电能收集充电器(E题)(电路设计以及源代码)

电能收集充电器(E题)(电路设计以及源代码)
电能收集充电器(E题)(电路设计以及源代码)

E题:电能收集充电器

作者:张泽雄吴培文车春强

辅导老师:任斌

摘要

本设计主要包括升压电路,降压电路,控制电路和显示电路四部分,控制电路中由继电器及集成运算放大器LM358完成电路变换;升压电路主要采用MC34063芯片,降压电路主要采用MC34063芯片,控制电路中使用LM358芯片决定继电器两端电压,从而决定继电器中开关的转换,决定降压电路、升压电路的工作状态。显示电路利用单片机AT89S52与模数转换芯片TLC549,能够测量0-5V之间的直流电压值,使用LCD显示。当直流供电电源Es低于3.6V时,用升压电路升压以便对电池充电;当Es高于3.6V时,则用降压电路降压充电。充电电流大小,升压电路降压电路的切换均由单片机进行控制。

关键字: LM358 MC34063 AT89S52 DC-DC

第一章方案论证

1.1 总体方案论证

当直流供电电源Es>3.6V时,通过电压比较,采用降压模块;Es<3.6V时,采用升压模块。将经过升/降压变换器后的充电电流采样放大后送入比较器与基准源比较。通过利用单片机对继电器进行控制,根据单片机给出的高低电平实现继电器的通断,从而达到升压电路还是降压电路切换功能。整体结构框图如图一示

图一整体结构框图

当电压输入在0.8v—4.0v时,继电器没有工作,升压电路处于连通状态,升压电路工作,开始对充电电池工作。当电压大于4.0v时则通过lm358进行电压比较后,继电器两端电压达到吸合电压,继电器开始工作,升压电路停止工作,电路切换,降压电路开始工作。基本可以实现,当系统输入电压为0.8v—4.8v时实现持续充电,且当系统输入电压大于4.8v时这该系统可实现恒定电压对蓄电池进行充电。

1.2单元模块方案论证

1.2.1降压模块

【方案一】使用LM25576芯片和MAX1708芯片分别实现系统的升降压设计

当电压为1.2~3.6V时,使用MAX1708芯片进行升压,并对充电电池充电,能满足技术指标要求。当电压为10~20V时,使用LM25576芯片进行降压,并对其充电电池进行充电。

【方案二】采用MC34063集成型DC-DC变换器构建电路。

MC34063是一单片双极型线性集成电路专用于直流变换器控制部分,片内包含有温度补偿带隙基准源,一个占空比周期控制振荡器驱动器和大电流输出开关,能输出1.5A的开关电流它能使用最少的外接元件构成开关式升压变换器降压式变换器和电源反向器。

【方案比较】经过测试发现,方案一其带负载能力不强,并且成本也相对较高。而MC34063通过调整R1,R2阻值大小,实现对输入电压的比例降低和升高

当电压为1.2~3.6V时,使用MC34063芯片进行降压,并对充电电池进行充电,能满足技术指标要求,且功耗更小,精度更高。

1.2.2 升压电路单元

【方案一】由TL494构建的推挽式升压变换器。

TL494可以方便的构建推挽式变换器,但因为引入了变压器,必然导致效率不及非隔离式的升压型变换器,且因为在升压工作时无论是Es还是Ec均不会高于3.6V,因此无法维持TL494的正常工作。故放弃此方案。

【方案二】采用MC34063开关电源芯片制作升压电路。MC34063是单片双极型开关电源集成电路,可用于构建多种结构的DC-DC变换器,由于其内部集成有功率开关管,使用很简单的外围电路就能构成升压电路。且其控制器部分在3.0V 就可正常工作,能满足在3.6V供电条件下正常工作,因此最后选择这种方案。

1.2.3 控制单元

【方案一】采用MSP430F系列作为控制核心。

MSP430系列单片机功耗很低,且集成的设备也很丰富,但其价格较贵,尤其是配套的开发设备价格更是高昂,限制了MSP430单片机的性价比,不利于降低成本。

【方案二】采用89C51系列单片机作为控制核心。

51系列单片机面世时间较早,价格便宜易使用,集成设备很丰富,且易于开发,功耗低,且配套软件十分丰富,且能满足技术指标要求

【方案选择】430系列虽然功耗很低,但其编程器和开发板价格较高;51系列单片机上手容易,且价格低廉,性能较强,性价比也颇高。考虑到在满足需求的情况下尽量节约成本,故本设计采用89C51单片机作为控制单元核心。

第二章硬件系统设计及参数设计

2.1 降压电路

当Es>3.6V时,需通过降压电路将Es降低到稍大于3.6V,以实现能向电池充电的Es尽可能小。本设计采用MC34063实现降压过程。

其输出电压为

(公式二) 图二

图三

2.2 升压电路

当Es<3.6V时,需通过升压电路将Es升高到稍大于3.6V,否则无法实现充电过程。本设计采用MC34063控制芯片,可实现从0.8V升到3.6V。由电压检测电路再由单片机控制,能实现升压电路功能。

其输出电压为

(公式一)图四

图五

2.4 启动电路设计

由稳压管和1/4LM358组成一个锁定电路。当电压低于2.1V 时,将单片机锁定;当高于2.1V 时,解锁单片机(单片机在电压高于2.1V 时才能正常工作)。单片机解锁后,将按照程序设定启动相应转换模块,待模块稳定后接通被充电电池,向其充电。 3理论分析与计算 3.1电阻分压器R1,R2

外部分压电阻R1,R2的阻值由下式决定:

211REF VOUT R R U ??

=- ???

