一次函数压轴题专题突破4:一次函数与等腰直角三角形(含解析)

一次函数压轴题专题突破4:一次函数与等腰直角三角形(含解析)
一次函数压轴题专题突破4:一次函数与等腰直角三角形(含解析)

一次函数压轴题之等腰直角三角形

1.【模型建立】

如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.

求证:△BEC≌△CDA;

【模型应用】

①已知直线l1:y=x+4与x轴交于点A,与y轴交于点B,将直线l1绕着点A逆时针旋转45°至直线l2,如图2,求直线l2的函数表达式;

②如图3,在平面直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q是直线y=2x﹣6上的动点且在第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请直接写出此时点Q的坐标,若不能,请说明理由.

2.已知,一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,与直线y=x相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.

(1)求点A,点B的坐标.

(2)若S△AOC=S△BCP,求点P的坐标.

(3)若点E是直线y=x上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.

3.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.

(1)求点A、点B、点C的坐标,并求出△COB的面积;

(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;

(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.

4.如图1,在平面直角坐标系中,直线l1:y=x+b与直线l2:y=﹣x﹣8交于点A,已知点A的横坐标为﹣5,直线l1与x轴交于点B,与y轴交于点C,直线l2与y轴交于点D.

(1)求直线l1的解析式;

(2)将直线l2向上平移6个单位得到直线l3,直线l3与y轴交于点E,过点E作y轴的垂线l4,若点M为垂线l4上的一个动点,点N为x轴上的一个动点,当CM+MN+NA的值最小时,求此时点M的坐标及CM+MN+NA 的最小值;

(3)在(2)条件下,如图2,已知点P、Q分别是直线l1、l2上的两个动点,连接EP、EQ、PQ,是否存在点P、Q,使得△EPQ是以点P为直角顶点的等腰直角三角形,若存在,求点P的坐标,若不存在,说明理由.

5.如图,在平面直角坐标系中,已知直线BD:y=x﹣2与直线CE:y=﹣x+4相交于点A.

(1)求点A的坐标;

(2)点P是△ABC内部一点,连接PA、PB、PC,求PB+PA+PC的最小值;

(3)将点D向下平移一个单位得到点D1,连接BD1,将△OD1B绕点O旋转至△OB1D2的位置,使B1D2∥x轴,再将△OB1D2沿y轴向下平移得到△O1B2D3,在平移过程中,直线O1D3与x轴交于点K,在直线x=3上任取一点T,连接KT,O1T,△O1KT能否以O1K为直角边构成等腰直角三角形?若能,请直接写出所有符合条件的T点的坐标;若不能,请说明理由.

6.如图1,直线y=﹣x+3交x轴于点B,交y轴于点C.点A在x轴负半轴上且∠CAO=30°.

(1)求直线AC的解析式;

(2)如图2,边长为3的正方形DEFG,G点与A点重合,现将正方形以每秒1个单位地速度向右平移,当点G与点O重合时停止运动.设正方形DEFG与△ACB重合部分的面积为S,正方形DEFG运动的时间为t,求s关于t的函数关系式;

(3)如图3,已知点Q(1,0),点M为线段AC上一动点,点N为直线BC上一动点,当三角形QMN为等腰直角三角形时,求M点的坐标.

7.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C点的横坐标为1.

(1)如图1,过点A作x轴的垂线,若点P(x,2)为垂线上的一个点,Q是y轴上一动点,若S△CPQ=5,求此时点Q的坐标;

(2)若P在过A作x轴的垂线上,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时P的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形?若存在,求出N点的坐标;若不存在,请说明理由.

8.如图,在矩形ABCO中,点O为坐标原点,点B(4,3),点A、C在坐标轴上,点Q在BC边上,直线L1:y=kx+k+1交y轴于点A.对于坐标平面内的直线,先将该直线向右平移1个单位长度,再向下平移1个单位长度,这种直线运动称为直线的斜平移.现将直线L1经过2次斜平移,得到直线L2.

