大学高等数学第一章函数习题精讲

大学高等数学第一章函数习题精讲
大学高等数学第一章函数习题精讲

第1章 函 数

§1.1 函数的概念与性质

1. 绝对值与不等式(0>a ,0b >)

(1)x x x -≤≤;x y x y x y -≤±≤+

(2

)2

112

a b a b +≤≤+(调和平均值≤几何平均值≤算术平均值) 一般地,1212111n n n x x x n

n x x x ++

+≤≤+++

(3){}max ,22a b a b a b -+=+;{}min ,22

a b a b a b -+=- 2. 函数概念与性质

对变量D x ∈的每一个确定值,变量y 按某确定规则f ,都有且只有一确定值与之对应,则称变量y 是变量x 的函数,记为()y f x =,D x ∈。

注意:定义域D 和对应规则f 是函数相等的两要素。

(1)无关性 ()()y f x f t == D t x ∈,

(2)单调性 1212,,x x I x x ?∈<

1212()()()()()()f x f x f x f x f x f x ≤???≥?

?单调递增单调递减;1212()()()()()()f x f x f x f x f x f x ??严格单增严格单减 (3)奇偶性 ()()()()()()f x f x f x y f x f x f x -=?

??-=-??为偶函数,对称于轴为奇函数,对称于原点

注意:函数的奇偶性是相对于对称区间而言,若定义域关于原点不对称,则不是奇/偶函数。

(4)周期性 若()()f x T f x +=,0T >,则称为)(x f 的周期。 (5)有界性 若D x ∈?,M x f ≤)(,()0>M ,则称)(x f 在D 上有界。

常用有界函数:sin 1x ≤,cos 1x ≤,(,)-∞+∞;

arcsin 2x π

≤,arccos x π≤,[]1,1-;arctan 2x π

<,arccot x π<,(,)-∞+∞

3. 复合函数

设)(u f y =的定义域为f D ,)(x u ?=的值域为?Z ,且Φ≠?Z D f (空集),则称[])(x f y ?=为x 的复合函数。

4. 反函数 设1()

()f f f f y f x D Z y f x Z D -=???=??定义域为值域为定义域为值域为

注意:正反函数的图形对称于直线x y =;严格单调函数必有反函数;

1()f f x x -??=??

()f x f x Z ∈的;[]1()f f x x -= ()f x f x D ∈的 5. 初等函数

由基本初等函数经过有限次的四则运算和有限次复合而成的,并能用一个解析式表示的函数称为初等函数。

基本初等函数:幂函数μx y =(μ为实数);指数函数x

a y =(0>a ,1≠a );对数函数x y a log =(0>a ,1≠a );三角函数x y sin =,x cos ,x tan ,x cot ,x sec ,x csc ;反三角函数x y arcsin =,x arccos ,x arctan ,x arc cot .

6. 分段函数与幂指函数

分段函数一般不属于初等函数,因为一般在其定义域内不能用一个解析式表示;

幂指函数x y x =一般不属于初等函数,因为它无法用初等函数复合而成;但若规定0x >,则ln x x x y x e ==,是初等函数。

§1.2 典型例题解析

例3 已知不等式211x x +>-,用区间表示不等式的解集

分析 解此不等式应先去掉绝对值符号,由于12x =-

,1x =分别为21x +,1x -的零值点,于是将区间划分为1(,)2-∞-,1[,1]2

-

,(1,)+∞,再考虑各小区间x 的取值范围及端点,最后综合得出结论。

解法1 1211(,)21211211(,1)2211(1,)x x x x x x x x ?-->--∞-???+>-=+>--??+>-+∞???12(,)210(,1)22(1,)x x x ?<--∞-???=>-??>-+∞???

? (,2)(0,)x ∈-∞-+∞

解法2 22(21)(1)x x +>- ? (2)0x x +> ? (,2)(0,)x ∈-∞-+∞

1. 函数定义域的求法

解题思路

(1)分式的分母0≠,对数的真数0>,偶次方根下的表达式0≥,反正弦、反余弦号内的表达式绝对值1≤;

(2)复合函数的定义域=简单函数的定义域所构成的不等式组的解集。

例4 求下列函数的定义域

(1

)1arcsin 4x y -=+; 解 211

41lg(2)020340x x x x x ?-≤???--≥??->?--≠?? ?

