二次函数图像性质总结

二次函数图像性质总结
二次函数图像性质总结

二次函数图像性质总结

2

由y=ax2向上/下平移k 个单位长度可得y=ax2+k

2

由y=ax2向左/右平移h 个单位长度可得y=a(x?h)2

由y=a(x?h)2上/下平移k 个单位长度可得y=a(x?h)2+k

2

对所有的二次函数a越大,抛物线的图象开口越小。

对所有的二次函数,其性质如下图:

如何求函数解析式:

(1)形如y=ax2:图像上任意一点(x ,y)带入求a的值。可得函数解析式。

(2)形如y=ax2+k: 需知两点,顶点(0,k)和任意一点(x ,y) 带入,将k、a求出。可得函数解析式。

(3)形如y=a(x?h)2:需知两点,顶点(h,0)和任意一点(x ,y)带入,将h、a求出。可得函数解析式。

(4)y=a(x?h)2+k : 需知两点,顶点(h,k)和任意一点(x ,y)带入,将h、k、a求出。可得函数解析式。

(5)形如y=ax2+bx+c: 需知三点,将三个点的x、y值带入,建立三元一次方程组,将a、b、c求出。可得函数解析式。

初中数学二次函数知识点总结

初中数学二次函数知识 点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中数学二次函数知识点总结 原文阅读 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x?,0)和 B(x ?,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P 在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。 Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

二次函数的图像与性质知识点及练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2,y=a(x-h)2 ,y =a(x-h)2 +k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质:

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左 加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 六、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

中考数学二次函数知识点总结

中考数学二次函数知识点总结 I. 定义与定义表达式 一般地,自变量x和因变量y之间存有如下关系:y=ax^2+bx+c (a, b, c为常数,a z0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,lal还能够决定开口大小,lal越大开口就越小,IaI 越小开口就越大. )则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 II. 二次函数的三种表达式 一般式:y=ax A2+bx+c (a, b, c 为常数,a z0) 顶点式:y=a(x-hF2+k[抛物线的顶点P (h, k)] 交点式:y=a(x-x)(x-x)[ 仅限于与x 轴有交点A(x, 0)和B( x, 0) 的抛物线] 注:在 3 种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-bA2)/4a x,x=(- b±V bA2-4ac)/2a III. 二次函数的图像 在平面直角坐标系中作出二次函数y=xA2 的图像,能够看出,二次函数的图像是一条抛物线。 IV. 抛物线的性质 1. 抛物线是轴对称图形。对称轴为直线x=-b/2a 。 对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物 线的对称轴是y 轴(即直线x=0)

2. 抛物线有一个顶点P,坐标为:P(-b/2a , (4ac-"2)/4a)当-b/2a=0 时,P在y轴上;当△二b^2-4ac=0时,P在x轴上。 3. 二次项系数a 决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a v0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4. 一次项系数b 和二次项系数a 共同决定对称轴的位置。 当a与b同号时(即ab> 0),对称轴在y轴左; 当a与b异号时(即ab v 0),对称轴在y轴右。 5. 常数项c 决定抛物线与y 轴交点。 抛物线与y 轴交于(0, c) 6. 抛物线与x 轴交点个数 △=b A2-4ac >0时,抛物线与x轴有2个交点。 △=bA2-4ac=0时,抛物线与x轴有1个交点。 △=bA2-4ac v 0时,抛物线与x轴没有交点。 X的取值是虚数(x=-b±V bA2 —4ac的值的相反数,乘上虚数i,整个式子除以2a) V. 二次函数与一元二次方程 特别地,二次函数(以下称函数)y=axA2+bx+c, 当y=0 时,二次函数为关于x 的一元二次方程(以下称方程),即 axA2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有

