电动汽车上下电控制策略

电动汽车上下电控制策略
电动汽车上下电控制策略

电动汽车电机驱动控制策略研究

本科毕业设计(论文) () 论文题目:电动汽车电机驱动控制策略研究 本科生姓名:关海波学号:201211318 指导教师姓名:赵峰职称: 申请学位类别:工学学士专业:电力工程及管理 设计(论文)提交日期:(小四号楷体加黑)答辩日期:(小四号楷体加黑) 本科毕业设计(论文)

电动汽车电机驱动控制策略研究 姓名:关海波 学号:201211318 学院:新能源及动力工程学院专业班级:电力工程及管理1201班

指导教师:赵峰 完成日期: 兰州交通大学LanzhouJiaotongUniversity

摘要 本论文首先介绍了异步电动机的数学模型,通过坐标变换,得到了异步电动机的空间矢量等效电路。并由理想逆变器的8种开关状态入手,得到了理想逆变器的数学模型,建立了空间电压矢量的定义。并在此基础上对定子磁链和电磁转矩及空间电压矢量之间的关系进行了分析,阐述了六边形磁链轨迹和近似圆形磁链轨迹异步电动机直接转矩控制系统的结构和工作原理。 根据异步电动机直接转矩控制的工作原理,本论文在的平台下,分别搭建了六边形磁链轨迹和圆形磁链轨迹直接转矩控制系统模型。并对仿真结果进行了相应的分析,验证了异步电动机直接转矩控制策略的可行性。而且,对两种磁链轨迹直接转矩控制系统的优缺点及应用范围进行了比较。 本论文以电动汽车的电机驱动部分为研究对象,对于异步电动机的直接转矩控制技术进行了较为深入的理论研究,在电动汽车及其他相关领域的应用具有一定的参考价值。 关键词:电动汽车;电机驱动;直接转矩控制

, . . , . . , . a , a , . . :,, 目录 摘要错误!未指定书签。 错误!未指定书签。 1 绪论错误!未指定书签。 1.1国内外电动汽车的发展及现状错误!未指定书签。 2 电动汽车电机驱动系统分析错误!未指定书签。 2.1电动汽车驱动电机的特殊要求错误!未指定书签。 2.2电动汽车电机驱动系统的分类及选择错误!未指定书签。

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 发表时间:2019-07-05T11:27:03.790Z 来源:《电力设备》2019年第4期作者:王坚 [导读] 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。 (柳州五菱汽车工业有限公司广西柳州 545007) 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计 (一)整车控制器结构设计 整车控制器的硬件结构根据其基本的功能需求进行设计,如图1所示。支持芯片正常工作的微控制器最小系统是整车控制器的核心,基础的信号处理模块,CAN通信与串口通信组成的通信接口模块,以及LCD显示等其他模块分别作为它的各大功能模块。 图1 整车控制器硬件结构图 (二)整车控制器硬件设计 从功能上可以把整车控制器分为6个模块。 1)微控制器模块:本设计选用美国德州仪器公司TI的数字信号处理芯片TMS320F2812为主控芯片,负责数据的运算及处理,控制方法的实现,是整车控制器的控制核心。此芯片运算速度快,控制精度高的特点基本满足了整车控制器的设计需求。TMS320F2812的最小系统主要由DSP主控芯片、晶振电路、电源电路以及复位电路组成。 2)辅助电源模块:由于整车控制器的控制系统中用到多种芯片,所以需要设计辅助电源电路为各个芯片提供电源,使其正常工作,因此输出电平有多种规格。采用芯片LM317、LM337可分别产生+5V和-5V的供电电压。 3)信号调理模块:输入整车控制器的踏板信号是1~4.2V模拟电压信号,TMS320F2812的12位16通道的A/D采样模块输入的信号范围为0~3.0V,因此需要对踏板输入的模拟电压信号进行相应的调理运算,以满足DSP的A/D采样电平要求。选用德州仪器的OPA4350轨至轨运算放大器,在输入级采用RC低通滤波电路与电压跟随电路以滤除干扰信号,减小输入的模拟信号失真。开关信号先经RC低通滤波电路滤除高频干扰,再作为电压比较器LM393的正端输入,电压比较器的负端输入接分压电路,将LM393的输出引脚外接光耦芯片,在起到电平转换作用的同时,进一步隔离干扰信号,提高信号的安全性与可靠性。 4)通讯模块:TMS320F2812具有一个eCAN模块,支持CAN2.0B协议,可以实现CAN网络的通讯,但是其仅作为CAN控制器使用。选用3.3V单电源供电运行的CAN发送接收器SN65HVD232D,其兼容TMS320F2812的引脚电平,用于数据速率高达1兆比特每秒(Mbps)的应