351221;4x x x x x -≤≤??≤??>??≠-≠? ? (](2,4)4,5

(2)已知()f x 的定义域是[]0,1,试求()()f x a f x a ++- (0)a >的定义域

解 ()f x a +的定义域:01x a ≤+≤ ? 1a x a -≤≤-

()f x a -的定义域:01x a ≤-≤ ? 1a x a ≤≤+;

()()f x a f x a ++-的定义域:[]

[],1,1x a a a a ∈--+ 当1a a -<,12a >时,定义域为空集;当1a a -≥,12

a ≤时,定义域为[],1a a -;故取交集定义域为[],1a a -

2. 函数解析式的求法

解题思路

(1)将已知变量凑成与()f 内的中间变量一致的形式,利用函数的无关特性求解;

(2)对()f 内作变量代换,再利用无关特性与原方程联立求解。

(3)由[]()f

x ?的表达式求)(x f 的一般方法是令()u x ?=,从中解出1()x u ?-=,将其代入[]()f x ?中可得()f u

例5 求下列函数解析式 (2)已知x x bf x af sin )1

()(=-+,()a b ≠, 求)(x f ;

解 令x t 1-=代入原式得 11()()sin()bf t af t t

+-=-,则 1()()sin 11()()sin()af x bf x x bf x af x x ?+-=????+-=-??

? )1sin sin (1)(22x b x a b a x f +-= (3)已知411()ln ln(1)2

f x x x x +=-

+,求)(x f ; 解法1 2442221111111()ln ln(1)ln ln ln 1122122()2x f x x x x x x x x x

+=-+===+++- 令1x t x +=,则 211()ln 22f t t =- ? 211()ln 22

f x x =- 解法2 将x 换成1x ,得4111()ln ln(1)2f x x x x

+=--+,和原式相加得 4411112()ln(1)ln(1)22f x x x x

+=-+-+ 222211111()ln()ln ()242f x x x x x x ??+=-+=-+-????

令1x t x +=,则 211()ln 22f t t =- ? 211()ln 22

f x x =- 例6 求下列函数解析式

(1)已知221(ln )1

x f x x -=+,()x ?的定义域为0x <,且[]()x f x e ?=,求()x ? 解 令ln u x =,22u

x e =,221()1u u e f u e -=+,且[]()x f x e ?=,则 2()2()11x x x e e e ??-=+ ? 2()11x x x e e e ?+=- ? 11()ln 21x x e x e

?+=-(0x <) (2)已知11(ln )ln 01

x x f x x x ->?=?

<≤?,求)(x f

解 令ln u x =, u

x e =,则 110()010u u u e e u f u u e u ?->?>=?<≤?≤? ? 10()0x e x f x x

x ?->=?≤? 3. 利用定义确定函数的有关特性

解题思路

(1)若()()0f x f x +-=,则()f x 为奇函数;

(2)若T 是()f x 的周期,则()b ax f +的周期为/T a ;若()f x ,()g x 分别是以1T ,2T 12()T T ≠为周期的函数,则()()f x g x ±的周期为1T ,2T 的最小公倍数。

(3)将函数取绝对值,由不等式的缩放法或求函数的最值确定函数的有界性;

(4)若12x x <,且21()()0f x f x -≥,21()/()1f x f x ≥,则可确定()f x 单增性。 例7 设)()()(y F x F y x F +=+,求)1121)((x a

x F y +-=,(0,1)a a >≠的奇偶性 解 设)1(211121)(x x x a a a x g +-=+-=,11()()2(1)2(1)

x x x x a a g x g x a a -----==-=-++ 由于)()()(y F x F y x F +=+,分别令0=y ,x y -=,得0)0(=F

()()(0)0F x F x F +-== ? )()(x F x F -=-

即)(x F 为奇函数,故)1121)((x

a x F y +-=为偶函数。 例8 设()f x 在[],a a -(0)a >上有定义,证明:()f x 可表示为一个奇函数与一个偶函数的和,且表示法唯一

分析 若()()x x ??-=,()()x x ψψ-=-,则有()()()f x x x ?ψ=+,

()()()f x x x ?ψ-=-,由此引入辅助函数

证 设[]1()()()2x f x f x ?=+-,[]1()()()2

x f x f x ψ=-- [][]11()()()()()()22

x f x f x f x f x x ??-=-+=+-= [][]11()()()()()()22

x f x f x f x f x x ψψ-=--=---=- 故()x ?为偶函数,()x ψ为奇函数,且

[][]11()()()()()()()22

x x f x f x f x f x f x ?ψ+=+-+--=

唯一性:设另有偶函数1()x ?及奇函数1()x ψ使得11()()()f x x x ?ψ=+,则

1111()()()()()()()()x x x x x x x x ?ψ?ψ??ψψ+=+??---=---? ? 1111()()()()()()()()