(1)求直线L1与两坐标轴围成的面积;

(2)求直线L2与AB的交点坐标;

(3)在第一象限内,在直线L2上是否存在一点M,使得△AQM是等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.

9.如图1,在平面直角坐标系中,直线l:y=与x轴交于点A,且经过点B(2,m),已知点C(3,0).

(1)求直线BC的函数解析式;

(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;

(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M 的坐标;

(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E 再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.

且C点的横坐标为1.

(1)求直线l1的解析式;

(2)如图1,过点A作x轴的垂线,若点P为垂线上的一个动点,点Q(0,2),若S△CPQ=4,求此时点P 的坐标;

(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C逆时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M 点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由.

且C点的纵坐标为﹣4.

(1)求△ABC的面积;

(2)如图1,过点A作x轴的垂线,若点P为垂线上的一个动点,点Q(0,2),若S△CPQ=2,求此时点P 的坐标;

(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E.过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M 点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标:若不存在,请说明理由.

12.如图,直线y=kx+k分别交x轴、y轴于点A,C,直线BC过点C交x轴于点B,且OA=OC,∠CBA =45°,点P是直线BC上的一点.

(1)求直线BC的解析式;

(2)若动点P从点B出发沿射线BC方向匀速运动,速度为个单位长度/秒,连接AP,设△PAC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,并写出t的取值范围;

(3)若点Q是直线AC上且位于第三象限图象上的一个动点,点M是y轴上的一个动点,当以点B、M、Q 为顶点的三角形为等腰直角三角形时,求点Q和点M的坐标.

13.如图,在平面直角坐标系中,直线AB:y=﹣x+与直线AC:y=+8交于点A,直线AB分别交x轴、y轴于B、E,直线AC分别交x轴、y轴于点C、D.

(1)求点A的坐标;

(2)在y轴左侧作直线FG∥y轴,分别交直线AB、直线AC于点F、G,当FG=3DE时,过点G作直线GH ⊥y轴于点H,在直线GH上找一点P,使|PF﹣PO|的值最大,求出P点的坐标及|PF﹣PO|的最大值;(3)将一个45°角的顶点Q放在x轴上,使其角的一边经过A点,另一边交直线AC于点R,当△AQR为等腰直角三角形时,请直接写出点R的坐标.

14.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED 于D,过B作BE⊥ED于E.

求证:△BEC≌△CDA.

模型应用:

(1)已知直线l1:y=x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.

(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.

15.如图,已知直线y=x+4与x轴、y轴分别相交于点A、B,点C从O点出发沿射线OA以每秒1个单位长度的速度匀速运动,同时点D从A点出发沿AB以每秒1个单位长度的速度向B点匀速运动,当点D到达B点时C、D都停止运动.点E是CD的中点,直线EF⊥CD交y轴于点F,点E′与E点关于y轴对称.点C、D的运动时间为t(秒).

(1)当t=1时,AC=,点D的坐标为;

(2)设四边形BDCO的面积为S,当0<t<3时,求S与t的函数关系式;

(3)当直线EF与△AOB的一边垂直时,求t的值;

(4)当△EFE′为等腰直角三角形时,直接写出t的值.

16.如图1,在平面直角坐标系中,O为坐标原点,直线l:y=﹣x+m与x、y轴的正半轴分别相交于点A、B,过点C(﹣4,﹣4)画平行于y轴的直线交直线AB于点D,CD=10.

(1)求点D的坐标和直线l的解析式;

(2)求证:△ABC是等腰直角三角形;

(3)如图2,将直线l沿y轴负方向平移,当平移适当的距离时,直线l与x、y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形.请直接写出所有符合条件的点P的坐标.(不必书写解题过程)

17.如图,在平面直角坐标系中,直线y=﹣x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.

(1)求点P的坐标.

(2)当b值由小到大变化时,求S与b的函数关系式.

(3)若在直线y=﹣x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.

