初等数论__论文

初等数论__论文
初等数论__论文

突出师范特色改革初等数论

[摘要]本文介绍了初等数论课程教学中,不断进行教学内容和教学方法的改革,加强对高师生师德、授课能力、创新精神和实践能力培养的一些做法和体会。

[关键词]初等数论教学创新精神和实践能力高师生授课能力作为培养未来中小学教师的高等师范院校,在课堂教学中突出师范特色,加强对高师生进行师德教育,培养学生的授课能力,加强学生创新精神和实践能力的培养显得尤为重要。

一、改革初等数论教学内容,加强高师生的教师素养培养

1.结合初等数论教学,对高师生进行师德教育我国数学家对数论这门学科的发展有过重大的贡献,结合初等数论课程的有关内容,介绍我国数学家在数论领域的伟大成就,能增强民族自豪感,激发学生的爱国主义思想感情。同时,结合初等数论的教学对学生进行辩证唯物主义教育、科学求实精神的教育。如在讲不定方程这一节时,介绍世界上最早提出不定方程的是我国的《九章算术》,比欧洲早200多年。在讲同余方程这一节时,介绍世界上最早提出同余方程组的是我国的《孙子算经》中的孙子定理(即中国剩余定理)。在讲数论与中学教学的联系时,介绍我国中学生在国际数学奥林匹克竞赛(IMO)上屡获佳绩,多次获得团体总分第一名的优异成绩。还介绍华罗庚在数论中的伟大成就,如“华氏定理”、“华氏不等式”。在介绍华罗庚、闵嗣鹤等数论学者甘为人梯,举办数论讨论班,指导年轻数学家(如王元、陈景润、潘承洞等)摘取“数学王冠上的宝石”的高贵品质,对学生进行师德教育。在讲到高次不定方程时,介绍费马大定理,1637

年前后由法国数学家费马提出,一代又一代数学家历经350多年的不懈努力,到1993年由英国数学家怀尔斯最后证明,来激发学生勇于探索,科学求实的学习风气。

2.结合中学数学教学,改革初等数论的教学内客。作为一个高等师范院校,数学与应用数学专业的培养目标是德、智、体、美等全面发展的合格中学数学师资及其他数学专门人才,我们数学系的大多数毕业生要从事中学数学教学,因此,我们的教学要注重与中学数学教学结合起来。如整除、素数和合数、约数和倍数、奇数和偶数、平方数、同余、不定方程、[x]、数的非十进制、欧拉函数等内容与中学联系比较紧密,而且是中学数学奥林匹克竞赛的常客。据统计,被誉为“世界青年智能大赛”的国际数学奥林匹克竞赛(IMO)的试题中主要用于数论知识来解的约占30%,因此也有人把数论称为是锻炼人思维的体操。对这些知识我们要重点进行讲解,并补充一些中学数学竞赛的题目给他们分析讲解,提高学生的解题能力。同时我们开设了选修课《竞赛数学》,为提高学生以后从事辅导中学生数学奥林匹克创造了一定条件。原根与指标也是初等数论中的重要内容,但与中学内容联系比较少,我们采取简单介绍的方法进行讲解。

二、改革初等数论教学方法,加强学生创新精神和实践能力培养

1.加强实践环节,提高数学系高师生的授课能力。初等数论课中的部分内容,如整除、素数与合数、奇数与偶数、同余等概念,在其他课程中已有涉及,只是没有初等数论中讲得详细、系统,因而学生已有了一定的了解。对于这部分内容我们采取让学生讲、分组讨论,由学生对这节课教学内容、教学方法进行

评论,提出自己的建议,并对如何上这节课进行阐述,最后由老师进行总结、点拨。这样突出了学生的主导性,提高了学生学习的积极性,加强了学生实践能力

的培养,提高了师范生的授课能力,受到了学生的欢迎,收到了较好的教学效果。 2.采用启发式教学方法,培养学生分析问题和解决问题的能力。启发式教学方法的核心是启发学生的积极思维,引导他们主动获取知识,培养他们分析问题和解决问题的能力。在课堂教学中,通过引导让同学自己去思考、去做、去说,启发学生善于提出问题。引导他们通过归纳、类比、举一反三等,提高他们分析问题解决问题的能力。在初等数论教学中,我们采取启发式教学方法,对于数论中的问题和习题主要告诉学生怎样去想,从哪方面去想,从哪方面人手,怎样解决问题,而解题方法熟悉后的具体计算则少讲甚至不讲。如在求两个数的最大公约数时,就提问学生学过几种最大公约数的求法?在什么情况下用什么方法更好?本题应用哪种方法简便一些?通过这些提问学生就会对求两个数的最大公

约数掌握的更牢固。如在同余式.qn ?(modm)化简中,我们总要提问同学当tit 较大时怎么办?当a较大时怎么办?当a与n都较大时怎么办?通过这一系列的提问,使学生不仅掌握这道题的解法,而且对这一类题都会迎刃而解,起到了举一反三、事半功倍的效能力。