电动汽车AFS与DYC集成控制策略研究79885824

电动汽车AFS与DYC集成控制策略研究79885824

毕业论文 题目电动汽车AFS与DYC集成控制 策略研究

南京航空航天大学 本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:电动汽车AFS 与DYC集成控制策略研究)是本人在导师的指导下独立进行研究所取得的成果。尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。 作者签名:2015年6月10日 (学号):021130207

电动汽车AFS与DYC集成控制策略研究 摘要 汽车主动安全技术经过近几十年的发展,特别是主动前轮转向(Active Front Steering, AFS)和直接横摆力矩控制(Direct Yaw Control, DYC)技术已分别被普遍应用于传统内燃机汽车上,并极大地提高了汽车操纵稳定性。但随着电动汽车的大力发展,尤其轮毂电机技术取得突破性的进展,从而使电动汽车相对于传统内燃机汽车具有更好的可控性和灵活性,并能够为AFS和DYC技术提供更为广阔的技术平台。 然而,随着人们对主动安全技术的要求变得越来越高,从而,促进了AFS和DYC集成控制的发展。但是,现阶段的AFS和DYC集成控制方法存在较大的协调控制问题,即AFS和DYC 同时工作时,两者同时产生的横摆力矩会相互影响,不仅增加了系统负担,并且降低了控制效果。因此,针对AFS和DYC集成控制方式存在的协调控制问题,本文采用了分层控制方法进行了解决,并通过滑模变结构控制理论分别对AFS和DYC控制器进行了设计,从而使汽车轮胎的侧向力在线性范围时,主要通过AFS来实现期望的横摆力矩,当汽车轮胎的侧向力超出线性范围时,超出部分将由DYC来实现。 最后,在Simulink中搭建系统的仿真模型。分别在高低速下进行双移线仿真试验,并验证了集成控制方法能够有效地跟踪期望的横摆角速度,且能弥补单个控制器同时起作用时会产生相互影响的问题。 关键词:电动汽车,车辆稳定性控制,滑模控制,s imulink仿真