x x x x x x x x ??ψψ??ψψ-=-??-=-+? 解得1()()x x ??=,1()()x x ψψ=,即表示法唯一。

例9 证明下列函数为周期函数,并求其最小正周期

(1)()sin(23)f x x =+

解法1 由于sin x 的周期为2π,故所求周期为22

T ππ== 解法2 []()sin(23)sin(232)sin 2()3()f x x x x f x πππ=+=++=++=+,T π=

(2)sin cos y x x =+

解 ()sin()cos()cos sin ()222f x x x x x f x πππ+=+++=+= ? 2T π

= 例11 设()f x 在(,)-∞+∞上有定义,证明:

(1)若()y f x =的图形关于直线x a =(0)a >对称,则()()f x a f a x +=-;

(2)若()y f x =的图形关于直线1x =,2x =对称,则()f x 是周期的偶函数。

分析(1)若()y f x =的图形关于直线x a =对称点为(,)x y 与(,)x y '',则

2x a x '=-,y y '= ? ()(2)f x f a x =-

反之,若(2)()f a x f x -=,则()y f x =关于直线x a =对称

证(1)必要性:x R ?∈,有()(2)f x f a x =-,则

[]()2()()f x a f a x a f a x +=-+=-

充分性:若x R ?∈,有()()f x a f a x +=-,则

[][]()()()(2)f x f a x a f a x a f a x =+-=--=-

(2)由题设知(1)(1)f x f x +=-,(2)(2)f x f x +=-,则

[][]()1(1)1(1)(2)(2)f x f x f x f x f x =+-=--=-=+

[][]()1(1)1(1)(2)()f x f x f x f x f x -=-+=++=+=

故()f x 是以2为周期的偶函数

例12 判断下列函数的有界性

(1)2221222

x y x x +=-++ 解 由222a b ab +≥,有2222(1)12(1)x x x x ++=++≥+,则

2222222(1)122(1)12(1)

x x x x x x x +++=≤=+++++ 23221122222

x x x +-≤-≤++ ? 222132222x x x +-≤++ 例13 设1λμ+=(0,0λμ>>),证明:

(1)若()f x 是[)0,+∞的单减函数,则()()()f x f x f x λλμμ≤+;

(2)若()f x x

是(0,)+∞的单减函数,则()()()f x f x f x λμ≤+; (3)()()()f a b f a f b +≤+(0,0a b >>)

证(1)由题设知,

01λ<<,01μ<< ? x x λ≤,x x μ≤,[)0,x ∈+∞

由于()f x 单减,有()()f x f x λ≥,()()f x f x μ≥,则

()()()()()f x f x f x f x f x λλμμλμ+≥+=

(2)由于()f x x 单减,有()()f x f x x x

λλ≥,()()f x f x x x μμ≥,则 ()()f x f x λλ≥,()()f x f x μμ≥ ? ()()()f x f x f x λμ+≥

(3)令x a b =+,a a b λ=+,b a b

μ=+,则 ()()()f a f b f a b +≥+

例14 求下列函数的反函数

分析:求分段函数的反函数,要注意x 的不同取值范围对应原来函数的值域

(2)?????≤≤+<≤+=21)2(3

11

0)1(212x x x x y

解 当10<≤x 时,)1(2

12+=x y 的值域为 12

1<≤y ? 12-=y x 当21≤≤x 时,)2(3

1x y += 的值域为 3

41≤≤y ? 23-=y x 故

11243213y x y y ≤<=??-≤≤??

? ?????≤≤-<≤-=3412312112x x x x y 例15 在底为a ,高为h 的三角形中内接一矩形,将矩形面积S 表示为其底x 的函数。 解 设矩形高为y ,由三角形相似关系得h y x h a -=,hx y h a

=-,则 ()h S xy x a x a

==- 例16 某商场以每件a 元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8a 元的价格出售,试将一次成交的销售收入R 表示成销售量x 的函数。

解 050050500.8(50)500.81050

ax x ax x R a a x x ax a x ≤≤≤≤??==?

?+->+>??