3.加强数学直觉思维和逆向思维的训练,培养学生的创造性思维能力。数学直觉思维常常通过跳跃的想像和迅速的判断而达到事物的本质和规律的认识,因而富有创造性。法国著名数学家彭加列在谈到直觉思维时说:“没有直觉,年轻人在理解数学时便无从着手,他们不可能学会热爱它,他们看到的只是空洞的玩弄辞藻的争论;没有直觉,他们永远不会有应用数学的能力。”在谈到数学的逻辑思维和直觉思维的关系时说:“二者缺一不可,惟有逻辑能给我们以可靠性,它是证明的工具,而直觉是发明的工具。”由此可见,数学直觉思维在数学学习和能力培养中的重要性。因而,在初等数论教学中要注重培养学生的直觉思维。如在讨论不定方程是否有整数解时,要求学生先直观的感觉该题是否有解,再分别用不同的方法解决。鼓励同学大胆猜测,养成善于猜想的数学思维习惯,没有大胆猜测就不会有数论中的哥德巴赫猜想、费马猜想等著名的数学名题,正如著名数学家高斯所说:“没有大胆而放肆的猜想,就谈不上科学的发现。”

逆向思维是从已有的习惯思路的反方向思考和果,从而有效地提高了学生分析问题和解决问题的分析问题,它反映了思维过程的间断性、突变性,是摆脱思维定势,突破旧的思维框架,产生新思想、发现新知识的重要思维方式。如应用公式、法则不奏效时鼓励学生反过来应用;推理论证过程行不通时,让学生考虑逆推;直接证法不行时,让学生考虑用反证法等。在初等数论教学中,不少内容都可以用来培养学生的逆向思维能力。

4.注重一题多解,培养学生的解题能力。解题在数学教学和学习中具有重要的地位和作用,数学家波利亚曾说过:“掌握数学就意味着善于解题。”通过解题可使学生理解数学中的概念,掌握数学中的计算方法,巩固所学的知识,培养分析问题、解决问题的能力。通过解题,教师可以检查学生学习的好坏,从中找到问题,改进教学,提高教学质量。数学中的问题,往往不只一种解法,通过从不同的侧面去分析和理解,可以得到多种解法,即所谓的一题多解。一题多解能拓宽学生的知识面和学生的思维领域,提高学生的思维能力和想像能力,并最终为培养学生的创造性思维,提高学生分析问题、解决问题的能力创造条件。如在讲解一次同余方程时,我给学生介绍验根法、公式法、利用二元一次不定方程等多种解法并比较各种解法的优劣,提高学生的解题能力。

5.上好习题课,加强学生的实践能力。习题课是初等数论教学的重要组成部分。习题课教学的好坏将直接影响到初等数论的教学质量,因而我们非常

注重习题课的教学。我们的主要做法包括:教师利用各章内容框图总结本章内容,教师讲解典型例题,学生练习并到课堂上讲解,课堂讨论。其中我们尤其注重学生到课堂上讲解和课堂讨论这两个环节。一方面会把学生易出现的错误展现清楚,便于教师的重点讲解,同时也锻炼了学生的授课能力,加强了学生的实践能力,为以后走上讲台创造了一个很好的实习机会。

以上是我们在初等数论教学中注重对高师学生进行师德教育,注重提高高师学生授课能力,加强培养学生创新精神和实践能力的一些体会,也取得了一定的成绩。学生学习初等数论的积极性得到了普遍提高,培养了学生分析问题和解决问题的能力。高师学生的创新精神和实践能力的培养是一个长期的课题,我们要进一步改革初等数论的教学内容和教学方法,全面提高教学质量。

初等数论结课论文

初等数论结课论文 一.课程感悟 初等数论是研究数的规律,特别是整数性质的数学分支,它是数论的一个最古老的分支。它以算术方法为主要研究方法,主要内容有整数的整除理论、同余理论、连分数理论和某些特殊不定方程。 换言之,初等数论就是用初等、朴素的方法去研究数论。 这学期我在初等数论的学习中,从学习方法和解题思路上明显感觉出有别于之前学的的数学分析和高等代数等数学课程,那种学习中学数学的熟悉感觉又回来了。可能在难度上这门课程并不逊色于其他,但是对于我却更容易接受这门课程的内容。 二.连分数的学习 1.连分数的定义 若 为整数 , ,… 皆为正整数,则 叫简单连分数。 2.要把一个分数写成连分数,只要不断的把分子分母同除以分子,将分子化为1,。如: 121211121251211213725219937+++=++=+==[0;2,1,2,12] 当然,连分数也可写成分数,如 30433013113421 14 131211=+=++=+++ 3.早在公元前三世纪,欧几里德就发现了一个较优的求连分数算法——辗转相除法,实际上就是中学求最大公约数的辗转相除法。 例如:用辗转相除法求942和1350的最大公约数。 012341111a a a a a +++++ 0a 1a 2a

13504081942942 9421262408408 408303126126 126643030 30506=+=+=+=+=+ 135011194221 31 450=++ +++代入得: 4.连分数的应用。 例如:求斐波那契数列前项与后项之比的极限(黄金比) 512211125125151115121211 1115112 -====++--++-+= ++-+()

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

数学与应用数学毕业论文(剁树枝问题,组合数学、初等数论方向)

摘要 有一根正整数单位长树枝,要剁成一定长的短树枝,在剁的过程中可以重叠,问如何剁次数最少?这样的问题被称为剁树枝问题。剁树枝问题是许多实际问题的一个模型,有着广泛的应用。本课题的任务是提供一般的方法使剁的次数最少。采用例举、分析、归纳、证明的流程,给出了剁树枝问题最少次数的递推关系和具体表达式,并对其进行了证明。 关键词初等数论;组合数学;递归;数学归纳法 Abstract Suppose there is a positive integer units long branches, to chop them into a certain length of short branches. During the cutting process overlap is allowed, then how many times is needed at least? This problem is known as cutting the tree problem. The cutting branches-problem is a model for many practical problems, with a wide range of applications. Based on the idea of dynamic programming, the recursion formula of the least number of movements necessary for this problem is presented. The direct formula of the least number of movements necessary for this problem is given and proved by triple mathematical induction and pure combinatorics. Key words number theory;combinatorial mathematics;recursive; mathematical