电动汽车智能充电系统控制策略研究

电动汽车智能充电系统控制策略研究 发表时间:2020-04-14T07:34:25.255Z 来源:《中国电业》(发电)》2020年第1期作者:王琦[导读] 本文以电动汽车以锂离子动力电池为分析对象,研究如何改进其快速充电方法。 西安麦格米特电气有限公司陕西省西安市 710075摘要:随着电动汽车的逐渐普及,电动汽车充电桩的大规模接入会对电网的运行规划产生重大影响。提出了一种以预约为前提条件,面向用户端的电动汽车智能充电控制策略。根据充电桩实时运行状态,结合对电动汽车充电时间的预测,并充分考虑用户需求,建立了电 网控制端—计算机处理终端—智能充电桩终端—电动汽车用户端之间的信息反馈系统数学模型。通过算例分析,结果表明:采用所提出的充电控制策略,可显著提高充电系统运营效率,适用于大规模电动汽车智能充电系统。 关键词:电动汽车;充电桩;控制策略;预约;信息反馈 引言 生活水平的提高,人们的出行生活越来越多地依赖于汽车,以致汽车拥有量不断增加,从而加重了车尾气造成的环境污染,另外汽车数量的增多也使石油等资源的利用度剧增,严重造成这些能源的紧缺。这种现象严重违背了当代汽车发展中的“节能环保”主题。因此,电动汽车因具有较高的性能、较低的尾气排放和较好的续航能力等优点受到众人的青睐。因此,如何快速高效而且低损地为动力电池充电不仅对电动汽车的发展具有重要意义,而且是对电动汽车发展的重大挑战。本文以电动汽车以锂离子动力电池为分析对象,研究如何改进其快速充电方法。 1充电系统的设计 充电系统的主要设计界面主要就是实现铅酸电池组在充电过程的设计,也就是说能够让电池在较短的时间内充满汽车所需要的电量,而在较短时间完成对蓄电池的充电,对蓄电池初始状态可以做出实时的监测,那么电池在最初状态做出了检测,确定了蓄电池组的负荷状态,同时在温度和内部两端电压两个方面,蓄电池的实时监测状态对蓄电池参数实施的采样;按照蓄电池的各项指标来讲,在智能充电的过程中,处理器可以分析当前的电路对蓄电池的接入情况,从而导致蓄电池性能状况和负载区域能力共同的显示在了LCD板上,之后智能充电对于故障时会经过GSM通信通过短信的方式回馈给车主人,让车主及时地做出应有的判断,从而实现了自动化、智能化汽车充电。智能充电的基本模块包括:LCD触摸板、电源模块、数据存储模块、GSM通信模块、声光报警模块、参数检测模块这六大模块。近些年电脉冲充电方式成了充电的首选方式,正脉冲充电过程中产生的脉冲会在负电极中产生的脉冲相抵消,那么这样的现象就使得极化现象的影响减少,可以在缩短充电时间的基础上,降低在速冲过程中的危害,从而达到了真正的高效率充电。 2智能充电装置 为进一步提高本系统的智能性,分布式智能充电装置除具备传统功能(包括充电、计量、保护等)外,还实现了:(1)移动终端控制功能,通过终端App即可对启停机进行控制,用户通过移动终端即可对符合充电条件的充电装置的启停状态进行实时控制;(2)上传充电信息,包括电压、电流、电量、费率、计费、工作状态、故障等在内的充电信息会在App界面实时显示,同时充电信息由充电装置完成到服务器的上传。充电装置的控制核心为负责完成指令控制与信息分发功能的MCU,选用CORTEX系列芯片(具备低功耗、高性价比优势)完成同Wi-Fi通信模块间的通信过程(通过串口、SPI总线)及与数字电能表间的通信过程(通过485总线),同存储单元则通过I2C总线完成通信过程,并通过驱动电路同接触器相连,充电电能输出通过MCU实现通断状态的控制。相关信息的上报(电流、功率、电能)及远程控制充电装置开关状态则通过低功耗的Wi-Fi通信模块同无线网关的数据通信实现。交流电通过电源转换模块完成到直流电(包含不同电压等级)的转换。 3充电装置智能系统的设计与实现 3.1硬件框架 硬件系统主要由中央主控板、读卡器、检测芯片、显示屏、通信设备等构成,接入电网电源(380V)为AC交流电源输入,由中央处理单元进行相关操作后(包括滤波、整流、稳压等)转换为可用直流电源以供电动汽车充电使用。用户需通过IC卡识别模块完成充电装置的激活过程,系统识别IC卡用户信息(通过读卡器)后可显示余额及个人信息。状态显示包括充电模式、电流、电压、充电状态等在内的信息。作为监控系统的核心主控板的主要功能在于控制充电过程的启动/关闭及实时监控,并将数据向后台实时传输,具备工业级的温度范围,主控板具备7个串口,下位机数据检测及采集模块同备显示功能的上位机CPU模块采用串行总线完成通信过程;具备一个以太网口,采用动态的SDRAM和NAND控制器。 通过监控保护单元的设计实现对充电装置状态(包括进线输入电压、充电电压/电流、接口连接状态、车载电池状态等)的实时监测,出现异常时可及时切断电源输出,以确保充电过程的安全可靠。建设过程中为确保阴湿天气情况下的正常运行,应选择镀锌钢板作为充电装置外体材料,在外体上链接一根接地线抑制共模效应。