二次函数的图像及性质

《二次函数的图像及性质》教学案例及反思 教师:同学们,我们上一节课一起研究了二次函数的表达式,那么我们一起来回忆一下表达式是什么? 学生齐答:y=ax2+bx+c(a,b,c是常数,a不为0) 教师:好,那么请同学们在黑板上写出一些常数较简单的二次函数表达式. (学生表现很踊跃,一下写出了十多个) 教师:黑板上这些二次函数大致有几个类型? 学生:(讨论了3分钟)四大类!有y=ax2+bx+c;y=ax2+bx;y=ax2+c;y=ax2! 教师:太棒了!同学们归纳的很好,今天我们就一起来研究比较简单的一种y=ax2的图像及性质! 教师在学生板书的函数中选了四个,并把复杂的系数换成简单的常数,找到如下函数:y=x2;y=-x2;y=2x2;y=-2x2.(教师在这里让学生自己准备素材!) 教师启发学生利用函数中的“列表,描点,连线”的方法,把画上述四个函数的任务分配给A,B,C,D小组,一组一个在已画好的坐标系的小黑板上动手操作.生在自己提供的素材上进行再“加工”,兴趣很大,合作交流充分,课堂气氛活跃.教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅. 教师:请同学们小组之间比较一下,你们画的图象位置一样吗? 学生;不一样. 教师:有什么不一样?(开始聚焦矛盾) 学生:开口不一样. 学生A:走向不一样. 学生B:经过的象限不一样. 学生C:我们的图象在原点的上方,他们的图象在原点的下方. 教师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的) 学生:是由二次项系数的取值确定的. 教师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏) 热烈讨论后,学生D回答并板书,当a>0时,图象在原点的上方,当a<0时,图象在原点的下方。 学生E:当a>0时,图象开口向上;当a<0时,图象开口向下. 学生A站起来补充:还有顶点,顶点坐标(0,0),对称轴为y轴! (这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。怎么没有一个学生说出二次函数的性质呢?短暂停顿后,教师确定了思路) 教师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质? 看着学生茫然的目光,我在思考是不是我的问题---- 教师:请看同学们的板书,能揣摩图象“走向”的意思吗? 学生:(七嘴八舌)当a>0时,图象从左上向下走到原点后在向右上爬;当a<0时,图象从左下向上爬到原点后在向右下走(未出现教师所预期的结论) 教师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明“向上爬”和“向下走”吗?

二次函数的性质

20.4二次函数的性质 教学目标: 1.从具体函数的图象中认识二次函数的基本性质. 2.了解二次函数与二次方程的相互关系. 3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性 教学重点:二次函数的最大值,最小值及增减性的理解和求法. 教学难点:二次函数的性质的应用. 教学过程: 一、复习引入 二次函数: y=ax2 +bx + c (a 1 0)的图象是一条抛物线,它的开口由什么决定呢? 补充: 当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立. 二、新课教学: 1.探索填空: 根据下边已画好抛物线y= -2x2的顶点坐标 是, 对称轴是,在侧,即x_____0时, y随着x的增大而增大;在侧,即x_____0时, y随着x的增大而减小. 当x= 时,函数y最大值是____. 当x____0时,y<0. 2. 探索填空::据上边已画好的函数图象填空:抛物线y= 2x2的顶点坐标 是, 对称轴是,在侧,即x_____0时, y随着x的增大而减少;在侧,即x_____0时, y随着x的增大而增大. 当x= 时,函数y最小值是____. 当x____0时,y>0

3.归纳: 二次函数y=ax2+bx+c(a≠0)的图象和性质 (1).顶点坐标与对称轴 (2).位置与开口方向 (3).增减性与最值 当a ﹥0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当时,函数y有最小值。当a ﹤0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当时,函数y有最大值 4.探索二次函数与一元二次方程 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示. (1).每个图象与x轴有几个交点? (2).一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗? (3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况: ①有两个交点, ②有一个交点, ③没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax2+bx+c=0的根.

二次函数知识点总结大全

1. 二次函数的定义: 2、 二次函数的解析式三种形式 与y 轴交点坐标(0,c ) (1)二次函数y=ax 2 (a z 0)的图象是一条抛物线, 其顶点是原点,对称轴是 y 轴;当a >0时,抛物线开口向上,顶点是最低点;当 a v 0时,抛物线开 口向下,顶点是取咼点; 2 ⑵二次函数?' 1 :二' b_ h_ 当a >0时,抛物线开口向上,图象有最低点,且 x >-二:,y 随x 的增大而增大,x v -二:, y 随x 的增大而减小;当a v 0时,抛物线开口向下,图象有最高点 Aac-b 1 b — X 二— I ;当a v 0时,当 二时,函数有最大值 4ac-b 2 4盘 4.二次函数 y=ax2+bx+c (a 丰0)的各项系数 a 、b 、c 对其图象的影响 (1) a 决定抛物线的开口方向和开口大小: a >0,开口向上;a v 0,开口向下.|a 的 越大,开口越小. b X ----- (2) a 与 b 决定抛物线对称轴的位置: a 、 b 同号,抛物线的对称轴(即 直线 )或顶点在y 轴左侧; i x ----- a 、 b 异号,抛物线的对称轴(即直线 一二)或顶点在y 轴右侧;(左同右异); b=0时,抛物线的对称轴是 y 轴. (3) c 决定抛物线与y 轴交点(0, c )的位置:c >0,抛物线与y 轴交于正半轴;c v 0,抛物线与y 轴交于负 半轴;c=0,抛物 二次函数 2 形如r ' - ■'0, a, b , c 为常数)的函数为二次函数 般式 y=ax 2 +bx+c( a 丰 0) -------------- 1 2 顶点式| y = a(x - h) + k b 2 4a c — b 2 两根式 y = a(x -x j (x -x 2 ) 3、二次函数 对称轴: b 2a 顶点坐标: (b 4ac-b 2) 2a' 4a 增减性:当a>0时,对称轴左边, 当a<0时,对称轴左边, y 随x 增大而减小;对称轴右边, y 随x 增大而增大;对称轴右边, y 随x 增大而增大 y 随x 增大而减小 b 71 — -- ⑶当a >0时,当 丄;时,函数有最小值