欧拉定理

欧拉定理 认识欧拉 欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等,至今沿用。欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E 即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”?欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式...... 初等数论中的欧拉定理

HPM的初等数论绪论课教学设计论文

HPM的初等数论绪论课教学设计论文HPM的初等数论绪论课教学设计论文 关键词:HPM;数学史;初等数论;数学教学 一、引言 初等数论以整除为基础,研究整数性质和方程(组)整数解,是近代数学中最典型、最基本的概念、思想、方法和技巧。初等数论课程是我校小学教育(理科方向)和数学教育专业的专业必修课,学生通过本课程中基础知识的学习,掌握初等数论的基础内容,即算术基本理论和最大公约数理论;掌握初等数论的核心,即同余理论的基本知识;并能运用整除理论和同余理论来求解几类最基本的不定方程;掌握连分数等有关概念和性质及其应用;通过观察、实验、猜测、分析、计算、推理等学习活动,发展学生的演绎推理能力,体会数学的基本思想和思维方式;了解初等数论的价值,为学生以后继续学习数论或从事教学工作打下基础。然而,初等数论教材重在阐述数论理论知识的结果,忽视介绍知识的背景、发生与形成过程,某种意义上影响了该课程的教学质量。针对初等数论课程的性质,在绪论课中结合数学史知识,在HPM的视角下进行绪论课的教学设计,HPM视角下的绪论课教学的目的在于将初等数学与数学史等其他知识衔接起来,尽量消除数学教学的枯燥性,提高学生学习的积极性,让学生体验初等数论的价值,进而增强学生的使命感和目标感,吸引更多的学生热爱数学,变被动学习为主动学习。HPM指的是数学史与数学教育的关系,其研究的最终目标是提高数学教育水平,具体方法是通过在数学教学中恰当地运用数学史。 二、初等数论的主要内容 1、整除理论:整除理论是数论中最重要的基本内容。本章首先简要介绍自然数与数学归纳法,然后引进整除的概念,利用带余除

法和辗转相除法这两个工具,建立最大公约数与最小公倍数的理论,进一步研究素数的基本性质和极具重要性的算术基本定理。这一理 论的主要成果有:算术基本定理、数的十进制、高斯函数、费马数、梅森数、完全数等。2、同余理论:同余是初等数论的又一基本概念。同余概念的引入,使许多数论问题的讨论得到简化,极大地丰 富了数论内容,因而同余在数论中占有极为重要的地位、涉及内容 有同余及其基本性质,剩余类与剩余系,欧拉定理和费马定理及其 在循环小数和公开密钥问题上的应用。3、不定方程:不定方程是 数论中的一个古老分支,它有悠久的历史与丰富的内容、古希腊数 学家丢番图于3世纪初就研究过这样的方程,所以不定方程又称丢 番图方程、但实际上,我国对不定方程的研究从勾股方程的商高定 理和费马大定理等低次代数曲线对应的不定方程已经延续了数千年。4、连分数理论:引入了连分数概念和算法等等。特别是研究了整 数平方根的连分数展开。主要成果:循环连分数展开、最佳逼近问 题等。 三、初等数论的发展简史 对数的崇拜和好奇是促使人们去研究数的原始推动力,这样一门以整数的结构和性质为研究对象的学科也就诞生了,这就是数论。 目前大多数人大致赞同数论的研究在内容上是从数的可约性开始的。若“可约”,则它是一个整除性问题;若“不可约”,则为余数问题。因此,整除理论被称为是数论中最古老的内容。早在两千多年 前的古希腊欧几里德的《几何原本》中论述了数论的知识,例如欧 几里得证明了质数个数是无限的,提出了求最大公约数的方法(即 所谓欧几里得算法)。我国古代在数论方面取得过辉煌的成就,现 在一般数论书中被称为“中国剩余定理”的孙子定理就起源于我国 古代《孙子算经》(约公元400年)中的下卷第26题。初等数 论从早期发展起来后的近两千年时间里,发展几乎停滞不前,直到 15世纪,费马、欧拉、拉格朗日、勒让德和高斯等作了初等数论 的研究工作,特别是德国数学家高斯在前人研究的基础上,发表了 著作《算术探究》,在研究整数性质过程中引进并推广了统一的符号,提出了同余理论,发现了二次互反律,开始了现代数论的新纪元。自二十世纪以来,由于现代信息技术的发展以及抽象数学和高