3.2储能电感L

计算储能电感的公式如下:

()VIN VO VO L VIN IL FS

-?=

???

IL ?为峰峰值电感电流纹波

第三章 软件系统设计

系统选用的主控制器是AT89C51单片机,软件设计包括主程序和A/D(TLC549)采样子程序两部分。

3.1 主程序。主程序包含有A/D 采样子程序。在AD 采样读取成功后对数据进行分析,并选择合适的基准源。该过程结束后进入低功耗模式,等待下一个采样周期的到来。

3.2 A/D 采样子程序。A/D 使用通道0进行电流检测。单片机给A/D 发出通道选择信号,然后等待A/D 芯片转换数据,最后读取其数据。

主流程 A/D 子程序图 第五章 总结

本系统以89C51系列单片机作为控制核心,结合TLC549及MC34063升压,降压电路实现对可充电装置进行充电,完成了题目所给的要求 第六章 参考文献

《开关稳压器应用技巧》 沙占友,马洪涛著;中国电力出版社,09.2 《开关电源技术与典型应用》 路秋生著;电子工业出版社,09.3 《模拟电子技术基础简明教程》 杨素行主编;高等教育出版社,06.5 《全国大学生电子设计竞赛获奖作品汇编》 北京理工大学出版社,04.8 《全国大学生电子设计竞赛系统设计》 黄智伟著;北京航空航天大学出版社,06.12

第七章附件

附件二:源程序代码

#include

#define uchar unsigned char #define uint unsigned int #include

uchar code table[]="OUTPUT"; uchar code table1[]="0.000"; sbit rs=P1^0;

sbit rw=P1^1;

sbit lcden=P1^2;

sbit DataOut=P2^0;

sbit CS=P2^1;

sbit CLK=P2^2;

sbit chu=P3^0;

uchar tt,shu;

uchar ad;

void delay(uint z)

{

uint x,y;

for(x=z;x>0;x--)

for(y=110;y>0;y--);

}

void write_com(uchar com) {

rs=0;

rw=0;

lcden=0;

P0=com;

delay(5);

lcden=1;

delay(5);

lcden=0;

}

void write_data(uchar date) {

rs=1;

rw=0;

lcden=0;

P0=date;

delay(5);

lcden=1;

delay(5);

lcden=0;

}

void init(void)

{

uchar num;

lcden=0;

write_com(0x38);

write_com(0x0c);

write_com(0x06);

write_com(0x01);

write_com(0x80);

for(num=0;num<6;num++)

{

write_data(table[num]);

delay(5);

}

write_com(0x80+0x40);

for(num=0;num<5;num++)

{

write_data(table1[num]);

delay(5);

}

TMOD=0x01;

TH0=(65536-50000)/256;

TL0=(65535-50000)%256;

EA=1;

TR0=1;

ET0=1;

}

void isr_time0(void) interrupt 1 {

TH0=(65536-50000)/256;

TL0=(65535-50000)%256;

tt++;

}

uchar count()

{

uchar i;

CS = 1;

_nop_();

CS = 0; _nop_();

for(i = 0; i < 8; i++) {

shu <<= 1;

shu |=DataOut;

CLK = 1;

_nop_();

CLK = 0;

}

CS = 1;

for(i=17;i!=0;i--){_nop_();}

return shu;

}

void main()

{

uint date;

uchar qian,bai,ge,shi;

init();

while(1)

{

if(tt==20)

{

tt=0;

date=count()*5.0/256*1000; qian=date/1000;

bai=date/100%10;

shi=date/10%10;

ge=date%10;

write_com(0x80+0x40);

write_data(0x30+qian);

write_com(0x80+0x40+1);

write_data('.');

write_com(0x80+0x40+2);

write_data(0x30+bai); write_com(0x80+0x40+3); write_data(0x30+shi); write_com(0x80+0x40+4); write_data(0x30+ge); if(date>360)

shu=1;

else

shu=0;

}

}

}

手机充电器电路设计[1]

手机充电器电路设计 摘要:通过对课程的学习设计。了解手机充电器的工作原理及设计流程,确定相关参数和电路图。 关键字:隔离变压器频率绝缘电阻绝缘强度可燃性自由跌落湿热试验工作原理工作流程 1 前言(李洋) 1 电路设计思想 从手机锂离子二次电池的恒流/恒压充电控制出发,用220V 交流电通过配置的内置储能锂电池对手机锂离子电池充电。电路的具体工作流程如图1所示。 图1 工作流程图 2 电路设计方案 充电芯片选用美信半导体公司的锂电池充电芯片,这款充电芯片具

有很强的充电控制特性,可外接限流型充电电源和P沟道场效应管,能对单节锂电池进行安全有效的快充。其最大特点是在不使用电感的情况下仍能做到很低的功率耗散,且充电控制精度达0.75%;可以实现预充电;具有过压保护和温度保护功能,其浮充方式能够充至最大电池容量。当充电电源和电池在正常的工作温度范围内时,接通电源将启动一次充电过程。充电结束的条件是平均的脉冲充电电流达到快充电流的1%,或时间超出片上预置的充电时间。所选用的充电芯片能够自动检测充电电源,在没有电源时自动关断以减少电池的漏电。启动快充后打开外接的P型场效应管,当检测到电池电压达到设定的门限时进入脉冲充电方式,充电结束时,外接LED指示灯将会进行闪烁提示。 电路工作原理 内置储能电池的充电及其保护电路其中包括:LED显示、热敏电阻,电流反向保护。ADJ引脚通过10kΩ的电阻与内部1.4V的精密基准源相连接,当ADJ对地没有连接电阻时,电池充电电压阈值为缺省值:VBR =4.2V;当需要自行设置充电阈值时,可在ADJ引脚与GND间接一精度为1%的电阻RADJ,阻值由式(1)确定:RADJ=10kΩ/(VBR/VBRC-1) (1) 由图3可知,充电阈值为4.1V,可得RADJ=410k 做手机充电器电路设计,需先对其工作环境进行分析,了解其工作原理。