电动汽车的结构原理

电动汽车的基本结构电动汽车的组成包括电力驱动及控制系统、驱动力传动等机械系统、完成既定任务的工作装置等。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。电力驱动及控制系统由驱动电动机、电源和电动机的调速控制装置等组成。电动汽车的其他装置基本与内燃机汽车相同。 1.电源电源为电动汽车的驱动电动机提供电能,电动机将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前,电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电池所取代。正在发展的电源主要有钠硫电池、镍铬电池、锂电池、燃料电池、飞轮电池等,这些新型电源的应用,为电动汽车的发展开辟了广阔的前景。 2.驱动电动机驱动电动机的作用是将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前电动汽车上广泛采用直流串激电动机,这种电机具有"软"的机械特性,与汽车的行驶特性非常相符。但直流电动机由于存在换向火花,比功率较小、效率较低,维护保养工作量大,随着电机技术和电机控制技术的发展,势必逐渐被直流无刷电动机(BCDM)、开关磁阻电动机(S R M)和交流异步电动机所取代。 3.电动机调速控制装置电动机调速控制装置是为电动汽车的变速和方向变换等设置的,其作用是控制电动机的电压或电流,完成电动机的驱动转矩和旋转方向的控制。 早期的电动汽车上,直流电动机的调速采用串接电阻或改变电动机磁场线圈的匝数来实现。因其调速是有级的,且会产生附加的能量消耗或使用电动机的结构复杂,现在已很少采用。目前电动汽车上应用较广泛的是晶闸管斩波调速,通过均匀地改变电动机的端电压,控制电动机的电流,来实现电动机的无级调速。在电子电力技术的不断发展中,它也逐渐被其他电

电动车控制策略教程文件

电动车控制策略

电动车控制策略 1. 整车通信协议按照客户提供的文件执行。 2. 上电策略 a)K ey On时对MCU进行预充电。 b)预充电由VCU控制。 c)预充电阻规格为(200欧姆,200W,(—个或者两个预充回路,待定) d)预充条件: i. Key On ii. 充电枪未连接 iii. BMS无一级警报(最严重) e)预充过程: i. 闭合预充电继电器5s ii. MCU两端电压达到电池电压的95 % iii. 满足以上两条后,可以闭合主接触器,然后断开预充电继电器。 f)特殊要求: i. BMS 一级故障并请求切断总正高压时,需要接收到VCU的报文回复后,才能 切断主回路。VCU需在15秒内完成以下操作: 1.15s内将输出扭矩从当前值线性置0。 2. 回复BMS可以切断总正高压。 3. 若在15s内BMS的切断高压请求消失,则线性恢复正常输出。 4. 若VCU5S内无回复(BMS未收到VCU报文),贝U BMS自行处理。 ii. 若BMS未请求切断总正高压,但VCU在紧急情况下(例如超速),可以将电流降为0,切断MCU高压。 3. DC/DC控制:(DCDC不在CAN上,通过硬线控制,低电平有效) a)D C/DC,油泵,气泵,空调使用同一个高压开关,由VCU控制 b)由VCU通过硬线控制DC/DC启动,启动条件: i. 主继电器闭合,并延时2s后,闭合高压回路 ii. BMS无一级故障 iii. 高压回路闭合后,延时1s,发送硬线启动信号 4. 油泵控制:(油泵不在CAN上,通过硬线控制,低电平有效) a)由VCU通过硬线控制油泵启动,启动条件: i. 主继电器闭合,并延时2s后,闭合高压回路 ii. BMS无一级故障 b)R eady后,发送硬线启动信号,并一直保持 5. 气泵控制:(气泵不在CAN上,通过硬线控制,低电平有效) a)由VCU通过硬线控制气泵启动,启动条件: i. 首次开机时: 1. 主继电器闭合,并延时2S后,闭合高压回路, 2. BMS无一级故障