“4-6 初等数论初步”简介

“4-6 初等数论初步”简介 北京师范大学胡永建 初等数论是研究整数的性质和不定方程(组)的整数解的一门学问,它与几何学是最古老的两个数学分支。初等数论中至今仍有许多没有解决的问题,如哥德巴赫(Goldbach)问题,孪生素数猜想,奇完全数的存在性问题等,它们对人类智慧产生了极大挑战。人们在解决一些初等数论问题的过程中所作的贡献,对数论乃至整个数学的发展起了重要的推动作用,产生了一些直接与数学有关的新的重要数学分支。初等数论在计算机科学和信息工程中有许多重大的实际应用。在本专题中,同学们将通过具体的问题,学习初等数论的一些基本知识,如有关整数和整除的知识,用辗转相除法求解一次同余方程(组)和简单的一次不定方程等,初等数论中蕴含的一些思想方法,以及我国古代数学在初等数论的研究方面取得的一些重要成就。 一、内容与课程学习目标 本专题的学习初等数论的一些基本知识,具体包括:整数的整除、同余与同余方程、一次不定方程和数论在密码中的应用四部分内容。通过本专题的学习,要引导学生:1.通过实例,认识带余除法,理解同余和剩余类的概念及意义,探索剩余类的运算性质(加法和乘法),并且理解它的实际意义。体会剩余类运算与传统数的运算的异同(会出现零因子)。 2.理解整除、因数和素数的概念,了解确定素数的方法,如埃拉托斯特尼(Eratoshenes)筛法,知道素数有无穷多个。 3.了解十进制表示的整数的整除判别法,探索整数能被3,9,11,7等整除的判别法。会检查整数加法、乘法运算错误的一种方法,如弃九验算法。 4.通过实例,探索利用辗转相除法求两个整数的最大公约数的方法,理解互素的概念,并能用辗转相除法证明:若a能整除bc,且a,b互素,则a能整除c。探索公因数和公倍数的性质。了解算术基本定理。 5.通过实例,理解一次不定方程的模型,利用辗转相除法求解简单的一次不定方程。并尝试写出算法的程序框图,在条件允许的情况下上机实现。 6.通过实例(如物不知其数问题),理解一次同余方程组的模型。 7.理解大衍求一术和孙子定理的证明。 8.理解费马小定理(当m是素数时,a m-1≡1(mod m))和欧拉定理(aφ(m)≡1(mod m),其中φ(m)是1,2,…,m-1中与m互素的数的个数)及其证明。 9.了解数论在密码中的应用——公开密钥。 二、内容安排 本专题共安排了四讲,其中最后一讲“数论在密码中的应用”可根据教学时间的实际情况机动安排,可由教师讲授,也可作为学生课后的阅读材料。本专题教学时间约需18课时,具体分配如下(仅供参考): 第一讲整数的整除约5课时 一、整除的概念和性质约2课时 二、最大公因数与最小公倍数约2课时

初等数论定理

初等数论 1. 整除性质 a) 若a|b,a|c,则a|(b±c)。 b) 若a|b,则对任意c,a|bc。 c) 对任意非零整数a,±1|a,±a|a。 d) 若a|b,b|a,则|a|=|b|。 e) 如果a能被b整除,c是任意整数,那么积ac也能被b整除。 f) 如果a同时被b与c整除,并且b与c互质,那么a一定能被积bc整除,反 过来也成立。 g) 如果a∣b且b∣c,则a∣c。 h) 如果c∣a且c∣b,则c∣ua+vb,其中u,v是整数。 i) 对任意整数a,b,b>0,存在唯一的数对q,r,使a=bq+r,其中0≤r0是两个不全为零的整数a,b的公因子,如果a,b的任何公因子都整除c,则c称为a,b的最大公因子,记为c= (a,b). a) (a,b)=(-a,b)=(a,-b)=(-a,-b) b) (0,a)=a c) 设a,b是两个不全为零的整数,则存在两个整数u,v,使 (a,b)= ua+vb. 4. 欧几里德除法(辗转相除法): 已知整数a,b,记r0=a,r1=b, r0=q1r1+r2,0 ≤r2<r1=b; r1=q2r2+r3,0 ≤r3<r2; … r n-2=q n-1r n-1+r n,0 ≤r n<r n-1; r n-1=q n r n

初等数论 第一章 整除理论

第一章整除理论 整除性理论是初等数论的基础。本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。 第一节数的整除性 定义1设a,b是整数,b≠ 0,如果存在整数c,使得 a = bc 成立,则称a被b整除,a是b的倍数,b是a 的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被 b整除,记为b|/a。 显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。 被2整除的整数称为偶数,不被2整除的整数称为奇数。 定理1下面的结论成立: (ⅰ) a∣b?±a∣±b; (ⅱ) a∣b,b∣c?a∣c; (ⅲ) b∣a i,i = 1, 2, , k?b∣a1x1+ a2x2+ +a k x k,此处x i(i = 1, 2, , k)是

任意的整数; (ⅳ) b∣a ?bc∣ac,此处c是任意的非零整数; (ⅴ) b∣a,a≠ 0 ? |b| ≤ |a|;b∣a 且|a| < |b| ?a = 0。 证明留作习题。 定义2若整数a≠0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。 以后在本书中若无特别说明,素数总是指正素数。 定理2任何大于1的整数a都至少有一个素约数。 证明若a是素数,则定理是显然的。 若a不是素数,那么它有两个以上的正的非平凡约数,设它们是d1, d2, , d k 。不妨设d1是其中最小的。若d1不是素数,则存在e1 > 1,e2 > 1,使得d1 = e1e2,因此,e1和e2也是a的正的非平凡约数。这与d1的最小性矛盾。所以d1是素数。证毕。 推论任何大于1的合数a必有一个不超过 证明使用定理2中的记号,有a = d1d2,其中d1 > 1是最小的素约数,所以d12≤a。证毕。 例1设r是正奇数,证明:对任意的正整数n,有 n+ 2|/1r+ 2r+ +n r。