(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值.

18.如图,直线l与x轴、y轴的正半轴分别交于A、B两点,OA、OB的长分别是关于x的方程x2﹣14x+4(AB+2)=0的两个根(OB>OA),P是直线l上A、B两点之间的一动点(不与A、B重合),PQ∥OB交OA 于点Q.

(1)求tan∠BAO的值;

(2)若S△PAQ=S四边形OQPB时,请确定点P在AB上的位置,并求出线段PQ的长;

(3)当点P在线段AB上运动时,在y轴上是否存在点M,使△MPQ为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

1.【解答】解:(1)证明:∵△ABC为等腰直角三角形∴CB=CA,∠ACD+∠BCE=180°﹣90°=90°

又∵AD⊥CD,BE⊥EC

∴∠D=∠E=90°

又∵∠EBC+∠BCE=90°

∴∠ACD=∠EBC

在△ACD与△CBE中,

∠D=∠E,∠ACD=∠EBC,CA=BC,

∴△ACD≌△CBE(AAS);

(2)过点B作BC⊥AB交l2于C,过C作CD⊥y轴于D,

∵∠BAC=45°

∴△ABC为等腰Rt△

由(1)可知:△CBD≌△BAO

∴BD=AO,CD=OB

∵l1:,

令y=0,则x=﹣3

∴A(﹣3,0),

令x=0,则y=4

∴B(0,4)

∴BD=AO=3,CD=OB=4

∴OD=4+3=7.

∴C(﹣4,7),

设直线l2的解析式为y=kx+b,

将点A(﹣3,0),C(﹣4,7)代入y=kx+b中,

解得,k=﹣7,b=﹣21,

则l2的解析式:y=﹣7x﹣21;

(3)如下图,设点Q(m,2m﹣6),

当∠AQP=90°时,

由(1)知,△AMQ≌△QNP(AAS),

∴AM=QN,即|8﹣m|=6﹣(2m﹣6),

解得:m=4或,

故:Q(4,2),.

2.【解答】解:(1)一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为:(8,0)、(0,6);

(2)联立y=﹣x+6、y=x并解得:x=3,故点C(3,),

S△AOC=8×=15=S△BCP=BP×(yP﹣yC)=BP×(6﹣),

解得:BP=,

故点P(,6)或(﹣,6)

(3)设点E(m,m)、点P(n,6);

中考数学二次函数-经典压轴题及答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13. (1)求抛物线的解析式; (2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标; (3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由. 【答案】(1)y=x2﹣2x﹣3;(2)E 113 +113 + 3)点Q的坐 标为(﹣3,12)或(2,﹣3).理由见解析. 【解析】 【分析】 (1)由根与系数的关系可得x1+x2=m,x1?x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式; (2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=1 2 CD=CE.利 用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标; (3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛 物线的解析式联立,得出方程组 223 33 y x x y x ?=-- ? =-+ ? ,求解即可得出点Q的坐标. 【详解】 (1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0), ∴x1+x2=m,x1?x2=﹣(m+1),