大学高等数学第一章函数(习题精讲)

第1章 函 数 §1.1 函数的概念与性质 1. 绝对值与不等式(0>a ,0b >) (1)x x x -≤≤;x y x y x y -≤±≤+ (2 )2 112 a b a b +≤+(调和平均值≤几何平均值≤算术平均值) 一般地,1212111n n x x x n n x x x +++≤≤ +++ (3){}max ,22a b a b a b -+=+;{}min ,22 a b a b a b -+=- 2. 函数概念与性质 对变量D x ∈的每一个确定值,变量y 按某确定规则f ,都有且只有一确定值与之对应,则称变量y 是变量x 的函数,记为()y f x =,D x ∈。 注意:定义域D 和对应规则f 是函数相等的两要素。 (1)无关性 ()()y f x f t == D t x ∈, (2)单调性 1212,,x x I x x ?∈< 1212()()()()()()f x f x f x f x f x f x ≤???≥? ?单调递增单调递减;1212()()()()()()f x f x f x f x f x f x ??严格单增严格单减 (3)奇偶性 ()() ()()()()f x f x f x y f x f x f x -=???-=-??为偶函数,对称于轴为奇函数,对称于原点 注意:函数的奇偶性是相对于对称区间而言,若定义域关于原点不对称,则不是奇/偶函数。 (4)周期性 若()()f x T f x +=,0T >,则称为)(x f 的周期。 (5)有界性 若D x ∈?,M x f ≤)(,()0>M ,则称)(x f 在D 上有界。 常用有界函数:sin 1x ≤,cos 1x ≤,(,)-∞+∞;

第一章函数与极限复习提纲

第一章函数与极限复习提纲 一、函数 知识点:1、函数的定义域、性质的判断(有界性、奇偶性、单调性、周期性) 2、基本初等函数的表示形式 3、复合函数的分解必须会!! 4、函数关系的建立 如1、下列函数中属于偶函数的是( D. ) A. x x y sin +=; B. x x y sin 2+=; C . x x y cos +=; D. x x y cos 2+=。 2、下列复合函数由哪些基本初等函数构成? (1)x x f 2ln )(= 解:u y ln =,x u 2= (2)x y 2cos = 解:2u y = ,x u cos = (3)5)13(+=x y 解:5u y =, 13+=x u (4)3 2 1-= x y 解:3 1u y =,12-=x u (5)x y 2cos ln = 解:u y ln =,v u cos =,x v 2= 3、旅客乘坐火车时,随身携带物品,不超过20公斤免费;超过20公斤部分,每公斤收费0.20元;超过50公斤部分再加收50%。试列出收费与物品重量的函数关系式。 解 0, 0.2(20), 2050 0.3(50)6, 50 x y x x x x ≤≤?? =-<≤??-+>? 4、某公司生产某种产品,总成本为C 元,其中固定成本为200元,每多生产一单位产品,成本增加10元,又设该产品价格P 与需求量x 之间的关系为2 25x P -=,求x 为多少时公司总利润最大? 解 成本函数C (x )=固定成本+可变成本 所以x x C 10200)(+= 收入函数x x x x x p x R 2521 )225()(2+-=?- =?= 利润函数200152 1)10200(2521)()()(2 2-+-=+-+-=-=x x x x x x C x R x L 令015)('=+-=x x L 得15=x 因为驻点唯一,又根据01)("<-=x L 可知函数最大值存在,所以当15=x 时,() L x

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

大一高数第一章--函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

大学高等数学阶段测验卷

第一章函数与极限阶段测验卷 学号 班级 成绩 考试说明:1、请将客观题答案全部填涂在答题卡上,写在试卷上一律无效。 2、请在答题卡上填涂好、班级、课程、考试日期、试卷类型和考号。试卷类型 划A;考号为学号的后九个数,请填涂在“考号”的九个空格并划线。 3、答题卡填涂不符合规者,一切后果自负。 一.是非判断题(本大题共10题,每题2分,共20分) 1. x y 2cos 1-=与x y sin =是相同的函数. ( ) A 、正确 B 、错误 2. 函数ln(1)y x x =-+在区间(,1)-∞-单调递增.( ) A 、正确 B 、错误 3. 函数x y e =在(0,)+∞有界. ( ) A. 正确 B. 错误 4. 设()f x 在[,](0)a a a ->上有定义,则函数1 ()[()()]2 g x f x f x =--是奇函数.( ) A. 正确 B. 错误 5. 函数2sin y x =是当0x →时的无穷小.( ) A. 正确 B. 错误 6.函数y = 是初等函数.( ) A 、正确 B 、错误 7. 当x →∞时,函数22135x y x +=+趋向于1 3 .( ) A 、正确 B 、错误 8. 当0x →时,函数2 12 y x = 与1cos y x =-是等价无穷小.( ) A 、正确 B 、错误 9. 211lim cos 2 x x x →∞=-( ) A 、正确 B 、错误