第五节初等数论中的几个重要定理

第五节 初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数s x x x ,,,21 称为是模m 的既约剩余系,如果对任意的s j ≤≤1,1),(=m x j 且对于任意的Z a ∈,若),(m a =1,则有且仅有一个j x 是a 对模m 的剩余,即)(mod m x a j ≡。并定义},,2,1{)(m s m ==?中和m 互质的数的个数,)(m ?称为欧拉(Euler )函数。 这是数论中的非常重要的一个函数,显然1)1(=?,而对于1>m ,)(m ?就是1,2,…,1-m 中与m 互素的数的个数,比如说p 是素数,则有1)(-=p p ?。 引理:∏? =为质数)-(P |P 11)(m P m m ?;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler )定理)设),(m a =1,则)(mod 1)(m a m ≡?。 证明:取模m 的一个既约剩余系))((,,,,21m s b b b s ?= ,考虑s ab ab ab ,,,21 ,由于a 与m 互质,故)1(s j ab j ≤≤仍与m 互质,且有i ab )1(s j i ab j ≤<≤?,于是对每个 s j ≤≤1都能找到唯一的一个s j ≤≤)(1σ, 使得)(mod )(m b ab j j σ≡,这种对应关系σ是一一的,从而)(mod )(mod )(11)(1m b m b ab s j j s j j s j j ∏∏∏===≡≡σ,∴))(mod ()(11m b b a s j j s j j s ∏∏==≡。 1),(1=∏=s j j b m ,)(mod 1m a s ≡∴,故)(mod 1)(m a m ≡?。证毕。 分析与解答:要证)(mod 1)(m a m ≡?,我们得设法找出)(m ?个n 相乘,由)(m ?个数我们想到m ,,2,1 中与m 互质的)(m ?的个数:)(21,,,m a a a ? ,由于),(m a =1,从而)(21,,,m aa aa aa ? 也是与m 互质的)(m ?个数,且两两余数不一样,故)(21m a a a ???? ≡)(21,,,m aa aa aa ? ≡)(m a ?)(21m a a a ???? (m mod ),而 ()(21m a a a ???? m )=1,故)(mod 1)(m a m ≡?。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。

初等数论练习册汇总

作业次数:学号姓名作业成绩 第0章序言及预备知识 第一节序言(1) 1、数论人物、资料查询:(每人物写600字左右的简介) (1)华罗庚 2、理论计算与证明: (1 是无理数。 (2)Show that there are infinitely many Ulam numbers 3、用Mathematica 数学软件实现 A Ulam number is a member of an which was devised by and published in in 1964. The standard Ulam sequence (the (1, 2-Ulam sequence starts with U 1=1 and U 2=2 being the first two Ulam numbers. Then for n > 2, U n is defined to be the smallest that is the sum of two distinct earlier terms in exactly one way 。 By the definition, 3=1+2 is an Ulam number; and 4=1+3 is an Ulam number (The sum 4=2+2 doesn't count because the previous terms must be distinct. The integer 5 is not an Ulam number because 5=1+4=2+3. The first few terms are 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77,

初等数论作业(3)答案

第三次作业答案: 一、选择题 1、整数5874192能被( B )整除. A 3 B 3与9 C 9 D 3或9 2、整数637693能被(C )整除. A 3 B 5 C 7 D 9 3、模5的最小非负完全剩余系是( D ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 4、如果)(mod m b a ≡,c 是任意整数,则(A ) A )(mod m bc ac ≡ B b a = C ac T )(m od m bc D b a ≠ 二、解同余式(组) (1))132(mod 2145≡x . 解 因为(45,132)=3|21,所以同余式有3个解. 将同余式化简为等价的同余方程 )44(mod 715≡x . 我们再解不定方程 74415=-y x , 得到一解(21,7). 于是定理4.1中的210=x . 因此同余式的3个解为 )132(mod 21≡x , )132(mod 65)132(mod 3 13221≡+ ≡x , )132(mod 109)132(mod 3132221≡?+≡x . (2))45(mod 01512≡+x 解 因为(12,45)=3|15,所以同余式有解,而且解的个数为3. 又同余式等价于)15(mod 054≡+x ,即y x 1554=+. 我们利用解不定方程的方法得到它的一个解是(10,3), 即定理4.1中的100=x . 因此同余式的3个解为 )45(mod 10≡x ,

)45(mod 25)45(mod 3 4510≡+≡x , )45(mod 40)45(mod 3 45210≡?+≡x . (3))321 (m od 75111≡x . 解 因为(111,321)=3|75,所以同余式有3个解. 将同余式化简为等价的同余方程 )107(mod 2537≡x . 我们再解不定方程 2510737=+y x , 得到一解(-8,3). 于是定理4.1中的80-=x . 因此同余式的3个解为 )321(mod 8-≡x , )321(mod 99)321(mod 3 3218≡+-≡x , )321(mod 206)321(mod 3 32128≡?+-≡x . (4)?? ???≡≡≡)9(mod 3)8(mod 2)7(mod 1x x x . 解 因为(7,8,9)=1,所以可以利用定理5.1.我们先解同余式 )7(mod 172≡x ,)8(mod 163≡x ,)9(mod 156≡x , 得到)9(mod 4),8(mod 1),7(mod 4321-=-==x x x .于是所求的解为 ). 494(mod 478)494(mod 510 )494(mod 3)4(562)1(631472=-=?-?+?-?+??≡x (5)???????≡≡≡≡) 9(mod 5)7(mod 3)5(mod 2)2(mod 1x x x x . (参考上题)