必修4三角函数的图像和性质专题练习

三角函数图像及性质练习题 1.已知4k <-,则函数cos 2(cos 1)y x k x =+-的最小值是( ) A.1 B.1- C.21k + D.21k -+ 2.已知f (x )的图象关于y 轴对称,且它在[0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A.( 10 1 ,1) B.(0, 101)∪(1,+∞) C.( 10 1,10) D.(0,1)∪(10,+∞) 3.定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π ] 时,f (x )=sin x ,则f ( 3 π 5)的值为( ) A.- 21 B.2 1 C.-23 D.23 4.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则( ) A.f (sin 6π)<f (cos 6π ) B.f (sin1)>f (cos1) C.f (cos 3π2)<f (sin 3 π2) D.f (cos2)>f (sin2) 5.关于函数f (x )=sin 2x -( 32)|x |+21 ,有下面四个结论,其中正确结论的个数为 ( ) . ①()f x 是奇函数 ②当x >2003时,1 ()2 f x > 恒成立 ③()f x 的最大值是23 ④f (x )的最小值是12- A.1 B.2 C.3 D.4 6.使)tan lg(cos θθ?有意义的角θ是( ) A.第一象限的角 B.第二象限的角 C.第一、二象限的角 D.第一、二象限或y 轴的非负半轴上的角 7 函数lg(2cos y x =的单调递增区间为 ( ) . A .(2,22)()k k k Z ππππ++∈ B .11 (2,2)()6 k k k Z ππππ++ ∈ C .(2,2)()6 k k k Z π ππ- ∈ D .(2,2)()6 k k k Z π ππ+∈ 8.已知函数()sin()(0,)f x x x R ωφω=+>∈,对定义域内任意的x ,都满足条件(6)()f x f x +=,若 sin(3),sin(3)A x B x ωφωωφω=++=+-,则有 ( ) . A. A>B B. A=B C.A

高一数学_必修4_三角函数测试卷(含答案)

高一数学必修4 第一章三角函数测试卷 一、选择题(每小题5分,共50分) 1.下列各组角中,终边相同的角是 ( ) A . π2k 与)(2 Z k k ∈+ππ B .)(3 k 3Z k k ∈± ππ π与 C .ππ)14()12(±+k k 与)(Z k ∈ D .)(6 6 Z k k k ∈± + π ππ π与 2.已知角α的终边过点()m m P 34, -,()0≠m ,则ααcos sin 2+的值是( ) A .1或-1 B . 52或 52- C .1或5 2 - D .-1或52 3.一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为 ( ) A . 2)1cos 1sin 2(2 1 R ?- B . 1cos 1sin 2 12 ?R C . 2 2 1R D .221cos 1sin R R ??- 4.已知αα αα αtan ,5cos 5sin 3cos 2sin 那么-=+-的值为 ( ) A .-2 B .2 C .16 23 D .- 16 23 5.1sin 、1cos 、1tan 的大小关系为 ( ) A .1tan 1cos 1sin >> B .1cos 1tan 1sin >> C .1cos 1sin 1tan >> D .1sin 1cos 1tan >> 6.为得到函数)3 2sin(π -=x y 的图象,只需将函数)6 2sin(π + =x y 的图像( ) A .向左平移 4π个单位长度 B .向右平移4π 个单位长度 C .向左平移2π个单位长度 D .向右平移2π 个单位长度 7.函数sin(2)3 y x π =+图像的对称轴方程可能是( ) A .6x π=- B .12 x π =- C .6x π=D .12x π=8.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( ) A .5 B .-5 C .6 D .-6 9.函数)4 sin(π +=x y 在下列哪个闭区间上为增函数 ( ) A .]4 , 4 3 [π π- B .]0,[π- C .]4 3 ,4[ππ- D .]2 ,2[π π-

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

高中数学必修4三角函数测试题

高一数学同步测试(1)—角的概念·弧度制 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A ∩C B .B ∪C=C C .A ?C D .A=B=C 2.下列各组角中,终边相同的角是 ( ) A . π2 k 与)(2Z k k ∈+ π π B .)(3k 3Z k k ∈± ππ π与 C .ππ)14()12(±+k k 与 )(Z k ∈ D .)(6 6Z k k k ∈± + π πππ与 3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( ) A .2 B . 1 sin 2 C .1sin 2 D .2sin 4.设α角的终边上一点P 的坐标是)5 sin ,5(cos π π ,则α等于 ( ) A . 5 π B .5 cot π C .)(10 32Z k k ∈+ππ D .)(5 92Z k k ∈- ππ 5.将分针拨慢10分钟,则分钟转过的弧度数是 ( ) A . 3 π B .- 3 π C . 6 π D .-6 π 6.设角α和β的终边关于y 轴对称,则有 ( ) A .)(2 Z k ∈-= βπ α B .)()2 1 2(Z k k ∈-+ =βπα C .)(2Z k ∈-=βπα D .)()12(Z k k ∈-+=βπα 7.集合A={}, 32 2|{},2|Z n n Z n n ∈±=?∈= ππααπαα, B={}, 2 1 |{},3 2|Z n n Z n n ∈+=?∈=ππββπ ββ, 则A 、B 之间关系为 ( ) A .A B ? B .B A ? C .B ?A D .A ?B 8.某扇形的面积为12 cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( ) A .2° B .2 C .4° D .4 9.下列说法正确的是 ( ) A .1弧度角的大小与圆的半径无关 B .大圆中1弧度角比小圆中1弧度角大 ≠ ≠ ≠