镍氢电池充电器电路图及原理分析

镍氢电池充电器电路图及原理分析 镍氢电池充电器原理图:由LM324组成,用TL431设置电压基准,用S8550作为调整管,把输入电压降压,对电池进电行充电,电路附图所示.其工作原理是: 1.基准电压Vref形成 外接电源经插座X、二极管VD1后由电容C1滤波。VD1起保护作用,防止外接电源极性反接时损坏TL431。R3、R4、R5和TL431组成基准电压Vref,根据图中参数Vref= 2.5×(100+820)/820=2.80(v),这个数据主要是针对镍氢充电电池而设计(单节镍氢充电电池充满后电压约 为1.40V)。 2.大电流充电 (1)工作原理 接入电源,电源指示灯LED(VD2)点亮。装入电池(参考图片,实际上是用导线引出到电池盒,电池装在电池盒中),当电池电压低于Vref时,IC1-1输出低电平,VT1导通,输出大电流给电池充电。此时,VT1处于放大状态-这是因为电池电压和-VD4压降的和约为3.2V(假设开始充 电时电池电压约为2.5V),而经VD1后的电压大约5.OV,所以,VT1的发射极-集电极压差远大于0.2V,当充电电流为300mA时,VT1发热比较严重,所以最好用PT=625mW的S8550,或者适当增大基极电阻以减小充电电流(注:由于LM324低电平驱动能力较小,实测IC1-2,IC1-4输出低电平并不是0V,而是约为0.8V)。 (2)充电的指示 首先看IC1-3的工作情况:其同相端1O脚通过R13接Vref,R14接成正反馈,反相端9脚外接电容,并有一负反馈通路,所以,它实际上构成了滞回比较器。刚开始时C2上端没有电压,则IC1-3输出高电平。这个高电平有两个放电通路,一个通路是通过R14反馈到10脚,另一通路是经电阻R15对电容C2充电,当充电的电压高于10脚电压V+ 时,比较器翻转输出低电平;与此同时,由于R14的反馈作用,10脚电压立即下跳到V-,这时,电容C2通过电阻R15放电,当放电的电压小于10脚电压V-时,比较器再次翻转输出高电平,由于R14的反馈作用,10脚电压立即上跳到V+,此后电路一直重复上述过程,因此,IC1-3的输出为频率固定的方波信号。 其次看IC1-4的工作情况:电池电压经R2、R16分压,接IC1-4的12脚,因为R2<

初三物理电路设计专题

电路设计 1、(2013年中考10)某种电脑键盘清洁器有两个开关,开关 S i 只控制照明用的小灯泡L , 开关S 2只控制吸尘用的电动机 M 在图5所示的四个电路图中,符合上述要求的是 2、(2012朝阳一 9 )家庭用电冰箱中消耗电能的器件主要是电动压缩机和照明灯泡,其 中电动压 缩机M 受温控开关S 控制,照明灯泡L 受门控开关S 2控制,要求它们既能单独工作 又能同时工作,下 图是几个同学画的家用电冰箱的电路图,其中正确的是 A B C D 6、(2012西城 二10)如图3所示,小丽家浴室的浴霸由一只照明灯泡 L 、两只取暖灯L 1和 3、(2012延庆 一 10)图5是电冰箱的简化电路图。图中 M 是电冰箱压缩机用的电动机, 是电冰箱内的照明灯。贝U 下列判断正确的是 A. 开关S 闭合,S 2断开时,照明灯L 与电动机M 串联 B. 关上冰箱门时,S 1自动闭合,使得照明灯L 熄灭 C ?开关S 、S 2都闭合时,照明灯L 与电动机M 并联 D.冰箱内温度降低到设定温度时, S 自动断开,电动机M 停止工 作 4、 (2012丰台一 10 )如图3是简化了的电冰箱的电路图。图 中M 是压缩机的电动机,L 是电冰箱内部的照明灯。当电冰箱接入电 路 后,打开电冰箱门时,压缩机停止工作,照明灯照明;关闭电冰箱 门时,压缩机开始工作,照明灯停止照明。则关闭电冰箱门时,关于 开关S 与S2的状态下列说法正确的是 A . S 闭合,S 断开 B. S 1断开,S 闭合 C . S 闭合,S 2闭合 D. S 1断开,S 2断开 5、 (2012昌平 一 11).击剑比赛中,当甲方运动员的剑(图中用“S 甲 表示)击中乙方的导电服时,电路导通,乙方指示灯亮。当乙方运动员的剑(图中用“ S 乙” 表示)击中甲方的导电服时,电路导通,甲方指示灯亮。在图 上述要求的是 6所示的四个电路图中,符合 A S 乙 L 甲 —~~?— L 乙 S 甲 ———“ —I' ------------------ S 乙 L 甲