初等数论在数学中的应用

给学弟学妹的建议 我是大四的学生,大学生活即将结束,在快要离别之际,我想给亲爱的学弟学妹们一点建议。 在学习方面的建议。 1,阅读几位与自己人生发展目标相近的名人传记 2,听几场优秀大学生报告会 3,每学期制定一个详细的学习计划,让自己每天进步一点点 4,放弃考前通宵达旦的突击来蒙混过关,平时学习才最重要 5,兴趣是最好的老师,认真辅修或选修专业课以外的课程,也许你会发现这些知识比主修课更实用 6,去去英语角,不会说总会听吧,这是提高你口语的有效途径 7,千万别挂科,更不要考试作弊,一旦捉住你将终生遗憾 8,学习,永远别忘记学习。不管别人怎么说大学是个提高综合能力的地方云云,如果你学习失败了,你就什么也不是了——不排除意外,但你会是那个意外吗? 9,毕业设计和毕业论文可能是你求学生涯的最后一次作业,务必认真完成10,要不停地向校友和学长取经:请教为人处事之道和学习生活的经验之谈 11,电脑不是整天用来上网娱乐的,认真学学WORD、EXEEL、PHOTOSHOP、POWERPOINT等实用工程 12,证书不是万能的,但TOEFL、GRE、G—、MAT、LELTS证书和计算机等级证书将会成为你选择的加速器 13,永远别把英语忘掉,英语四六级越往后越难考,否则你将会承受越来越多的压力 14,立身以立学为先,立学以读书为本。书是个人终极意义的归宿,多去看看书,别让图书馆成为你眼前的摆设 15,一分耕耘,一分收获,永远别忽视学习,在别人放弃的时候再坚持30min.你或许会得到精神和物质上的双重收获 16,再熟悉一下Albert Einstein的成功秘诀:成功=艰苦劳动+正确方法+少

数学归纳法以及其在初等数论中的应用

LUOYANG NORMAL UNIVERSITY 2013届本科毕业论文 数学归纳法及其在初等数论中的应用 院(系)名称数学科学学院 专业名称数学与应用数学 学生姓名孙xx 学号110412016 指导教师xx 讲师 完成时间2013.5

数学归纳法及其在初等数论的应用 孙xx 数学科学学院 数学与应用数学 学号:110412016 指导教师:xx 摘 要:数学归纳法是一种非常重要的数学证明方法,典型的用于确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他形式在一个无穷数列是成立的.本文通过直接证法引入数学归纳法,并介绍了数学归纳法的两个基本步骤及原理.初等数论研究的是关于整数的问题,故应用数学归纳法证明初等数论中的有关的命题是重要的途径. 关键词:数学归纳法;初等数论;不定方程;整除;同余 1 引论 1.1 直接证法 众所周知,数学上的许多命题都与自然数有关.这里所指的n ,往往是指任意的一个自然数.因此,这样的一个命题实际上也就是一个整列命题.要证明这样一整列命题成立,当然可以有多种不同的方法. 其中常用的方法是置n 的任何具体值而不顾,而把它看成是一个任意的自然数,也就是说,假定它只是任何自然数都具备的共同性质,并且在这样的基础上进行推导、运算.如果我们在推导运算中没有遇到什么难以克服的困难,那么我们就有可能用这种方法来完成命题的证明了.这种方法就是习惯上所说的直接证法.如下例: 例1 已知)(2;,,2,1≥???=∈n n i R x i ,满足 121=+++n x x x ,021=+++n x x x . 证明

初等数论论文

初等数论数学思想对高中数学竞赛的指导 学号: 班级: 姓名: 摘要:初等数论是研究数的规律,及整数性质的数学分支,它是数论的一个最古老的分支。 在高中数学中引入初等数论,有利于拓展学生的数学视野,有利于提高学生对数学的科学价值,应用价值,文化价值的认识。初等数论中的数学思想对高中数学竞赛也具有很强的指导作用。 关键词:初等数论 数学竞赛 数学思想 应用 数论,这门古老而又常新的学科既是典型的纯粹数学,又是日益得到广泛应用的新“应用数学”. 在数论中,初等数论是以整除理论为基础,研究整数性质和方程(组)整数解的一门数学学科,是一门古老的数学分支.它展示着近代数学中最典型、最基本的概念、思想、方法和技巧.目前,初等数论在计算机科学、代数编码、密码学、组合数学、计算方法等领域内得到了广泛的应用,成为计算机科学等相关专业不可缺少的数学基础. 数论的魅力在于它可以适合小孩到老人,只要有算术基础的人均可以研究数论.初等数论貌似简单,但真正掌握并非易事,它的内容严谨简洁,方法奇巧多变,其中蕴含了丰富的数学思想方法 1 转化思想方法 转化是一种常用的数学思想方法.转化是指问题之间的相互转化,或者将问题的一种形式转化为另一种形式,或者把复杂问题转化成较简单问题、将陌生问题转化为已解决或熟悉的问题[1].通过恰当的化归转化不仅能够顺利地解决原问题,而且有助于培养学生科学的思维习惯. 整除是数论中的基本概念,此问题是数论中比较简单的一种类型.有时我们需要判断几个分式的和是一个整数,这样直接求其是整数比较困难,因而常常化为整除问题解决. 例2(第35届美国中学数学竞赛题)满足联立方程 ?? ?=+=+23 44 bc ac bc ab 的正整数()c b a ,,的组数是() ()A 0 ()B 1 ()C 2 ()D 3 ()E 4 解(质因数分解法)由方程23=+bc ac 得 ()23123?==+c b a . a , b , c 为整数,1=c 且23=+b a .将c 和b a -=23代入方程44=+bc ab