高中数学必修4三角函数综合测试题

必修4三角函数综合测试题及答案详解 一、选择题 1.下列说法中,正确的是( ) A .第二象限的角是钝角 B .第三象限的角必大于第二象限的角 C .-831°是第二象限角 D .-95°20′,984°40′,264°40′是终边相同的角 2.若点(a,9)在函数y =3x 的图象上,则tan a π 6的值为( ) A .0 B.3 3 C .1 D. 3 3.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ 2的终边在( ) A .第一、三象限 B .第二、四象限 C .第一、三象限或x 轴上 D .第二、四象限或x 轴上 4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么( ) A .T =2,θ=π 2 B .T =1,θ=π C .T =2,θ=π D .T =1,θ=π 2 5.若sin ? ???? π2-x =-32,且π

7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到y =sin ? ?? ?? x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6 D.11π6 8.若tan θ=2,则2sin θ-cos θ sin θ+2cos θ的值为( ) A .0 B .1 C.34 D.54 9.函数f (x )=tan x 1+cos x 的奇偶性是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .既不是奇函数也不是偶函数 10.函数f (x )=x -cos x 在(0,+∞)内( ) A .没有零点 B .有且仅有一个零点 C .有且仅有两个零点 D .有无穷多个零点

必修四第一章三角函数测试题(含答案)

必修四第一章三角函数测试题 班别 姓名 分数 一、选择题 1.已知cos α=1 2 ,α∈(370°,520°),则α等于 ( ) A .390° B .420° C .450° D .480° 2.若sin x ·tan x <0,则角x 的终边位于 ( ) A .第一、二象限 B .第二、三象限 C .第二、四象限 D .第三、四象限 3.函数y =tan x 2 是 ( ) A .周期为2π的奇函数 B .周期为π 2的奇函数C .周期为π的偶函数D .周期为2π的偶函数 4.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]的图象如图,那么ω等于 ( ) A .1 B .2 C.12 D.13 5.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于 ( ) A .-π2 B .2k π-π 2 (k ∈Z ) C .k π(k ∈Z ) D .k π+π 2(k ∈Z ) 6.若sin θ+cos θsin θ-cos θ =2,则sin θcos θ的值是 ( ) A .-310 B.310 C .±310 D.34 7.将函数y =sin x 的图象上所有的点向右平行移动π 10 个单位长度,再把所得各点的横坐标伸 长到原来的2倍(纵坐标不变),所得图象的函数解析式是 ( ) A .y =sin ? ???2x -π10 B .y =sin ????2x -π5 C .y =sin ????12x -π10 D .y =sin ??? ?12x -π 20 8.在同一平面直角坐标系中,函数y =cos ????x 2+3π2(x ∈[0,2π])的图象和直线y =1 2的交点个数是 ( ) A .0 B .1 C .2 D .4 9.已知集合M =???? ??x |x =k π2+π4,k ∈Z ,N ={x |x =k π4+π 2,k ∈Z }.则 ( ) A .M =N B .M N C .N M D .M ∩N =?

二次函数压轴题专题及答案

2016年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.