基于ATmega16单片机的电能收集充电器设计

现代电子技术 Modern Electronics Technique 2013年1月15日第36卷第2期 Jan.2013Vol.36No.2 0引言 光纤陀螺FOG (Fiber Optic Gyroscope )具有其他陀螺无法比拟的优点,在航空、航天、航海、机器人控制、石油钻井等领域得到了广泛的应用[1] 。FOG 的漂移误差可分为常值偏移误差和随机漂移误差,其中FOG 的随机漂移是捷联惯导系统的主要误差源[2]。因此, 为了减小FOG 的误差并提高其精度,对FOG 的误差进行估计与建模具有重要的意义。 1 间序列建模方法 1.1 时间序列模型的描述 正文内容时间序列分析法是一种时域分析方法,它不仅研究过程的确定性变化,而且更加着重于研究过程的随机性变化[1]。FOG 的随机误差模型一般可以用AR 或ARMA 模型来描述[3]: (1)自回归模型(AR 模型)。自回归模型是指任何一个时刻k 上的数值x k 可以表示为过去p 个时刻上数值的线性组合加上k 时刻的白噪声,可以表示为: x k =?1x k -1+?2x k -2+...+?p x k -p +a k (1) 式中:常数p (正整数)为模型的阶数;常系数?1,?2,…,?p 为模型参数;{}a k 为白噪声;p 阶的模型简 记为AR (p )。 AR 模型的参数估计方法分为直接估计法和递推估 计法两种[4], 常采取最小二乘法,根据多元回归理论,参数矩阵?的最小二乘估计:? ?=()y T y -1y T y ′,y =[y 1 y 2? y n ],y ′=[y 1 y 2? y n ],可知,AR (p ) 模型参数的最小二乘估计是线性估计,且估计值??是?的无偏估计,估计精度高。 (2)自回归滑动平均模型(ARMA 模型)。该模型可以表示为线性差分的形式: x k -?1x k -1-?2x k -2-...-?p x k -p =a k -θ1a k -1-θ2a k -2-...-θq a k -q (2) 式中:p 和q 为ARMA 的阶数;?1,?2,?,?p 和θ1,θ1,?,θq 为ARMA 模型的参数,此模型简记为ARMA (p ,q )。 光纤陀螺随机漂移的建模与滤波 李佳桐,张春熹,张小跃,邓雅麒 (北京航空航天大学仪器科学与光电工程学院,北京100083) 摘 要:光纤陀螺的随机漂移是捷联式惯导系统的主要误差源,为了减小光纤陀螺的随机误差并提高其精度,需要对光 纤陀螺的随机误差进行精确建模,本文根据时间序列理论,采用自回归AR 模型法,建立了光纤陀螺随机误差模型。根据该模型,采用卡尔曼滤波算法实现了对光纤陀螺的随机误差的滤波。滤波结果和Allan 方差分析表明,滤波后光纤陀螺随机误差得到了明显地减小,光纤陀螺的精度得到了有效地提高。 关键词:光纤陀螺;AR (2)模型;卡尔曼滤波器;Allan 方差分析中图分类号:TN911?34;U666.1 文献标识码:A 文章编号:1004?373X (2013)02?0129?03 Modeling and filtering of fiber optic gyroscope random drift LI Jia?tong ,ZHANG Chun?xi ,ZHANG Xiao?yue ,DENG Ya?qi (School of Instrument Science and Opto?electronics Engineering ,Beijing University of Aeronautics and Astronautics ,Beijing 100083,China ) Abstract :The random drift of fiber optic gyroscope (FOG )is the main error source of the strapdown inertial navigation sys?tem (SINS ).The random error of FOG should be modeled accurately to reduce FOG′s random error and improve its precision. According to the theory of the time series analysis ,FOG′s random error model was build with autoregression AR model method.Based on this model ,FOG′s random error was filtered with Kalman filtering algorithm.The filtering and Allan variance analysis results proved that the FOG′s random error after filtering was obviously reduced and the FOG precision was improved effectively. Keywords :fiber optic gyroscope ;AR (2)model ;Kalman filter ;Allan variance analysis 收稿日期:2012?09?15 129

手机充电器原理分解和图

USB用电池充电器电路图 如图是USB用电池充电器电路。它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。电路中,LM3622为锤离子电池充电控制器。设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。 在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。在开关通/断工作时,LM3525具有过电流与欠电压防止功能。在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。在优选元件的情况下 LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。 对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。 在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。在低输入情况下,充电电流降为50%对电池恒压充电。当输人电压低到4.5V时,电池不能满充电到4.2V。在设计USB电源时,要采用低阻抗电缆和低电阻接线,使充电电路的输入电压足够高,确保不会出现慢充电或不完全充电的情况。

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

电路设计专题练习(用)

