和空客A350复合材料机身的设计与制造进行了对比,分析了各自的优缺点。 [关键词]大型客机;复合材料结构;机体结构;规模化应用;一体化设计 doi:10.3969/j.issn.1673 - 0194.2017.04.091 [中图分类号]V25 [文献标识码]A [文章编号]1673-0194(2017)04-0139-03 [收稿日期]2017-01-02 / 139 CHINA MANAGEMENT INFORMATIONIZATION

复合材料在飞机上的应用

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。

复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

现代飞机装配技术_知识要点

现代飞机装配技术知识要点 一、绪论 1、飞机装配定义:根据尺寸协调原则,将飞机零件或组件按照设计和技术要求进行组合、连接形成更高一级的装配件或整机的过程。 2、飞机装配发展历程:人工装配、半自动化装配、自动化装配。 3、飞机结构特点:零件多、尺寸大、刚度小、外形复杂、精度要求高。其装配具有与一般机械产品不同的技术和特点。 4、现代飞机装配技术发展趋势: (1)柔性化:工装和设备适合多种机型或零部件。 (2)自动化:高效自动化装配,具体体现为零部件自动化定位调姿、自动化制孔等。(3)数字化:高精度数字量传递。 (4)集成化:工艺、工装、设备紧密集成为有机整体。 二、数字化制造 1、数字化制造和传统制造的最大区别: (1)改模拟量传递为数字量传递。 (2)把串行工作模式变为并行工作模式。 2、飞机数字化特点:缩短产品研制周期,提高产品质量,降低研制成本。 2、国外飞机数字化技术发展3个历程: 部件数字样机阶段1986——1992 全机数字样机阶段1990——1995 数字化生产方式阶段1996——2003 3、 4、飞机数字化制造的3个内容:CAD绘图技术、CAD建模技术、MBD技术。 5、数字样机的主要内容: (1)1级数字样机:飞机产品设计从用户的需求开始。飞机总体设计组经过对飞机的航程、所需燃油、载客量、总体性能及制造成本进行分析后,得出的数据就作为进行初步产品数字建模的依据。建立飞机总体定义包括飞机的描述文档、三面图、外形气动布局和飞机内部轮廓图(DIP)。 (2)2级数字样机:在生产设计数据集发放之前,为工程部门用来进一步进行产品开发,验证设计构型等。已经用它对飞机结构设计和不同设计组之间的界面进行了协调,零部件外形已经确定下来,但还未进行详细设计。在这阶段数字化预装配(DPA)的工作进展主要体现在为飞机的可维护性、可靠性、人机工程以及支持装备的兼容性等进行了尽可能的详细设

复合材料的新发展

复合材料的新发展 物理学院15346036 吴家燕 摘要: 材料是科学技术发展的基础,复合材料作为最新发展起来的一大类新型材料,对科学技术的发展产生了极大的推动作用。复合材料的发展近几十年来极为迅速。从最早出现的宏观复合材料,如水泥与砂石、钢筋复合而成的混凝土,到随后发展起来的微观复合材料:聚合物基、金属基和无机非金属材料基复合材料。各种新型复合材料及其制备技术犹如雨后春笋般出现,同时,随着科学技术的发展,特别是尖端科学技术的突飞猛进,对材料的性能要求越来越高,因而对复合材料也提出了更高的要求。先进复合材料在新材料技术领域占有重要的地位,其新发展趋势和特点包括应用发展的多元化、技术发展的低成本化、材料的智能化,竞争发展的国际化和设计验证的规范化。 引言: 一个国家或地区的复合材料公业水平,已经成为衡量其科技以经济实力的标志之一,先进复合材料是国家安全和国民经济具有竞争力优势的源泉。复合材料在应用中所具有的节能、环保等性能符合绿色发展的要求,另外,随着经济的发展,传统能源储量在不断减少,复合材料具有较大的替代空间,复合材料的市场需求加大,从而推动行业的发展。新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是先进复合材料在新材料技术领域占有重要的地位,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此近年来倍受重视。 正文: 应用发展的多元化 以碳纤维增强树脂基复合材料为代表的先进复合材料,近年来迅速扩展成航空航天、体育休闲用品和工业应用等三大领域,体现了其多元化发展的趋势和特点。 以航空航天领域为代表的军用领域历来是先进复合材料重要的传统的应用领域。由于复合材料具有比强度高,比刚度高,耐腐蚀疲劳性能好,可设计性强等一系列独特的优点,在各种武器装备上的轻量化、小型化和高性能化上起到了无可代替的至关重要的作用,使之成为飞机、导弹、火箭、人造卫星、舰船、兵工武器等结构上不可或缺的战略材料和技术1。目前两个突出的亮点是在大型民用机和无人机上的应用2。 化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。该应用领域近期亦会有所发展,如不久前在美国拉斯维加斯举办的世界自行车展会上,有许多自行车零件由复合材料制成。但该领域的产品质量要求越来越高,制作要求越来越精细,市场竞争亦日趋激烈。 汽车领域。复合材料用于汽车代替钢件有40%或以上的减重潜力,以前限于复合材料成本较高,应用进展一直不如人意。但近年来随大丝束纤维出现、RTM等低成本工艺发展,汽车上复合材料的应用呈良好发展势头,预计近期会有较大发展 以风力发电为主的能源领域。叶片是风力发电机最关键的部件之一,以前多由玻璃钢制成,现在越来越长,自重越来越大,强度刚度要求越来越高,必须转向以先进复合材料制造为主,于是形成了先进复合材料应用的又一个世界性的热点3。 医学领域。随着生物技术、医药技术、信息技术、制造技术、纳米技术和材料科学技术的迅猛发展与交互融合,新型和新概念生物医用材料层出不穷。药物控制释放材料、组织工程材料、纳米生物材料、生物活性材料、介入诊断和治疗材料、可降解和吸收生物材料、新型人造器官、人造血液等代表了新的发展趋势和方向。