中考数学二次函数-经典压轴题及详细答案

-X 二次函数真题与模拟题分类汇编(难题易错题) 1.已知二次函数y = α√-2αχ + 3的最大值为4,且该抛物线与A 轴的交点为C ,顶点为 D ? (1) 求该二次函数的解析式及点C , D 的坐标: (2) 点P(ΛO)是X 轴上的动点, ① 求IPC - PDl 的最大值及对应的点P 的坐标: ② 设0(0,2/)是y 轴上的动点,若线段PQ 与函数y = a ?x ?1 -2a ?x ?+3的图像只有一个 公共 点,求f 的取值范围. 【答案】(i) y = -χ2+2x + 3, C 点坐标为(0,3),顶点D 的坐标为(1,4); (2)①最 _ 3 7 大值是J∑, P 的坐标为(一 3,0),②,的取值范围为U_3或才Qv3或心?? 2 2 【解析】 【分析】 孕=1,计算对称轴,即顶点坐标为(1, 4),再将两点代 2a 入列二元一次方程组求出解析式: (2)根据三角形的三边关系:可知P 、C 、D 三点共线时IPC-PDl 取得最大值,求出直线CD 与X 轴的交点坐标,就是此时点P 的坐标; —χ-+ 2Λ"+3, X n 0, , ,此函数是两个二次函数 —XJ — 2x + 3, X < 0. 的一部分,分三种情况进行计算:①当线段PQ 过点(0, 3 ),即点Q 与点C 重合时,两 图象有一个公共点,当线段PQ 过点(3, 0),即点P 与点(3, 0)重合时,两函数有两 个公共点,写出t 的取值:②线段PQ 与当函数y=a∣x∣2-2a∣×∣+c (x>0)时有一个公共点 时,求t 的值:③当线段PQ 过点 (-3, 0),即点P 与点(-3, 0)重合时,线段PQ 与当 函数y=a∣x∣2-2a∣x∣+c (×<0)时也有一个公共 点,则当t 冬3时,都满足条件;综合以上结 论,得出t 的取值. 【详解】 —2a (I) VX= ???y = ax'-ax+3的对称轴为X = 1? T y = ax 2 -ax + 3人最大值为4, ???抛物线过点(1,4). 得 a-2a+3 = 4, 解得a = -l. ???该二次函数的解析式为y = —X? + 2x + 3. C 点坐标为(0,3),顶点 D 的坐标为(1,4). (2) ①.? IPC-PDI≤CD, (1)先利用对称轴公式X= (3)先把函数中的绝对值化去,可知y = <

(人教版)高二数学必修4第一章三角函数单元测试题(含答案)

y x 1 1 2 3 O (人教版)高二数学必修4第一章三角函数单元测试题(含答案) 一、选择题:本大题共12个小题,每小题5分,共 60分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1 . A B . C D 2.下列函数中,最小正周期为 的是 A . B . C . D . 3.已知 , ,则 A B C D . 4.函数 是周期为的偶函数,且当 A B C . D .2 5 A B 个单位 C 个单位 D .向右平 移 6 .函数的零点个数为 A .5 B .7 C .3 D .9 7 .函数 可取的一组值为 A B C D 8 .已知函数 的值可能是 A B C D . 9 ,则 这个多边形为 A .正六边形 B .梯形 C .矩形 D .正五边 形 10 .函数有3个零点,则 的值为 A .0 B .4 C .2 D .0,或2 11 .对于函数的一组值计 ,所得的结果可能是 A .0与1 B .1 C .101 D .与 12.给出下列3个命题:

①函数; ②函数 ③ A.0 B.1 C.2 D.3 二、填空题:本大题共4个小题,每小题5分,共20分.把正确答案填在题中横线上.13.角的终边过点,且,则的值为▲. 14.设,若函数在上单调递增,则的取值范围是▲. 15.已知,则▲. 16.函数个单位,所的函数为偶函数; 的最大值为▲. 三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 已知扇形的周长为4,那么当扇形的半径为何值时,它的面积最大,并求出最大面积,以及相应的圆心角. 18.(本小题满分12分) 已知函数时,取得最小值 (Ⅰ)求函数的最小正周期; (Ⅱ)求函数的解析式. 19.(本小题满分12分) 若,为第四象限角,求 20.(本小题满分12分) 求下列函数的值域 (Ⅰ) (Ⅱ). 21.(本小题满分12分) 已知函数.求的 (Ⅰ)定义域; (Ⅱ)单调递增区间; (Ⅲ)值域. 22.(本小题满分12分)