电路设计专题练习 1、教室里投影仪得光源就是强光灯泡,发光时必须用风扇给予降温。在使用投影仪时,要求先启动带动风扇得电动机,再使灯泡发光;如果风扇不启动,灯泡就不能发光。图所示得电路图中能符合要求得就是( ) 2、2009年全运会得击剑比赛中,当甲方运动员得剑(图中用“S甲”表示)击中乙方得导电服时,电路导通,乙方指示灯亮;当乙方运动员得剑(图中用“S乙”表示)击中甲方得导电服时,电路导通,甲方指示灯亮。下面能反映这种原理得电路就是: 3、小轿车上都装有一个用来提醒司机就是否关好车门得指示灯.四个车门中只要有一个门没关好(相当于一个开关断开),指示灯就发光提醒。图所示四个电路中,能体现该装置工作原理得就是 4、为保证司乘人员得安全,轿车上设有安全带未系提示系统。当乘客坐在座椅上时,座椅下得开关S1闭合,若未系安全带(安全带控制开关S2断开)仪表盘上得指示灯将亮起,当系上安全带时,安全带控制开关S2闭合,指示灯熄灭下列电路图设计最合理得就是 5、图所示就是一个简易“选答器”.一个问题有两个可选择得答案(a)与(b),与它们对应得灯分别由两个按钮(开关)控制,选择哪一个答案就按下哪一个按钮,对应得灯就亮,那么图所示各电路图中符合要求得就是 6、楼道里,夜间只就是偶尔有人经过,电灯总就是亮着会浪费电能。科技人员利用光敏材料制成“光控开关”,天黑时自动闭合;天亮时自 动断开。利用声敏材料制成“声控开关”当有人走动发出声音时,自动控制闭合;无人走动时,自动断开。若将这两个开关配合使用,就可以 使楼道灯变得“智能化”,使灯只有在夜晚天黑之后,有人走过时才能亮,这种“智能化”电路正确得就是 7、家用电冰箱中消耗电能得器件主要就是电动压缩机与照明灯泡.其中电动压缩机M受温控开关S1控制,照明灯泡L受门控开关S2控制.温控开关S1与门控开关S2既能单独工作又能同时工作.如图所示就是几个同学画得家用电冰箱得电路图,其中正确得就是 8、2009年冬天甲型H1N1在全世界漫廷,患者人数与死亡人数不断上升,为针对甲型H1N1在中国得漫廷,我国生产出了世界上第一支疫苗,并加强医院得救治工作。如图所示就是改造后得医院病房与护士值班室得示意图,病人需要护理时,只要按床边得接钮开关能及时通知护士:1号床得病人按下开关S1,护士值班室得灯L1亮,2号床得病人按下开关S2,护士值班室得灯亮L2,下列电路符合就 是:

太阳能电池设计方案作业

编号: 审定成绩: 重庆邮电大学 课程设计(论文) 设计(论文)题目:太阳能电能收集充电器 学院名称:通信与信息工程学院 学生姓名:杨海,张强,马超,殷亮,余凌霄 专业:电子信息工程(通信技术方向) 班级: 指导教师:刘乔寿 答辩组负责人: 填表时间:2011 年12 月重庆邮电大学教务处制

【摘录】本文通过对电路设计的总体要求的把握和理解,在充分理解性能及设计要求指标的基础上,对元器件的选择做了比对和较为细致的研究,阐述了电路设计中对于升降压电路的选取带来的不同性能,从综合性比较的角度上,得出了自动切换升降压方案在性能,经济成本,适用范围,可操作性等方面相对更优性,并通过最后的测试方案在误差范围内验证了设计方案,完成了课程设计任务。 在具体设计过程中,主要使不同强度的太阳光所产生的不同大小电压,通过可编程输出电压的相关芯片,如TPS61200,LM317等芯片调整出适当的输出电压,使其符合锂电池充电所需的4.2V并且尽可能的稳定。 本系统的供电电源转换分为升压和降压两部分,升压部分是一节干电池作为供电电源,通过升压电路转换为可为手机充电的电压,降压部分是由太阳能电池板作为供电电源,通过降压电路之后转换为可为手机电池充电的电压。 【关键词】自动切换升降压方案综合性比较测试方案验证稳定性

目录 前言 (1) 第一章太阳能概述及应用 (2) 1.1 太阳能电池发展历史及趋势 (2) 1.1.1 发展历史简介 (2) 1.1.2 发展趋势预测 (3) 第二章电路设计总体方案概述 (4) 2.1 方案一降压电路方案概述 (4) 2.1.1 电路设计的原理 (4) 2.1.2 设计的主要器件选择 (4) 2.2. 方案二升压后降压方案概述 (4) 2.2.1 电路设计的原理 (5) 2.2.2 电路设计的主要器件选择 (5) 2.3 方案三自动切换升降压电路概述 (5) 2.3.1 电路设计的原理 (5) 2.3.2 电路设计的主要器件选择 (5) 第三章电池设计具体方案分析与讨论 (6) 3.1 降压电路具体设计探讨 (9) 3.2 升压后降压方案具体设计探讨 (12) 3.3 自动切换升降压电路具体设计探讨 (15) 3.4 本章小结 (16) 第四章设计实际测试结果分析 (16) 4.1 关于模拟测试的探讨与结果分析 (16) 4.1.1 模拟测试与实际充放电的区别与共性 (17) 4.1.2 测试的具体方法讨论 (17) 4.2 实际测试数据探讨与对比 (18) 4.2.1 测试模型的选取 (18) 4.2.2 实际测试数据分析 (19)

手机充电器原理与维修

手机通用充电器及诺基亚手机充电器原理与维修 图片: 这是一种脉宽调制型充电电路,220V交流电压经R1限流,D1~D4桥式整流,C1滤波得到300V 左右的直流电压,此电压经主绕组L1给开关管V1集电极供电,经R4给V1偏置。刚加电压时V1开始导通,L1产生感生电动势,反馈绕组L2的感生电动势经反馈回路C4、R6加到开关管V1的基极,构成正反馈,从而使V1迅速进入饱和导通状态。此时V1的发射极电流很大,电阻R2上压降很大,此电压经R3 加到控制管V2的基极,使其导通,V1基极电压降低,集电极电流减小,L2感生与前反向的负电压经C4、R6加到V1基极,使开关管V1迅速进入截止状态。就这样,开关管不断导通截止,变压器B次级绕组L3就可获得脉冲电压。改变R6、C4的值可改变脉冲宽度从而达到调节充电电流的目的。不充电时,无负载,没有电流经过R20,V6截止,变色发光二极管D8不亮。当接上负载时,绕组L3的电压经D13、D15整流,C7滤波给负载供电,R20产生左负右正的电压,使V6导通,发光管D8导通发红光,