纯电动汽车的基本结构和原理

纯电动汽车的基本结构和原理 与燃油汽车相比,纯电动汽车的结构特点是灵活,这种灵活性源于纯电动汽车具有以下几个独特的特点。首先,纯电动汽车的能量主要是通过柔性的电线而不是通过刚性联轴器和转动轴传递的,因此,纯电动汽车各部件的布置具有很大的灵活性。其次,纯电动汽车驱动系统的布置不同,如独立的四轮驱动系统和轮毂电动机驱动系统等,会使系统结构区别很大;采用不同类型的电动机,如直流电动机和交流电动机,会影响到纯电动汽车的重量、尺寸和形状;不同类型的储能装置,如蓄电池,也会影响纯电动汽车的重量、尺寸及形状。另外,不同的能源补充装置具有不同的硬件和机构,例如,蓄电池可通过感应式和接触式的充电机充电,或者采用更换蓄电池的方式,将替换下来的蓄电池再进行集中充电。 纯电动汽车的结构主要由电力驱动控制系统、汽车底盘、车身以及各种辅助装置等部分组成。除了电力驱动控制系统,其他部分的功能及其结构组成基本与传统汽车相同,不过有些部件根据所选的驱动方式不同,已被简化或省去了。所以电力驱动控制系统既决定了整个纯电动汽车的结构组成及其性能特征,也是纯电动汽车的核心,它相当于传统汽车中的发动机与其他功能以机电一体化方式相结合,这也是区别于传统内燃机汽车的最大不同点。 1、电力驱动控制系统 电力驱动控制系统的组成与工作原理如图5.1所示,按工作原理可划分为车载电源模块、电力驱动主模块和辅助模块三大部分。 1)车载电源模块 车载电源模块主要由蓄电池电源、能源管理系统和充电控制器三部分组成。

(1)蓄电池电源。蓄电池是纯电动汽车的唯一能源,它除了供给汽车驱动行驶所需的电能外,也是供应汽车上各种辅助装置的工作电源。蓄电池在车上安装前需要通过串并联的方式组合成所要求的电压一般为12V或24V的低压电源,而电动机驱动一般要求为高压电源,并且所采用的电动机类型不同,其要求的电压等级也不同。为满足该要求,可以用多个12V 或24V的蓄电池串联成96~384V高压直流电池组,再通过DC/DC转换器供给所需的不同电压。也可按所需要求的电压等级,直接由蓄电池组合成不同电压等级的电池组,不过这样会给充电和能源管理带来相应的麻烦。另外,由于制造工艺等因素,即使同一批量的蓄电池其电解液浓度和性能也会有所差异,所以在安装电池组之前,要求对各个蓄电池进行认真的检测并记录,尽可能把性能接近的蓄电池组合成同一组,这样有利于动力电池组性能的稳定和延长使用寿命。 (2)能源管理系统。能源管理系统的主要功能是在汽车行驶中进行能源分配,协调各功能部分工作的能量管理,使有限的能量源最大限度地得到利用。能源管理系统与电力驱动主模块的中央控制单元配合在一起控制发电回馈,使在纯电动汽车降速制动和下坡滑行时进行能量回收,从而有效地利用能源,提高纯电动汽车的续程能力。能源管理系统还需与充电控制器一同控制充电。为提高蓄电池性能的稳定性和延长使用寿命,需要实时监控电源的使用情况,对蓄电池的温度、电解液浓度、蓄电池内阻、电池端电压、当前电池剩余电量、放电时间、放电电流或放电深度等蓄电池状态参数进行检测,并按蓄电池对环境温度的要求进行调温控制,通过限流控制避免蓄电池过充、放电,对有关参数进行显示和报警,其信号流向辅助模块的驾驶室显示操纵台,以便驾驶员随时掌握并配合其操作,按需要及时对蓄电池充电并进行维护保养。 (3)充电控制器。充电控制器是把电网供电制式转换为对蓄电池充电要求的制式,即把交流电转换为相应电压的直流电,并按要求控制其充电电流。充电器开始时为恒流充电阶段。