高中数学必修4三角函数测试题答案详解1

三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ?? ? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θ tan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =5 1(0≤x <π),则tan x 的值等于( ). A .-4 3 B .-3 4 C .4 3 D .3 4 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π 2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B

D .B ?C ?A 8.已知cos (α+β)=1,sin α=3 1,则sin β 的值是( ). A .3 1 B .-3 1 C . 3 2 2 D .- 3 2 2 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .??? ??2π , 4π∪??? ??4π5 ,π B .?? ? ??π , 4 π C .?? ? ??4π5 ,4π D .??? ??π , 4 π∪?? ? ??23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的2 1 倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ?? ? ? ?3π - 2x ,x ∈R B .y =sin ??? ??6π + 2x ,x ∈R C .y =sin ??? ? ?3π + 2x ,x ∈R D .y =sin ??? ? ? 32π + 2x ,x ∈R 二、填空题 11.函数f (x )=sin 2 x +3tan x 在区间??? ???3π 4π ,上的最大值是 . 12.已知sin α= 552,2 π ≤α≤π,则tan α= . 13.若sin ??? ??α + 2π=53,则sin ?? ? ??α - 2π= . 14.若将函数y =tan ??? ? ? 4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函 数y =tan ?? ? ??6π + x ω的图象重合,则ω的最小值为 . 15.已知函数f (x )=21(sin x +cos x )-2 1 |sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ?? ? ? ?3π + 2x ,x ∈R ,有下列命题: ①函数 y = f (x )的表达式可改写为y = 4cos ?? ? ? ?6π - 2x ; ②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(- 6 π ,0)对称;

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

必修4三角函数单元测试题(含答案)

三角函数 单元测试 一、选择题 1.sin 210=o ( ) A . B . C .12 D .12 - 2.下列各组角中,终边相同的角是 ( ) A .π2k 或()2k k Z π π+∈ B . (21)k π+或(41)k π± )(Z k ∈ C .3 k π π± 或k ()3 k Z π ∈ D .6 k π π+ 或()6 k k Z π π± ∈ 3.已知cos tan 0θθ?<,那么角θ是( ) A .第一或第二象限角 B .第二或第三象限角 C .第三或第四象限角 D .第一或第四象限角 4.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( ) A .2 B . 1sin 2 C .1sin 2 D .2sin 5.为了得到函数2sin(),36 x y x R π =+∈的图像,只需把函数2sin ,y x x R =∈的图 像上所有的点( ) A .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的3 1 倍(纵坐标不变) B .向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的3 1 倍(纵坐标不变) C .向左平移6 π 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) D .向右平移6 π 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) 6.设函数()sin ()3f x x x π? ?=+∈ ?? ?R ,则()f x ( ) A .在区间2736ππ?? ? ??? ,上是增函数 B .在区间2π? ? -π-??? ?,上是减函数