指示开始充电,随着充电的进行,充电电流越来越小,当充满电时,流过R20的电流变小,其上压降变小,V6 导通程度降低,流过D8电流变小,发绿光,表示充满电。其常见故障为开关管因功率过载而损坏和限流电阻R1损坏。 图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2 充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升

一种压电能量收集装置设计

一种压电能量收集装置的设计 研究现状: 压电能量收集模式将压电材料铺设于道路路而结构中,利用压电效应将道路上交通荷载产生的部分机械能转化为电能,继而将产生的电能收集、处理、利用。自从1880年代居里兄弟发现压电效应至今,经过100多年的研究积淀,针对压电材料性能及应用研究己日趋成熟。由于其优良的能量转换能力,压电能量收集系统受到了全球科研机构及企业的普遍关注。 2008年以色列的Innowattech公司与海法理工学院共同研发了应用于道路工程的压电能量收集系统(Innowattech Piezo Electric Venerator,IPEV)。图1,2分别为IPEV的概念模型和现场试验照片。采用该能量收集系统,交通量为600 }eh " h 1的一条双车道道路上能产生0. 4 MW " km 以上的电量,可支持400 ^} 600户家庭的日常用电;且随着交通量、车载的增加,收集的电能也随之增加;IPEV的使用不会增加车辆单位油耗;其使用寿命约为30年。然而,该技术尚处于对外保密阶段,不能给中国研究者提供直接参考。 Lee等口6〕研究了路而动态荷载作用下基于压电效应的能量转化影响因素及其之间的关系;Ye等o;〕提出了一种基于遗传算法的压电换能器自动优化方法,通过该方法设计的换能器可以根据实时路而振动数据自动调节内部频率以收集更多的能量;曹秉刚等mo研发了一种利用公路系统振动能量压电发电的方法和系统;林伟等口月设计了一种应用于沥青混凝土路而的堆叠式压电自发电能量采集与照明装置;Zhao等基于有限元对应用于沥青路而进行能量收集的钱式压电能量收集器参数进行了分析优化,在20 Hz, 0. 7 MPa交通荷载的作用下,按照其设计的钱式换能器,计算机模拟单个钱式压电能量收集器可产出功率为1.2mW的电能;Ky-missis在麻省理工学院将压电晶体置于鞋内,研究出一种发电鞋。测定发现压电晶体产生的峰值电能为80mW ; Rastega等开发了一种可应用于多种平台的针

模电课程设计—手机充电器

郑州科技学院 《模拟电子技术》课程设计 题目手机充电器 学生姓名 x x x 专业班级电气工程及其自动化班 学号2012470xx 院(系)电气工程学院 指导教师 xx 完成时间 2014年月日

前言 随着科学技术的发展,手机逐渐成为人们交流的主要工具,在人类社会中扮演着重要的角色。但是也有不利的一方面,消费者每当更换一个手机就必须更换原配充电器,或者是原配充电器遗失或损坏后找不到与之相匹配的充电器,所以必须抛弃手机或者寻找原配充电器,但是花很多的钱。手机配件的不完善逐渐成为国产手机被消费者厌恶最多的问题之一,致使国内手机的销量下降。 在2003年,深圳市海陆通电子有限公司研发推出了历史上第一款通用型手机充电器——万能充,让海陆通公司始料不及的是,这个看似简单但外观独特的充电器却获得市场的热销。“第一次推出的几十万批量试单,三天内全部售完,完全出乎在我们的预料。”没有想不到只有做不到,至此万能充电器逐渐成为人们充手机的主要工具,方便快捷。 以前一个手机要对一个原装充电器,因为手机的更新换代速度很快,有的人半年就换一台手机,一个老百姓平均使用的充电器十个八个,对社会的有限资源是极大的浪费。但是万能充发明出来后,一个充电器基本可以满足全家人使用。所以说对节约社会资源,减少资源浪费做出了一定的贡献,在这个行业来说也是一个创新性的里程碑式的产品,有效地推动了充电器标准化的进程。一个小小充电器不仅改变了海陆通公司的命运,也改变了数以千万中国手机用户换手机一定要换充电器的束缚,给手机用户带来了极大的便利。

目录 1设计的目的 (1) 2设计的任务与要求 (1) 2.1设计的任务 (1) 2.2设计的要求 (1) 3设计方案与论证 (1) 3.1 设计的方案 (1) 3.2万能充的原理方框图 (2) 4设计原理及功能说明 (3) 4.1元器件的选用原理 (3) 4.2总体电路图 (5) 5单元电路 (7) 5.1变压器 (7) 5.2二极管 (8) 6硬件的安装与调试 (9) 6.1硬件的安装 (9) 6.2硬件的调试 (9) 7总结 (10) 参考文献 (10) 附录1:总体电路原理图 (11) 附录2:元器件清单 (11)

2009电能收集充电器报告

2009电能收集充电器报告

电能收集充电器(E题)参赛队队号:20090079

电能收集充电器(E题) 摘要 本系统以DC——DC变换为主电路,具有升压斩波(BOOST)电路和降压(BUCK)电路。利用低功耗CMOS定时器7555自制PWM发生控制器。同时采用自带D/A、A/D的低功耗单片机C8051-F020作为控制核心,采用电源最大功率定律实现了最大功率控制,使系统尽量多地吸收电源能量,在1.4V至20V以上的电压范围内系统都可以正常稳定地工作,特别适合作为太阳能发电系统的配套模块。外加的显示部分清晰地反映出系统的运行状态。控制和显示电路的间歇式工作方式大大降低了系统自身损耗。 关键词:C8051-F020、开关电源、充电器、7555定时器