混合动力电动汽车控制策略优化

混合动力电动汽车控制策略优化 混合动力电动汽车其中一个非常重要的技术是控制策略,文章对混合动力汽车控制策略进行了分类及分析,指出混合动力汽车的控制策略的缺点和不足,需要进一步优化,整车性能会受到动力系统匹配参数和控制策略参数二者的共同影响,提出一种结合了遗传算法和模拟退火算法二者的优化算法。 标签:混合动力电动汽车;控制策略;优化 1 概述 对于不同类型的混合动力汽车,已经研究出来很多不同种类的控制策略,但是对于所有类型的混合动力汽车来说,控制策略的参数优化有着很大的共通。一般情况下,都是根据以往的经验来设定一套大概的值,然后进行参数的微调找到最合适的参数。然而这种尝试的办法很难锁定最佳的参数搭配方案,因此在参数优化的过程中就使用优化算法来解决问题。 2 控制策略的分类 2.1 基于规则的能量管理策略 2.1.1 逻辑门限值控制方法。通过阈值的设置来限制发动机的有效工作范围,控制发动机和电池在高效率范围内工作。该算法简单易实现,应用较普遍。此种策略中要提前设置阈值,所以造成控制系统较难随时匹配实际的情况和参数的改变,同时也忽略了电机的效率情况,所以这种静态控制策略并不是最优的。 2.1.2 基于模糊控制的智能型控制策略。该策略来源于人类的思维方式,提取被控系统的定性和定量信息,通过推理来控制一些很难模型化的系统。由于不能够模型化,所以设计者通过自己以往的经验来提炼规则。 2.2 瞬时优化控制策略 对于不同的功率分配以及地点,该策略实时监控发动机和电动机的消耗燃油量和排放量,通过这些数据得到最适合该混合动力系统的工作模式以及地点。该策略目前并未广泛使用。 2.3 全局优化控制策略 全局最优控制策略是根据最优化方法和最优控制理论而得到的策略,用于分配混合驱动动力。若想使用该策略最重要的前提是清楚汽车的行程,由于这一点的限制,该策略目前尚未投入实用阶段。所以,可以说全局最优控制策略仅仅称得上是一种控制策略设计的方法。

电动车控制器原理图解

电动车控制器原理图解 单片机PICl6F72是目前电瓶车控制器主流控制芯片,配合2只 74HC27(3输入或非门电路);1只74HC04D(反相器);1只74HC08D(双输入与门)和一片LM358(双运放),组成一款比较典型的无刷电瓶车控制器,具有60°和120°驱动模式自动切换功能,其基本组成框图见图l。实物测绘原理图见图2(图中数据除注明外,均为开锁停车状态数据)。 一、电路简介与自检 开通电门锁,48V电瓶直流电经电门锁线输入到控制器,一路经R3、R13、R4等送入U6的③脚作电瓶欠压检测用,另一路送入U13、U14、

U15输出+15V和+5V给IC和末级驱动供电。单片机PICl6F72的⑨、⑩脚外接16MHz晶体,①脚外接R13、C25组成复位电路,电门锁开锁,单片机得电工作后即进入初始化自检状态,它主要检测:1.由R3、R73、R4、R11、C2l等组成的电池欠压检测电路(典型值U6的③脚输入3.8V)。 2.由R5、R6、U1等组成的末级电流检测和过流保护电路(正常值Ul的⑦脚输出0V,①脚输出约3.6V)。 3.转把复位信号(正常值U6的⑥脚输入约0.8V的低电平)。 4.刹车复位信号(正常值U6的⑦脚输入4.8V高电平)。 5.电机霍尔元件检测到的无刷电机相位信号(正常时至少有一根霍尔线输入为4.1V,其他为0V)。 自检后的状态由LED2显示结果,以下是参照值(具体显示与单片机的程序设计有关)。 闪l停l--自检正常通过 闪2停l--欠压 闪3停l--LM358故障 闪4停1--电机霍尔信号故障