初等数论

问题一:数学教育专业分为专业基础课:高等代数,数学分析,空间解析几何以及专业课:实变函数论,点集拓扑,复变函数论,微分几何,概率与数理统计,数学建模,初等数论,数学教学论。数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 一、李永乐:李永乐老师毕业于北京大学数学系,后来在清华大学数学系任教, 他还是前二李全书的代数执笔者,李永乐全书和660题的主编,可以说是考研数学界的权威代表。他的研究方向是线性代数。 二、汤家凤:汤老师是南京大学数学系博士,南京工业大学副教授。他的研究方 向为高等代数。 三、李林:李林老师毕业于北师大数学系,大连理工大学数学科学学院数学研究 所教师,职称为讲师,研究方向为常微分方程。 四、武忠祥:西安交通大学数学系教授,从事高等数学教学和考研辅导23年, 国家高等数学试题库骨干专家。 五、王式安:王式安本人毕业于复旦大学数学系,后来任教于北京理工大学。王 式安老师是前考研命题组的老师,主要是讲概率。 六、方复全:首都师范大学特聘教授,教育部长江学者特聘教授。主要研究方向 为微分几何、微分拓扑学。 七、曹一鸣:北京师范大学数学学科学院教授,博士生导师,贵州师范大学特聘 教授。主要从事数学课程与教学、数学史与数学教育研究。 八、戎小春:首都师范大学数学系硕士毕业,后留校任教。现为美国Rutgers大 学教授。他的研究方向主要为微分几何理论。 九、王贵君:天津师范大学数学学院教授。研究方向:模糊测度与积分,模糊神 经网络,模糊系统逼近。 十、汪晓勤:中国科学院科学技术史博士专业,获哲学博士学位。现任华东师范 大学数学系教授,学科教育(数学)专业博士生导师。研究方向为数学史与数学教育。 问题二:数论的发展史及现状 数论早期称为算术。到20世纪初,才开始使用数论的名称,而算术一词则表示“基本运算”,不过在20世纪的后半,有部份数学家仍会用“算术”一词来表示数论。1952年时数学家Harold Davenport仍用“高等算术”一词来表示数论,戈弗雷·哈罗德·哈代和爱德华·梅特兰·赖特在1938年写《数论介绍》简介时曾提到“我们曾考虑过将书名改为《算术介绍》,某方面而言是更合适的书名,但也容易让读者误会其中的内容”。古希腊数学家——欧几里得 公元前300年,古希腊数学家欧几里德证明了有无穷多个素数,公元前250年古希腊数学家埃拉托塞尼发明了一种寻找素数的埃拉托斯特尼筛法。寻找一个表示所有素数的素数通项公式,或者叫素数普遍公式,是古典数论最主要的问题之一。数论从早期到中期跨越了1000—2000年,在接近2000年时间,数论几乎是空白。中期主要指15-16世纪到19世纪,是由费马,梅森、欧拉、高斯、勒让德、黎曼、希尔伯特、Heegner等人发展的。

初等数论中的几个重要定理 高中数学竞赛

初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模的剩余,即。并定义中和互质的数的个数, 称为欧拉(Euler)函数。 这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…, 中与互素的数的个数,比如说是素数,则有。 引理:;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler)定理)设=1,则。 分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而 也是与互质的个数,且两两余数不一样,故 (),而()=1,故。 证明:取模的一个既约剩余系,考虑,由 于与互质,故仍与互质,且有,于是对每

个都能找到唯一的一个,使得,这种对应关系 是一一的,从而,。 ,,故。证毕。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。 定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。 设为质数,若是的倍数,则。若不是的倍数,则 由引理及欧拉定理得,,由此即得。 定理推论:设为质数,是与互质的任一整数,则。 定理3:(威尔逊(Wilson)定理)设为质数,则。 分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。 证明:对于,在中,必然有一个数除以余1,这是因为 则好是的一个剩余系去0。 从而对,使得; 若,,则,,故 对于,有。即对于不同的对应于不同的,即中数可两两配对,其积除以余1,然后有,使,即与它自

己配对,这时,,或, 或。 除外,别的数可两两配对,积除以余1。故。定义:设为整系数多项式(),我们把含有的一组同余式 ()称为同余方组程。特别地,,当均为的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数同时满足: ,则剩余类(其中)称为同余方程组的一个解,写作 定理4:(中国剩余定理)设是两两互素的正整数,那么对于任意整数 ,一次同余方程组,必有解,且解可以写为: 这里,,以及满足, (即为对模的逆)。 中国定理的作用在于它能断言所说的同余式组当模两两互素时一定有解,而对于解的形式并不重要。 定理5: (拉格郎日定理)设是质数,是非负整数,多项式 是一个模为次的整系数多项式(即),则同余方程至多有个解(在模有意义的情况下)。