一、引言 按电路理论可知,用电源Es直接给电池充电(即充电控制器短路)时,其充电电流最大值只能等于(Es-Ec)/(Rs+Rc);而题目要求本系统的充电电流Ic>(Es-Ec)/(Rs+Rc),并且还要求直流电源的电压低于3.6V时也能给电池充电,这也是直接充电不能达到的。因此,本设计中的充电控制电路必须要用到开关电源技术。而且直流电源的电压变化范围为0~20V,因此,系统需要用到升压斩波电路(BOOST变换器)和降压斩波电路(BUCK变换器)。 二、系统总体原理框图 本系统由以下几大部分组成:PWM产生电路、DC-DC变换器主电路、最大能量获取控制电路(单片机)、键盘输入电路和运行状态显示电路。系统总体结构框图如图1所示: DC-DC主 电路电池 PWM 发生器升压芯片05S05S 单片机 D/A 键盘 显示 图1 系统结构框图 三、方案论证与比较 1.DC-DC变换方案论证 由题知直流电源的电压调整范围为0—20V。要对3.6V的可充电池充电,则要求充电器的输出约等于3.6V。因此,以3.6V为界,电源Es输出电压低于3.6V 时要用升压电路将电压升高到3.6V;而电压高于3.6V时用降压电路将电压降到约等于3.6V。 方案一:将电源直接短接(或通过电阻)接到电池两端。此方法的电路结构最简单,在Es>3.6V时可以对电池充电,但效率可能较低,经简单计算可知达不到课 1

手机万能充电器电路原理与维修

由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。 四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。 一、工作原理 该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。具体电路原理如下。 1.振荡电路 该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V 左右的直流电压。该电压经开关变压器T的卜1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T 的1-1初级绕组中产生的磁通量也开始减少。在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充 电电压。 2.充电电路 该电路主要由一块软塑封集成块IC1(YLT539)和三极管VT3等组成。从变压器T的1-3绕组感应出的交流电压5.5V经二极管VD3整流、电容C3滤波后,输出一个直流8.5V左右电压(空载时),该电压一部分加到三极管VT3的e极;另一部分送到软塑封集成块IC1(YLT539)的1脚,为其提供工作电源。集成块IC1有了工作电源后开始启动工作,在其8脚输出低电平充电脉冲,使三极管VT3导通,直流8.5V电压开始向电池E充电。 当待充电池E电压低于4.2V时,该电压经取样电阻R11、R12分压后,加到集成块IC1的6脚上,该电压低于集成块IC1内部参考电压越多,集成块IC1的8脚输出的电平越低,三极管VT3的b极电位也越低,其导通量越大,直流电压(8.5V)经极性转换开关S1向电池E快速充电。由于集成块IC1的2、3、4脚和电容C4共同组成振荡谐振电路,其2脚输出的振荡脉冲经电阻R16送至充电指示灯LED1(绿)的正极,其负极接到集成块IC1的8脚。在电池刚接人电路时,集成块IC1的8脚输出的电平越低,充电指示灯LED1闪烁发光强。随着充电时间延长,电池所充的电压慢慢升高,集成块IC1的8脚输出电压慢慢升高,充电指示灯LED1闪烁发光逐渐变弱。 当电池E慢慢充到4.2V左右时,集成块IC1的6脚电位也达到其内部的参考电压1.8V。此时,集成块IC1内部电路动作,使其8脚电压输出高电平,三极管VT3截止,充电指示灯LED1不再闪烁发光而熄灭,充满指示 灯LED2(绿)由灭变亮。 3.稳压保护电路 该电路主要由三极管VT1、稳压二极管VDZ1等组成。

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计 2009-09-22 09:26 随着高新电子技术的发展各类充电电子产品不断上升,为此云峰电子为朋友们提供些相关恒流充电器的制作与原理分析,请仔细阅读!详情咨询https://www.360docs.net/doc/be227242.html, 第一类、lm317恒流源电路图 图1、图2分别是用78××和LM317构成的恒流充电电路,两种电路构成形式一致。对于图1的电路,输出电流Io=Vxx/R+IQ,式中Vxx是标称输出电压,IQ是从GND端流出的电流,通常IQ≤5mA。当VI、Vxx及环境温度变化时,IQ的变化较大,被充电电池电压变化也会引起IQ的变化。IQ是Io的一部分,要流过电池,IQ的值与Io相比不可忽略,因而这种电路的恒流效果比较差。对于图2的电路,输出电流Io=VREF/R+IADJ,式中VREF是基准电压,为1.25V,IADJ是从调整端ADJ流出的电流,通常IADJ≤50μA。虽然IADJ也随VI及环境条件的变化而变化,且也是Io的一部分,但由于IADJ仅为78××的IQ的1%,与Io相比,IQ可以忽略。可见LM317的恒流效果较好。 对可充电电池进行恒流充电,用三端稳压集成电路构成恒流充电电路具有元件易购、电路简单的特点。有些读者在设计电路时采用78××稳压块,如《电子报》2001年第2期第十一版刊登的《简单可靠的恒流充电器》及今年第6期第十版的《恒流充电器的改进》一文,均采用7805。78××虽然可接成恒流电路,但恒流效果不如LM317,前者是固定输出稳压IC,后者是可调输出稳压IC,两种芯片的售价又相近,采用LM317才是更为合理的改进。 LM317采用T0-3金属气密封装的耗散功率为20W,采用TO-220塑封结构的耗散功率为15W,负载电流均可达1.5A,使用时需配适当面积的散热器。由于LM317的VREF=1.25V,其最小压差为3V,因此输入电压VI达4.25V就能正常工作。但应注意输出电流Io调得较大时,输入电压VI的范围将减小,超出范围会进入安全保护区工作状态,使用时可从图3的安全工作区保护曲线上查明输入—输出压差(VI-Vo)的范围。 78××与LM317内部均有限流、过热保护功能,后者还有安全工作区保护功能。78××不允许GND端悬空,否则器件极易损坏。LM317即使ADJ端悬空,各种保护功能仍然