10. 函数1 (12),0;, 0x x x y e x ?? +≠=??=? 在0x =处连续. ( ) A 、正确 B 、错误 二.单项选择题(本大题共12个,每题3分,共36分) 11.函数)5)(2ln(+-=x x y 的定义域为( ). A. 25≤≤-x ; B. 2>x ; C. 2>x 或5-

同济第六版《高等数学》教案WORD版-第01章 函数与极限

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限 之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限 的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a?M. 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A?{a, b, c, d, e, f, g}. 描述法: 若集合M是由元素具有某种性质P的元素x的全体所组成, 则M可表示为

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

第一章 函数与极限的练习解答

一、P21:1;5 1.设),(),(∞+∞=55--A ,) ,【310-B =,写出 B A B A B A -=\,A B ,及)()\(\B A A B A A --=的表达式。 解:),5()3,(+∞-∞= B A )5,10[-=B A ),5)10,(\+∞--∞=-=( B A B A )5,10[)()\(\--=--=B A A B A A 5.下列各题中,函数)(x f 和)x g (是否相同?为什么? (1) x x g x x f lg 2)(,lg )(2== 解:不同。定义域不同,),0()0,(+∞-∞= f D ),0(+∞=g D 。 (2) 2 )(,)(x x g x x f == 解:不同。对应法则不同,即:值域不同。),0[,+∞==g f R R R 。 (3) 3 3 4 )(x x x f -=, 3 1)(-?=x x x g 解:相同。因为定义域和对应法(或值域)则相同。 (4) x x x g x f 2 2tan sec )(,1)(-== 解:不同。定义域不同,R D f = },1,0,2 { ±=+ ≠=k k x x D g π π。 二、P21:4(1)、(3)、(5)、(7)、(9);6;7(2); P22:10(1)、(4)、(5);11(1)、(3)、(5);15(1)、(3);16. 4.求下列函数的自然定义域:

(1) 23+=x y ; 解:32023-≥?≥+x x 。即:),3 2 [+∞-=D 。 (3)211x x y --=; 解:???≤≤-≠????≥-≠1 10 0102 x x x x 。即:]1,0()0,1[ -=D 。 (5) x y sin =; 解:0≥x 。即:),0[+∞=D (7))3arcsin(-=x y ; 解:42131≤≤?≤-≤-x x 。即:]4,2[=D 。 (9))1ln(+=x y 解:101->?>+x x 。即:),1(+∞-=D 6.设,3 ,3,0,sin )(ππ?≥

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划 课次序号: 03 一、课 题:§1.3 函数的极限 二、课 型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–3 1(2),2(3),3,6 八、授课记录: 九、授课效果 分析: 第三节 函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.

定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞ f (x )?A . 若?ε>0,?X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞ f (x )?A . 例1 证明lim x 0. 证 0 -,故?ε>00-<εε, 即x >21 ε.因此,?ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 lim x ?0. 例2 证明lim 100x x →-∞ =. 证 ?ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞ 10x ?0. 定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞ f (x )?A . 为方便起见,有时也用下列记号来表示上述极限: f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞). 注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞ ===或或,则称y A =为曲线()y f x =的水 平渐近线. 由定义1、定义2及绝对值性质可得下面的定理. 定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞ f (x )?A . 例3 证明2lim 1 x x x →∞--?1.

1第一章 函数与极限答案

第一章 函数与极限 第一节 映射与函数 1.填空题: (1)函数)(x f y =与其反函数)(x y ?=的图形关于 x y = 对称. (2 )函数 2 1 ()1f x x = +-的定义域为__________________________; (3)若)(x f 的定义域是[0,1],则)1(2+x f 的定义域是 {0} . (4)设b ax x f +=)(,则=-+= h x f h x f x ) ()()(? a . (5)若,11)(x x f -=则=)]([x f f x x 1- ,=)]}([{x f f f x . (6)函数2 x x e e y --=的反函数为 。 (7 )函数y =: x ≥0,值域: 0≤y <1 ,反函数: x =-ln(1-y 2), 0≤y <1 2. 选择题: (1)下列正确的是:(B ,C ) A.2 lg )(x x f =与x x g lg 2)(=是同一函数. B.设)(x f 为定义在],[a a -上的任意函数,则)()(x f x f -+必为偶函数,)()(x f x f --必为奇函数. C.?? ? ??<-=>==0,10,00,1sgn x x x x y 是x 的奇函数. D.由任意的)(u f y =及)(x g u =必定可以复合成y 为x 的函数. . (2))sin()(2 x x x f -=是( A ). A.有界函数; B. 周期函数; C. 奇函数; D. 偶函数. (3)设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 为( B ). A.1; B.–1; C.2; D.–2. (4)函数 2 1 arccos 1++-=x x y 的定义域是( )