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

二次函数总结及相关典型题目

二次函数总结及相关典型题目

二次函数知识点总结及相关典型题目 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a , 那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

二次函数的图像和性质总结

二次函数的图像和性质 1.二次函数的图像与性质: 解析式 a 的取值 开口方向 函数值的增减 顶点坐标 对称轴 图像与y 轴的交点 时当0>a ;开口向上;在对称轴的左侧y 随x 的增大而减小,在对称轴的 右侧y 随x 的增大而增大。 时当0k 时向上平移;当0>k 时向下平移。 (2)抛物线2 )(h x a y +=的图像是由抛物线2 y ax =的图像平移h 个单位而得到 的。当0>h 时向左平移;当0k 时向上平移;当0>k 时向下平移;当0>h 时向左平移;当0

3.二次函数的最值公式: 形如 c bx ax y ++=2 的二次函数。时当0>a ,图像有最低点,函数有最小值 a b ac y 442-= 最小值 ;时当0?时抛物线与x 轴有两个交点;当0=?抛物线与x 轴有一个交点;当 0

【浙教版初中数学】《二次函数的性质》综合练习

1.3 二次函数的性质 一、基础训练 1.若抛物线y=x2-2x+m与x轴只有一个公共点,则m=______. 2.如图所示的抛物线是二次函数y=ax2-3x+a-1的图象,那么a的值是_____. 3.若抛物线y=x2+(m-2)x-m与x轴的两个交点关于y轴对称,则m=______.4.二次函数y=-x2+4x+m的值恒小于0,则m的取值范围是______.5.不论k取任何实数,抛物线y=a(x+k)2+k(a≠0)的顶点都在()A.直线y=x上B.直线y=-x上C.x轴上D.y轴上 6.已知抛物线y=ax2+bx+c上的两点(2,0),(4,0),那么它的对称轴是直线() A.x=-3 B.x=1 C.x=2 D.x=3 7.已知直角三角形的两直角边之和为4,求斜边长的最小值及当斜边长达到最小值时的两条直角边长. 1

8.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强. (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低? (2)第几分钟,学生的接受能力最强? 二、提高训练 9.已知二次函数y=x2-4x-a,下列说法正确的是() A.当x<0时,y随x的增大而减小 B.若图象与x轴有交点,则a≤4 2

C.当a=3时,不等式x2-4x+a>0的解集是1

二次函数y=ax^2+bx+c(a≠0)的图象与性质—知识讲解(基础)

二次函数y=ax 2 +bx+c(a ≠0)的图象与性质—知识讲解(基础) 撰稿:张晓新 审稿:杜少波 【学习目标】 1. 会用描点法画二次函数2 (0)y ax bx c a =++≠的图象;会用配方法将二次函数2 y ax bx c =++的解析式写成2 ()y a x h k =-+的形式; 2.通过图象能熟练地掌握二次函数2 y ax bx c =++的性质; 3.经历探索2 y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】 要点一、二次函数2 (0)y ax bx c a =++≠与=-+≠2 ()(0)y a x h k a 之间的相互关系 1.顶点式化成一般式 从函数解析式2 ()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称 2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22 2 2222b b b b y ax bx c a x x c a x x c a a a a ?? ??????=++=++=++-+?? ? ? ?????????? ? 2 2424b ac b a x a a -? ?=++ ?? ?. 对照2 ()y a x h k =-+,可知2b h a =-,244ac b k a -=. ∴ 抛物线2 y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a ??-- ??? . 要点诠释: 1.抛物线2 y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a ??-- ???,可以当作公 式加以记忆和运用. 2.求抛物线2 y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.