闪5停l--下管故障 闪6停l--上管故障 闪7停1--过流保护 闪8停l--刹车保护 闪9停1--手把地线断开 闪10停1--手把信号和手把电源线短路 闪l停11--上电时手把信号未复位 若自检正常通过,当转动转把时,U6根据转把输出电压的大小,将相应脉冲宽度的载波信号与三路驱动上下管的换相导通信号混合,从而达到控制无刷电机速度的目的,不同的速度对应不同的电机电流,同时行驶速度与电机换相频率成正比。 电路中,末级功率管V1和V2,V3和V4分别为无刷电机U相的上、下路驱动管;V5和V6,V7和V8分别为无刷电机V相的上、下路驱动管;V9和V10,Vll和V12分别为无刷电机W相的上、下路驱动管。U2为下管驱动IC,U4为上管驱动IC;U3、U5为上、下管R55、R56(康铜丝)串接在末级功率管的地线上,因而末级功率管的电流变化会在R55、R56上产生压降,所以由R5、R6和Ul等组成的电流检测电路可以随时检测无刷电机电流的大小,避免过流损坏电机。由R3、R73、R4、R11、C21、

增程式电动汽车控制策略的优化

增程式电动汽车控制策略的优化 摘要:增程式这类电动汽车有着自身的运转模式,同时也要配备最合适的控制策略。循环系统要在最大范围内减低损耗的总能量,在这种基础上结合实情探析了最优的控制策略。对此可选取外部优化,借助仿真软件以此来调控并优化给定的参数。优化程序设有非支配算法及精英策略,优化探析得出的结论表明:优化的新式算法拟定的参数可覆盖全局,从整车入手减低了运行汽车损耗的循环能量,因而更能吻合新形势下的节能思路。 关键词:增程式电动汽车;控制策略;优化思路 在现今状态下,生产电动汽车日渐受到多样的要素约束,例如电池本体的密度、耗费的总成本、可运转的年限。在这些要素制约下,电动汽车常规的产品将很难拓展现存的市场。增程式新的电动车配备了混合特质的内在动力,这种纯电动车可拓展继续行驶的总体路程。历经长期探究,针对于这类汽车设定的控制策略日趋成熟,然而仍没能给出最完备的控制思路。为此有必要预设合适的优化目标,在根本上优化现存的控制方式。 1 新式汽车构造 增程式电动汽车有着新式的构架,这是由于增程式车身

添加了发电配备的机组及发动机。增程式汽车拥有纯电动汽车固有的特性,同时又增添独特性。相比于供应混合动能的传统汽车,增程式车身减低了发动机附带的功率,电池及电机提升了固有的功率。同时,增程式电池还可随时补充电网缺失的电能[1]。增程式车身设定为串联的,驱动装置设为电机。发动机在各时段都可运转,在拥挤城区行进的电动车常常会频繁停止及启动,为此增程新式的车型更能适用。 2 增程式配备的控制策略 2.1 总的控制方式增程式电动汽车依循新式的工作模式。详细来看,初期电动车在行进时,电池充满了电能。动力电池可供应整车必备的功率需求,但发动机可暂停运转。在这种状态下,纯电动车相比于增程新型车辆显现了不足。电动汽车行进的过程中电池组将会持续耗电。起动发动机时,发动机会协同动力电池一并运转,这种状态下增程式及混合性车型二者是等同的[2]。 增程电动车设有持久可供应的动能,减低了消耗掉的电池成本。运用增程式车型可避免行驶至中途的暂停,免去驾驶员额外的担忧。若电池现有电能并不充足,那么启用辅助类的供应电能。在这种设置下,发动机不必供应行驶路径中的一切动能,在最大程度减低了根本的发动功率。(见图1) 2.2 增程式运转的新模式纯电动车增程车身配备双重的 动力源:增程装置即发电机组、动力供应性的电池组。在两