高数第一次课随堂练习函数与极限

随堂练习 一 第一章 函数与极限 一、填空题 1、43 2lim 23=-+-→x k x x x ,则k= 。 2、函数x x y sin = 有间断点 ,其中 为其可去间断点。 3、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 4、=++++∞→3 52352) 23)(1(lim x x x x x x 。 5、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 6、函数2 31 22+--=x x x y 的间断点是 。 7、当+∞→x 时, x 1 是比 3-+x 8、当0→x 时,无穷小x --11与x 相比较是 无穷小。 9、函数x e y 1=在x=0处是第 类间断点。 10、设1 1 3 --= x x y ,则x=1为y 的 间断点。 11、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。 12、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 13、设? ??>≤+=0,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数a= 。 二、计算题 1、计算下列极限 (1))2141211(lim n n ++++ ∞ → ; (2)2)1(321lim n n n -++++∞→ ;

(3)35lim 22-+→x x x ; (4)1 1 2lim 221-+-→x x x x (5))12)(11(lim 2x x x -+ ∞ → ; (6)x x x 1 sin lim 20→ ; (7)x x x x +---→131lim 21 ; (8))1(lim 2 x x x x -++∞ → ; 2、计算下列极限 (1)x wx x sin lim 0→ ; (2)x x x 5sin 2sin lim 0→ ; (3)x x x cot lim 0→ ; (4)x x x x )1( lim +∞→ ; (5)1 )11(lim -∞→-+x x x x ; (6)x x x 1 )1(lim -→ ; 3、比较无穷小的阶 (1)32220x x x x x --→与,时 ; (2))1(2 1 112 x x x --→与,时 ; (3)当0→x 时 , 232-+x x 与x 。 4、利用等价无穷小性质求极限 (1)30sin sin tan lim x x x x -→ ; (2)),()(sin ) sin(lim 0是正整数m n x x m n x → ; 5、讨论函数的连续性 。 在? ??=>-≤-=11,31 ,1)(x x x x x x f 6、利用函数的连续性求极限 (1))(lim 22 x x x x x -- ++∞ →; (2)x x x sin ln lim 0 → (3)x x x 2)11(lim + ∞→; (4))1 1 (lim ,)1(lim )(1 --=+ →∞→t f n x x f t n n 求设 (5))1(lim 2 x x x x -++∞ → ; (6)1)1232( lim +∞→++x x x x ; (7)3 0sin tan lim x x x x -→ ; 7、设函数???≥+<=0 ,0 ,)(x x a x e x f x 应当怎样选择a ,使得) ()(∞+-∞,成为在x f 内的连续函数。 8、证明方程135 =-x x 至少有一个根介于1和2之间。 9、设????? ≤+>=0 ,0,1sin )(2 x x a x x x x f 要使),()(∞+-∞在x f 内连续, 应当怎样选择数a ?

(完整版)高等数学第一章函数与极限试题2

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1 )(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1-,x ≠0,1,则f [)(1 x f ]= ( D ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( C ) A ) lim 0 + →x )x 1 +1(x =1 B ) lim 0 + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e

5.已知9)( lim =-+∞→x x a x a x ,则=a ( C )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1(lim ( C ) A.1; B.∞; C.2-e ; D.2e 7.极限:∞ →x lim 332x x +=( A ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0 -+→ =( C ) A.0; B.∞; C 2 1; D.2. 9. 极限:)(lim 2x x x x -+∞ +→=( D ) A.0; B.∞; C.2; D. 2 1 . 10.极限: x x x x 2sin sin tan lim 30-→=( C ) A.0; B.∞; C. 16 1; D.16. 二. 填空题 11.极限1 2sin lim 2+∞ →x x x x = 2 . 12. lim 0 →x x arctanx =_______________. 13. 若)(x f y =在 点 x 连续,则 f )]()([lim 0→-0 x f x f x x =______f ’(xo)_________; 14. =→x x x x 5sin lim 0_________0.2__; 15. =-∞→n n n )2 1(lim _______e*e__________; 16. 若函数2 31 22+--=x x x y ,则它的间断点是___________2___1_____