一种电能收集充电器的设计

一种电能收集充电器的设计 摘要 随着越来越多的PDA产品的在日常生活中的普及使用,电池充电器的使用也越来越广泛,一个好的充电器设计,不但能够实时地对充电电路的电压、电流这些关系到充电过程好坏的参数进行检测,针对这些参数的变化调整充电的电流、电压,同时还能在充电电压很小时还能够对电池进行充电。 因此,本文设计了一种以MC34063直流升压电路及LM2576直流可调稳压电路为核心,AVR单片机最小系统板为控制电路,能在7.3v-20v范围内的不同输入电压中,通过手动调节可为一定范围内不同电压的电池充电,充电电流Ic达到大于(Es-Ec)/(Rs+Rc)的要求。该系统主要有AVR MEGA16最小系统,44700uf电容组成的电能收集储存电路,MC34063直流升压电路,LM2576直流可调稳压电路组成。系统通过44700uf电容组成的电能收集储存电路从内阻非常大(100欧)的电源中收集并储存电能,再通过AVR MEGA16最小系统于给定时间内发出脉冲使电容放电供给MC34063直流升压电路电压升压,然后由LM2576直流可调稳压电路稳压为内阻较小的(0.1欧)模拟电池充电。本系统具有低功耗,输出稳定可调,输入内阻大,转换效率高无需外部电源供电,低电压启动(7.3v)等特点。 关键词:充电器;电能收集;升压;A VR ATmega16;MC34063;脉冲充电 Power to collect charger Abstract As more and more PDA products, the increasing use in everyday life, the battery charger is also more widely used, a good battery charger design, not only in real time charging circuit voltage and current of these relations to the charging process for testing the parameters of good and bad for changes in these parameters to adjust charge current, voltage, while the charge voltage of a small be able to recharge the battery, such as outdoor activities, to take advantage of low-voltage or solar power, etc. for charging, the only way to ensure that extend battery life. For the reason that,we designed a system is centering on MC34063 direct-current boosting circuit and adjustable LM2576 direct-current stabilivolt circuit. A VR monolithic machine minimum system board is a control circuit , can in different within certain range (7.3 v-20v) entering voltage, may move the

手机充电器设计报告

手机充电器设计报告 题目:手机充电器设计 指导老师:翟永前 专业班级:电子信心工程专业12级 组别:第六组 组长:曹广振 团队成员:王沛、索彬、赵小芳、曹广振

院系名称:通信信号学院 智能充电器的设计 【摘要】 随着手机在世界范围内的普及,手机电池充电器的使用越来越广泛。充电器种类繁多,但从严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。 该设计利用51单片机的处理控制能力实现充电器的智能化,在单片机的控制下,具有预充、充电保护、自动断电和充电完成报警提示功能。该设计包括了六个功能模块: ·单片机模块:实现充电器的智能控制,如自动断电,充电完成报警提示。·充电过程控制模块:采用专用的电池充电芯片实现对充电过程的控制。·光耦模块:控制通电和断电,在电池充满电后及时关断充电电源。 ·充电电压提供模块:将一般家用交流电压经过变压器、电压转换芯片等转换为5V直流电压。 ·电压测试模块:利用AD转换把充电电池两端的电压通过数码管显示出来。·C51程序:单片机控制电池充电芯片实现充电过程的自动化,并根据充电状态给出有关的指示。 【关键字】 单片机、电压转换、MAX1898、智能、充电器

【目录】 一、设计综述 (4) 二、基本方案 (4) 三、软硬件设计 (5) 四、软硬件仿真 (13) 五、测试 (13) 六、设计体会 (14)

一、设计综述 手机电池的使用寿命和单次使用时间预充电过程密切相关,锂电池是手机最为常用的一种电池,它具有较高的能量重量比、能量体积比,具有记忆效应,可重复充电多次,使用寿命较长,价格也越来越低。锂电池对于充电器的要求也比较苛刻,需要保护电路,为了有效利用电池容量,须将锂电池充点值最大电压,但是过压充电会导致电池损坏,这就要求较高的充电精度。 而大部分充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。一些低成本的充电器采用电压比较法,为了防止过充,一般充电到90%就停止大电流快充,而采用小电流涓流补充充电,这样就使充电时间增长了。 一部好的充电器不但能在短时间内将电量充足,而且还可以对锂电池起到一定的维护作用,修复由于记忆造成的记忆效应,即电池容量下降现象。设计比较科学的充电器往往采用专用充电芯片配合单片机控制的方法。专用的充电芯片可以检测出电池充电饱和时发出的电压变化信号,比较精确的结束充电工作,通过单片机对这些芯片的控制,可以实现充电过程的智能化,以缩短充电时间,同时能够维护电池,延长电池使用寿命。 另外,比起一般充电器,智能充电器还增加了充电电压的显示,让我们能直观的看到电池的由预充、快充、满充充电阶段,从而加强对电池的维护。 二、基本方案 (一)方案分析 该设计采用逐个功能模块分析再组合的方法来实现方案。1、单片机模块 智能的实现利用单片机控制,经过分析,单片机芯片可以选择Atmel公司的AT89C52,来控制充满电时蜂鸣器报警声,以及通过中断控制光耦器件通电和断电。 2、充电过程控制模块

相关文档
最新文档