初等数论 论文

突出师范特色改革初等数论教学 [摘要]本文介绍了初等数论课程教学中,不断进行教学内容和教学方法的改革,加强对高师生师德、授课能力、创新精神和实践能力培养的一些做法和体会。 [关键词]初等数论教学创新精神和实践能力高师生授课能力作为培养未来中小学教师的高等师范院校,在课堂教学中突出师范特色,加强对高师生进行师德教育,培养学生的授课能力,加强学生创新精神和实践能力的培养显得尤为重要。 一、改革初等数论教学内容,加强高师生的教师素养培养 1.结合初等数论教学,对高师生进行师德教育我国数学家对数论这门学科的发展有过重大的贡献,结合初等数论课程的有关内容,介绍我国数学家在数论领域的伟大成就,能增强民族自豪感,激发学生的爱国主义思想感情。同时,结合初等数论的教学对学生进行辩证唯物主义教育、科学求实精神的教育。如在讲不定方程这一节时,介绍世界上最早提出不定方程的是我国的《九章算术》,比欧洲早200多年。在讲同余方程这一节时,介绍世界上最早提出同余方程组的是我国的《孙子算经》中的孙子定理(即中国剩余定理)。在讲数论与中学教学的联系时,介绍我国中学生在国际数学奥林匹克竞赛(IMO)上屡获佳绩,多次获得团体总分第一名的优异成绩。还介绍华罗庚在数论中的伟大成就,如“华氏定理”、“华氏不等式”。在介绍华罗庚、闵嗣鹤等数论学者甘为人梯,举办数论讨论班,指导年轻数学家(如王元、陈景润、潘承洞等)摘取“数学王冠上的宝石”的高贵品质,对学生进行师德教育。在讲到高次不定方程时,介绍费马大定理,1637年前后由法国数学家费马提出,一代又一代数学家历经350多年的不懈努力,到1993年由英国数学家怀尔斯最后证明,来激发学生勇于探索,科学求实的学习风气。 2.结合中学数学教学,改革初等数论的教学内客。作为一个高等师范院校,数学与应用数学专业的培养目标是德、智、体、美等全面发展的合格中学数学师资及其他数学专门人才,我们数学系的大多数毕业生要从事中学数学教学,因此,我们的教学要注重与中学数学教学结合起来。如整除、素数和合数、约数和倍数、奇数和偶数、平方数、同余、不定方程、[x]、数的非十进制、欧拉函数等内容与中学联系比较紧密,而且是中学数学奥林匹克竞赛的常客。据统计,被誉为“世界青年智能大赛”的国际数学奥林匹克竞赛(IMO)的试题中主要用于数论知识来解的约占30%,因此也有人把数论称为是锻炼人思维的体操。对这些知识我们要重点进行讲解,并补充一些中学数学竞赛的题目给他们分析讲解,提高学生的解题能力。同时我们开设了选修课《竞赛数学》,为提高学生以后从事辅导中学生数学奥林匹克创造了一定条件。原根与指标也是初等数论中的重要内容,但与中学内容联系比较少,我们采取简单介绍的方法进行讲解。 二、改革初等数论教学方法,加强学生创新精神和实践能力培养 1.加强实践环节,提高数学系高师生的授课能力。初等数论课中的部分内容,如整除、素数与合数、奇数与偶数、同余等概念,在其他课程中已有涉及,只是没有初等数论中讲得详细、系统,因而学生已有了一定的了解。对于这部分内容我们采取让学生讲、分组讨论,由学生对这节课教学内容、教学方法进行评论,提出自己的建议,并对如何上这节课进行阐述,最后由老师进行总结、点

初等数论

《初等数论》A/B 模拟练习题参考答案 1、(15分)设()f x 是整系数多项式,且(1),(2),,()f f f m 都不能被m 整除,证 明方程()0f x =没有整数解。 证明:对任意整数x ,(mod ),1x r m r m ≡≤≤,利用同余可加性和同余可乘性得 ()()(mod ),1f x f r m r m ≡≤≤,因为(1),(2), ,()f f f m 都不能被m 整除,所以 ()0f x ≠,即()0f x =没有整数解 2、(15分)若00ax by +是形如ax by +(,x y 是任意整数,,a b 是两个不全为零的整数)的数中的最小正数,则()()00ax by ax by ++,其中,x y 是任何整数 证明:由题意可知,,a b 不全为0, 从而在整数集合{}|,S ax by x y Z =+∈中存在正整数, 因而有形如ax by +的最小整数00ax by +,,x y Z ?∈,由带余数除法有 0000(),0ax by ax by q r r ax by +=++≤<+, 则00()()r x x q a y y q b S =-+-∈, 由00ax by +是S 中的最小整数知0r =,故00|ax by ax by ++ 由于,x y 为任意整数,则可知0000|,|ax by a ax by b ++ 从而有00|(,).ax by a b +又有(,)|a b a ,(,)|a b b 得证00(,)|a b ax by +,故00(,)ax by a b +=. 3、(10分)若(mod )a b c m +≡,求证(mod )a c b m ≡- 证明:由同余可加性,且(mod )a b c m +≡,从而得 ()()()(mod )c b c b a b b a m -≡+-≡++-≡,得证.

初等数论论文

初等数论论文素数及其应用

摘要:质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其 他自然数整除的数。因为合数是由若干个质数相乘而得来的,所以,没有质数就没有合数,由此可见素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。算术基本定理每一个比1大的数(即每个比1大的正整数)要么本身是一个素数,要么可以写成一系列素数的乘积,如果不考虑这些素数的在乘积中的顺序,那么写出来的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。 关键词:素数,无穷性,著名问题,应用 素数的概念概念 只有1和它本身两个正因数的自然数,叫素数(Prime Number),又称质素。(如:由 2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。) 100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。 注:(1)2和3是所有素数中唯一两个连着的数。 (2)2是唯一一个为偶数(双数)的质数。 (3)质数的平方数只有三个因数. 素数无穷性的证明 素数的个数是无穷的。 最经典的证明由欧几里得证得,在他的《几何原本》中就有记载。它使用了证明常用的方法:反证法。具体的证明如下: 假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N = p1 × p2 × …… × pn,那么,N+1是素数或者不是素数。 如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。 如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。 因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。对任何有限个素数的集合来说,用上述的方法永远可以得到有一个素数不在假设的素数集合中的结论。 所以原先的假设不成立。也就是说,素数有无穷多个。

相关文档
最新文档