C .在区间84ππ?? ????,上是增函数 D .在区间536ππ?? ???? ,上是减函数 7.函数sin()(0,,)2 y A x x R π ω?ω?=+>< ∈的部分图象如图所示, 则函数表达( ) A .)48sin(4π+π-=x y B .)48sin(4π -π=x y C .)48sin(4π-π-=x y D .)4 8sin(4π +π=x y 8. 函数sin(3)4 y x π =-的图象是中心对称图形,其中它的一个对称中心是 ( ) A .,012π??- ??? B . 7,012π??- ??? C . 7,012π?? ??? D . 11,012π?? ??? 9.已知()21cos cos f x x +=,则 ()f x 的图象是下图的 ( ) A B C D 10.定义在R 上的偶函数()f x 满足()()2f x f x =+,当[]3,4x ∈时,()2f x x =-,则 ( ) A .11sin cos 22f f ??? ?< ? ???? ? B . sin cos 33f f ππ??? ?> ? ???? ? C .()()sin1cos1f f < D .33sin cos 22f f ??? ?> ? ???? ? 二、填空题 11.若2cos 3 α=,α是第四象限角,则sin(2)sin(3)cos(3)απαπαπ-+---=___ 12.若tan 2α=,则22sin 2sin cos 3cos αααα++=___________ 13.已知3sin 4πα??+= ???,则3sin 4πα?? - ??? 值为 14.设()f x 是定义域为R ,最小正周期为 32 π 的周期函数,若

二次函数压轴题(含答案解析)

面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN (OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:

a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.

二次函数压轴题(经典版)

2016年10月26日二次函数压轴2 一.解答题(共30小题) 1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点. (1)求抛物线的解析式; (2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由. 2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0). (1)求抛物线的函数关系式及顶点D的坐标; (2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值. 3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E. (1)求抛物线的解析式; (2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标; (3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.

4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内 交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C. (1)求△AOD的面积; (2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标; (3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标. 5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2, 与y轴交于点C. (1)求抛物线L2的解析式; (2)判断△ABC的形状,并说明理由; (3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.

(完整版)必修4第一章三角函数单元基础测试题及答案

三角函数数学试卷 一、 选择题1、ο 600sin 的值是( ) )(A ;21 )(B ;23 )(C ;23- )(D ; 21 - 2、),3(y P 为α终边上一点, 53 cos = α,则=αtan ( ) )(A 43- )(B 34 )(C 43± )(D 34± 3、已知cos θ=cos30°,则θ等于( ) A. 30° B. k ·360°+30°(k ∈Z) C. k ·360°±30°(k ∈Z) D. k ·180°+30°(k ∈Z) 4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限( ) 5、函数 的递增区间是( ) 6、函数) 62sin(5π +=x y 图象的一条对称轴方程是( ) ) (A ;12π - =x )(B ;0=x ) (C ;6π = x ) (D ; 3π = x 7、函数的图象向左平移个单位,再将图象上各点的横坐标 压缩为原来的,那么所得图象的函数表达式为( ) 8、函数|x tan |)x (f =的周期为( ) A. π2 B. π C. 2π D. 4π

9、锐角α,β满足 41sin sin - =-βα,43 cos cos = -βα,则=-)cos(βα( ) A.1611- B.85 C.85- D.1611 10、已知tan(α+β)=2 5,tan(α+4π)=322, 那么tan(β-4π)的值是( ) A .15 B .1 4 C .1318 D .1322 11.sin1,cos1,tan1的大小关系是( ) A.tan1>sin1>cos1 B.tan1>cos1>sin1 C.cos1>sin1>tan1 D.sin1>cos1>tan1 12.已知函数f (x )=f (π-x ),且当)2 ,2(ππ-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( ) A.a

高中数学必修四 三角函数综合测试题

第一章 三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ??? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θtan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =51 (0≤x <π),则tan x 的值等于( ). A .- 4 3 B .- 3 4 C . 4 3 D . 3 4 6.已知sin α >sin ,那么下列命题成立的是( ). A .若α, 是第一象限角,则cos α >cos B .若α, 是第二象限角,则tan α >tan C .若α, 是第三象限角,则cos α >cos D .若α, 是第四象限角,则tan α >tan 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B D .B ?C ?A 8.已知cos (α+β)=1,sin α=3 1 ,则sin β 的值是( ).

二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB = 8 9 S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 2.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交 图2

于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标; (2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大并求出最大面积. 3.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P ,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积如果存在,请求出点E 的坐标;如果不存在,请说明理由. C E D G A x y O B F

相关文档
最新文档