大学理科一类高等数学(上)参考答案

理科一类《高等数学》(上)习题参考答案 第一章 函数与极限 习题一 一、1..224>-<<-x x 或;2.[]a a -1,; 3.1525++?x x ; 4.奇函数; 5.0,1,1,0; 6.4231,,,--e e e e . 二(略) 三、1.1; 2.0; 3.2 1 ; 4.4. 四、1,1,1,-不存在. 五、1,1-==b a 六、都不存在. 七、;3 2 . 4; 2 21. 3; 1. 2; 0.1 5.-2; 1.8; 3.7;. 6e . 八、2.6, 0.5, 2.4,3 2. 3,2 1. 2,2.1-. 九(略) 习题二 一、()()[] 1,0. 5,1,1.4, ,22,1. 3,2.2,.1-+∞?e 第一 二、4 1= a . 三、361.ln 2, 2., 3.1, 4., 5.1, 6.1e e . 四、1.为可去间断点1=x ,为无穷间断点2=x ;2.为跳跃间断点1=x . 五、()()+∞?∞-,00,. 六、左不连续;右连续. 七、八、 (略) 九、为跳跃间断点0=x ;为无穷间断点1=x . 第一章 测验题 一、1., 2., 3., 4., 5.D A C A B . 二、[]2.5, 22.4, 2,0.3, 2.2, 2.12+-x x .

三、112 2 1 1., 2.1, 3., 4.3, 6.6 e e - . 四、x x x x p ++=232)(. 五、1 1,2,12 x x x x =-===处连续为无穷间断点,为可去间断点. 六、.3,2 1 ==b a 七、(略) . 八、lim n n x a →∞ = 第二章 导数与微分 习题一 一、)0(.2,)(,)(2,)(.1000f x f x f x f '''';)(),(1 .300000 0x x x y y x x x y y --=--= - 二、,0 ()2,0,0x e x f x x x x ?>? '=>. 习题二 一、1.3622ln 2-++x x x ; 2.1; 3. 2 ln 1x x -; )2 (4 2 ,)2 (42. 42 2 π ππ π ππ- = - - - =- x y x y ;)(4)(2.5222x f x x f ''+'. 二、2 )1() sin 3(cos sin cos 2.1x x e x x e x x +-+-; x x x x x x x x c o s s i n l n c o s 2s i n .2+-+; 211 arcsin 2.3x x -?;12ln (ln )4.n x n x x --;a a x x x ax a a a 21 211sec ln .5+?+-; 21sec 222116.3ln3ln ;8.sec tan x x y y y e x x x -?'''===?? 三、()[]{}()[]()x f x f f x f f f '?'?'. 1, )()(2.22 2 x x x x x e f e e e f xe '+

大一高等数学总结

第一讲函数、连续与极限 一、理论要求 1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理 会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断 理解并会应用闭区间上连续函数的性质(最值、有界、介值) 二、题型与解法 A.极限的求法(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法 (8)其他(微积分性质,数列与级数的性质) 1. (等价小量与洛必达) 2.已知

(洛必达) 3. (重要极限) 4.已知a、b为正常数, (变量替换)5. 解:令 6. (变量替换)

7.已知在x=0连续,求a 解:令(连续性的概念) 三、补充习题(作业) 1.(洛必达) 2.(洛必达或Taylor) 第二讲导数、微分及其应用 一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义 会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程 2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理 会用定理证明相关问题 3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径) 二、题型与解法

A.导数微分的计 算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.决定,求 2.决定,求 解:两边微分得x=0时,将x=0代入等式得y=1 3.决定,则 B.曲线切法线问题5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。 解:需求,等式取x->0的极限有:f(1)=0 C.导数应用问题 6.已知, ,求点的性质。 解:令,故为极小值点。 7.,求单调区间与极值、凹凸区间与拐点、渐进线。 解:定义域

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

答案高等数学第一章函数与极限试题

答案: 一.选择题 1.A 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案. 【详解】 方法一:任一原函数可表示为 ?+=x C dt t f x F 0 )()(,且).()(x f x F =' 当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-?-',即 )()(x f x f =--,也即)()(x f x f -=-,可见 f(x)为奇函数; 反过来,若f(x)为奇函数,则? x dt t f 0 )(为偶函数,从而 ?+=x C dt t f x F 0 )()(为偶函数,可见(A)为正确选项. 方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=2 2 1x , 排除(D); 故应选(A). 【评注】 函数f(x)与其原函数F(x)的奇偶性、周期性和单调性已多次考查过. 请读者思考f(x)与其原函数F(x)的有界性之间有何关系? 2. D 【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点. 且 ∞=→)(lim 0 x f x ,所以 x=0为第二类间断点; 0)(lim 1=+ →x f x ,1)(lim 1 -=- →x f x ,所以x=1为第一类间断点,故 应选(D).