二次函数各种题型汇总

二次函数各种题型汇总一、利用函数的对称性解题 (一)用对称比较大小 例1、已知二次函数y=x2-3x-4,若x 2-3/2>3/2-x 1 >0,比较y 1 与y 2 的大小 解:抛物线的对称轴为x=3/2,且3/2-x 1>0,x 2 -3/2>0,所以x 1 在对称轴的左侧,x 2 在对称 轴的右侧, 由已知条件x 2-3/2>3/2-x 1 >0,得:x2到对称轴的距离大于x 1 到对称轴的距离,所以y 2 > y 1 (二)用对称求解析式 例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此抛物线的解析式。 解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离为6,所以两交点的横坐标分别为: x 1=-1-3=-4,x 2 =-1+3=2 则两交点的坐标为(-4,0)、(2,0); 设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。 所以抛物线的解析式为y=-4/9(x+1)2+4 (三)用对称性解题 例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于() A. 2 B. 4 C. 3 D. 5 解:设方程x2+px+1=0(p>0)的两根为x1、x2,则抛物线y=x2+px+1与x轴两交点的坐标为(x1,0),(x2,0)。因为抛物线的对称轴为x=-p/2,所以x1=-p/2-1/2,x2=-p/2+1/2,因为x1x2=1。所以(-p/2-1/2)(-p/2+1/2=1,p2=5 因为p>0,所以p=5例2、如图,已知抛物线y=x2 +bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为() A.(2,3) B.(3,2) C.(3,3) D.(4,3)

二次函数图像与性质

二次函数的图像与性质 一、知识点梳理 二次函数的概念: 一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数各种形式之间的变换 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2 的形式,其中 a b a c k a b h 4422 -=-=,. 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2 h x a y -=; ④()k h x a y +-=2 ;⑤c bx ax y ++=2. 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点. a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

九年级二次函数题型总结

. : .: 增大而减小随在对称轴右侧,增大而增大;随在对称轴左侧,开口向下增大而增大随在对称轴右侧,增大而减小;随在对称轴左侧,开口向上x y x y x y x y 一、二次函数的定义 1.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( ) A .y =x(x +1) B .xy =1 C .y =2x 2 -2(x +1) 2 D .132 +=x y 2.当m 时,函数y =(m -2)x 2 +4x -5(m 是常数)是二次函数. 3.若1 222 )3(---=m m x m m y 是二次函数,则m = . 4.若函数y =3x 2 的图象与直线y=kx +3的交点为(2,b),则k= ,b = . 5.已知二次函数y =―4x 2-2mx+m 2与反比例函数24 m y x +=的图象在第二象限内的一个交点的横坐标是―2,则m 的值是 . 二、二次函数的图象与性质 ) (44)()(22),() 44,2)(2 2 2 2 y x a b a c y k y h x a b x h x a b x k h a b a c a b a a k h x a y c bx ax y 代入求或将值小最大值小最大时,最值:当时, 最值:当对称轴:对称轴:顶点顶点(开口方向开口方向公式-===-==- =--↓↓+-=→----++= 1.对于抛物线y =ax 2,下列说法中正确的是( ) A .a 越大,抛物线开口越大 B .a 越小,抛物线开口越大 C .|a |越大,抛物线开口越大 D .|a |越小,抛物线开口越大 2.下列说法中错误的是( ) A .在函数y =-x 2中,当x =0时,y 有最大值0 B .在函数y =2x 2 中,当x >0时,y 随x 的增大而增大 C .抛物线y =2x 2,y =-x 2,22 1x y -=中,抛物线y =2x 2的开口最小,抛物线 y =-x 2的开口最大 D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点 3.二次函数 y=2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A .开口向下,对称轴x=-3,顶点坐标为(3,5) B .开口向上,对称轴x =3,顶点坐标为(3,5) C .开口向上,对称轴x=-3,顶点坐标为(-3,5) D .开口向下,对称轴x=-3,顶点坐标为(-3,-5) 4.已知抛物线的解析式为y=(x -2)2+1,则抛物线的顶点坐标是 ( ) A .(-2,1) B .(2,1) C .(2,-1) D .(1,2) 5.已知二次函数y =x 2-4x +5的顶点坐标为( ) A .(-2,-1) B .(2,1) C .(2,-1) D .(-2,1) 6.抛物线y=x 2+2x-1的对称轴是 ,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. 7.抛物线c bx x y ++=23的顶点坐标为)0,3 2 (,则b= ,c= . 8.函数y =x 2―2x -l 的最小值是 ;函数y =-x 2+4x 的最大值是 . 9.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,则a = . 配方

二次函数知识点总结.doc

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c a≠)的函数,叫做二次函数。 ,,是常数,0 这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax 结论:a 的绝对值越大,抛物线的开口越小。 总结: y ax c =+的性质: 结论:上加下减。 总结:

3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结:

二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2 245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴 的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数的图像和性质知识点与练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2 ,y=a(x-h)2,y =a(x-h)2 +k 和c bx ax y ++=2 图象, 能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2 中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质: x y O

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

相关文档
最新文档