第二章复合材料在飞机上的应用综述综述

课 题 第二章复合材料在飞机上的应用综述 目的与要求复材在航空制造中的重要地位 航空发动机制造中使用复合材料的分布和比重先进民机使用复材的部位和作用 无人机制造中使用复材的主要特点 未来航空制造中使用复材的主要方向 重点航空发动机制造中使用复合材料的分布和比重先进民机使用复材的部位和作用 难 点 复材在航空制造中的重要地位 教 具 复习提问无人机制造中使用复材的主要特点未来航空制造中使用复材的主要方向启发复材可能还会使用的部位 新知 识点 考查 胶黏剂材料的选用方法、原则和依据 布置 作业 课堂布置,见后面。 课后回忆先进民机使用复材的部位和作用无人机制造中使用复材的主要特点 备注教员

第二章复合材料在飞机上的应用综述第2 页共8 页 图1 复合材料制作的零部件 图2 民用大型飞机复合材料分布图

第二章复合材料在飞机上的应用综述第3 页共8 页 1.复合材料的应用特点 随着航空航天科学技术的不断进步,促进了新材料的飞速发展,其中尤以先进复 合材料的发展最为突出。目前主要指有较高强度和模量的硼纤维、碳纤维、芳纶等增 强的复合材料,耐高温的纤维增强陶瓷基复合材料,隐身复合材料,梯度功能复合材料 等。飞机和卫星制造材料要求质量轻、强度高、耐高温、耐腐蚀,这些苛刻的条件,只 有借助新材料技术才能解决。 复合材料具有质量轻,较高的比强度、比模量,较好的延展性,抗腐蚀、导热、隔 热、隔音、减振、耐高(低)温,独特的耐烧蚀性、透电磁波,吸波隐蔽性、材料性能的 可设计性、制备的灵活性和易加工性等特点,是制造飞机、火箭、航天飞行器等军事 武器的理想材料。 2.飞机机身上的应用 2.1.飞机机身结构上的应用 先进复合材料用于加工主承力结构和次承力结构、其刚度和强度性能相当于或 超过铝合金的复合材料。目前被大量地应用在飞机机身结构制造上和小型无人机整体 结构制造上。 飞机用复合材料经过近40年的发展,已经从最初的非承力构件发展到应用于次 承力和主承力构件,可获得减轻质量(20~30)%的显著效果。目前已进入成熟应用期,对 提高飞机战术技术水平的贡献、可靠性、耐久性和维护性已无可置疑,其设计、制造 和使用经验已日趋丰富。迄今为止,战斗机使用的复合材料占所用材料总量的30%左 右,新一代战斗机将达到40%;直升机和小型飞机复合材料用量将达到(70~80)%左右, 甚至出现全复合材料飞机。 “科曼奇”直升机的机身有70%是由复合材料制成的,但仍计划通过减轻机身前 下部质量,以及将复合材料扩大到配件和轴承中,以使飞机再减轻15%的质量。“阿帕 奇”为了减轻质量,将采用复合材料代替金属机身。使用复合材料,未来的联合运输旋 转翼(JTR)飞机的成本将减少6%,航程增加55%,或者载荷增加36%。以典型的第四代 战斗机F/A-22为例复合材料占24·2%,其中热固性复合材料占23·8%,热塑性复合材 料占0·4%左右。 热固性复合材料的70%左右为双马来酰亚胺树脂(BMI,简称双马)基复合材料[1], 生产200多种复杂零件,其它主要为环氧树脂基复合材料,此外还有氰酸酯和热塑性树 脂基复合材料等。主要应用部位为机翼、中机身蒙皮和隔框、尾翼等。近10年来, 国内飞机上也较多的使用了复合材料。例如由国内3家科研单位合作开发研制的某歼 击机复合材料垂尾壁板,比原铝合金结构轻21 kg,减质量30%。 北京航空制造工程研究所研制并生产的QY8911/HT3双马来酰亚胺单向碳纤维 预浸料及其复合材料已用于飞机前机身段、垂直尾翼安定面、机翼外翼、阻力板、整 流壁板等构件。由北京航空材料研究院研制的PEEK/AS4C热塑性树脂单向碳纤维预 浸料及其复合材料,具有优异的抗断裂韧性、耐水性、抗老化性、阻燃性和抗疲劳性 能,适合制造飞机主承力构件,可在120℃下长期工作,已用于飞机起落架舱护板前蒙 皮。在316℃这一极限温度下的环境中,复合材料不仅性能优于金属,而且经济效益高。 据波音公司估算,喷气客机质量每减轻1 kg,飞机在整个使用期限内即可节省2200美 元。

相关文档
最新文档