【评注】 应特别注意:+∞=-+ →1 lim 1x x x ,.1 lim 1-∞=-- →x x x 从而 +∞=-→+ 1 1lim x x x e ,.0lim 1 1 =-→- x x x e 3 C 4 A 5 C 6 C 7 A 8 C ∵x →∞时,分母极限为令,不能直接用商的极限法则。先恒等变形,将函数“有理化”: 原式 = 2 1111lim )11() 11)(11(lim 0 =++=++++-+→→x x x x x x x . (有理化法) 9 D 10 C 解 原式 16 1821lim )2()cos 1(tan lim 32 030=?=-=→→x x x x x x x x . ▌ 注 等价无穷小替换仅适用于求乘积或商的极 的每项作等价替换,则 原式0)2(l i m 3 =-=→x x x x .

同济大学(高等数学)_第一章_函数极限

第一篇 函数、极限与连续 第一章 函数、极限与连续 高等数学的主要内容是微积分,微积分是以变量为研究对象,以极限方法为基本研究手段的数学学科.本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容是学习高等数学课程极其重要的基础知识. 第1节 集合与函数 1.1 集合 1.1.1 集合 讨论函数离不开集合的概念.一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素. 通常用大写字母A 、B 、C 、 表示集合,用小写字母a 、b 、c 、 表示集合的元素. 如果a 是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,则表示为A a ?,读作“a 不属于A ”. 一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ. 集合的表示方法通常有两种:一种是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合.例如,有1,2,3,4,5组成的集合A ,可表示成 A ={1,2,3,4,5}; 第二种是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为 {}P x x M 具有性质|=. 例如,集合A 是不等式022<--x x 的解集,就可以表示为 {} 02|2<--=x x x A . 由实数组成的集合,称为数集,初等数学中常见的数集有: (1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即 {} ,,,3,2,1,0n N =; (2)所有正整数组成的集合称为正整数集,记作+ N ,即 {} ,,,3,2,1n N =+; (3)全体整数组成的集合称为整数集,记作Z ,即 {} ,,,3,2,1,0,1,2,3,,,n n Z ----=;

第一章函数和极限答案

第一章 函数与极限 一 函数(见§1.1) Ⅰ 内容要求 (ⅰ)在中学已有函数知识的基础上,加深对函数概念的理解和函数性质(奇偶性、单调 性、周期性和有界性)的了解。 (ⅱ)理解复合函数的概念,了解反函数的概念,了解分段函数的概念。 (ⅲ)记忆基本初等函数的图象,了解初等函数的概念,自学双曲函数及反双曲函数。 (ⅳ)学会建立简单实际问题中的函数关系式。 Ⅱ 基本题型 (ⅰ)有关确定函数定义域的题型 1.(4分)1 )2ln()(+-= x x x f 的定义域为 21<<-x 2.(4分)) 2ln(1 )(x x x f -+= 的定义域为 [))2,1(1,1Y - 3.(4分))32arcsin(-=x y 的定义域为--------------- ( D ) A )2,1( B )2,1[ C ]2,1( D ]2,1[ 4.设)(x f 的定义域D = ]1,0[,求下列各函数的定义域: (1)(6分))(2 x f []1,1-∈x (2)(6分))2(x f (]0,∞-∈x (3)(7分))31 ()31(-++x f x f ?? ????∈32,31x (ⅱ)有关确定函数(反函数)表达式的题型 5.(4分)已知: x x f cos 1)2 (sin +=,则)(x f =)1(22 x - 6.(4分)设???????>=<-=0,10,00,1)(x x x x f ,则=)]([x f f ??? ? ???>=<-=0,10,00,1)(x x x x f 7.求下列函数的反函数 (1)(4分)31+=x y 1,13 3-=-=x y y x (2)(4分)x x y +-= 11 x x y y y x +-=+-=11,11 )1(-≠x

相关文档
最新文档