电动汽车整车控制系统介绍

电动汽车整车控制系统介绍 本文主要探讨纯电动汽车整车控制系统功能及研发流程。根据用途,整个电气系统可分为动力系统、能源系统、底盘电子控制系统、照明指示系统、仪表显示系统、辅助系统、整车综合控制系统、空调系统和舒适性安全系统等子系统。其中很多功能模块都需要和整车综合控制系统相关。整车电气系统列出如表1所示。 整车综合控制系统根据驾驶员的操作指示(油门、刹车等),综合汽车当前的状态解释出驾驶员的意图,并根据各个单元的当前状态作出最优协调控制。 1 整车控制器系统配置 整车控制器与整车其他电气系统连接如图1所示。整车控制器通过CAN总线与电池ECU、电机ECU、电源分配ECU、ABS系统、中控门锁、仪表显示系统连接。与其余的电气系统通过IO端口连接(也可使用CAN通讯)。下面分别对各电气单元的功能要求分别叙述。 1.1 动力系统提供整车的动力输出,其核心是驱动电机和电机驱动ECU 电机驱动ECU通过CAN总线与整车综合控制器通讯。应能提供电机转速、转矩、功率、电压、电流、水温、工作模式等参数。并应该能接受整车控制器发来的控制命令。 1.2 能源系统包括电池、电池管理单元和电源分配系统 与整车控制器通讯的有电池管理ECU和电源分配ECU。 电池管理ECU对电池进行充放电管理及保护。它应能提供电池组总电压、电流、单体电池电压、温度、剩余电量、电池健康状态、故障类型等信息。 电源分配ECU应能提供各个子电源的电压、电流和工作温度以及故障类型等信息。 1.3 ABS系统应能提供各个车轮的转速、液压系统状态、各个制

动阀的状态以及自身的工作状态等信息 1.4 中控门锁,应提供各车门状态等信息 1.5 仪表显示系统,应向整车控制系统提供所显示信息的全部内容 1.6 照明指示系统,可以通过CAN总线来控制,也可以通过IO来指示照明指示系统的运行状态 1.7 转向助力、制动助力、变速箱需提供档位位置、液压压力、工作状态等信息 可以是简单的开关量也可以用CAN总线通讯。 1.8 驾驶员的油门踏板和制动踏板经信号调理后接入到整车控制器内 2 整车控制器详细功能 纯电动汽车的整车控制器的主要功能包括:汽车驱动控制、制动能量的优化控制、整车的能量管理、CAN网络的维护和管理、故障的诊断和处理、车辆状态监视、行车记录等。整车控制器功能框图如图2所示。整车控制器通过CAN总线和IO端口来获得如加速踏板开度、电池SOC、车速等信息,并根据这些信息输出不同的控制动作。 下面分别介绍各部分实现的具体功能。 2.1 汽车驱动控制 根据司机的驾驶要求、车辆状态等状况,经分析和处理,向电机控制器发出指令,满足驾驶工况要求。包括启动、前进、倒退、回馈制动、故障检测和处理等工况。 2.2 整车能量优化管理 通过对电动汽车的电机驱动系统、电池管理系统、传动系统以及其它车载能源动力系统(如空调)的协调和管理,以获得最佳的能量利用率。 2.3 网络管理 整车控制器作为信息控制中心,负责组织信息传输,网络状态监控,网络节点管理等功能,网络故障诊断和处理。

混合电动汽车整车控制策略研究及发展趋势探讨

混合电动汽车整车控制策略研究及发展趋势探讨 张嘉君 武汉理工大学汽车工程学院,湖北武汉 430070 E-mail:941ai@https://www.360docs.net/doc/bf1220193.html, 摘要:混合电动汽车整车控制策略是电动汽车的灵魂。本文综述了当前混合电动汽车控制关键技术,分析了应用于电动汽车的主要控制理论,提出了整车控制策略研究的重点和突破方向,对混合动力整车控制策略设计与开发具有指导和借鉴意义。 关键词:混合电动汽车,控制策略,关键技术 1 引言 混合电动汽车(Hybrid Electrical Vehicle, 简称HEV)是指同时装备两种动力来源——热动力源(由传统的汽油机或者柴油机产生)与电动力源(电池与电动机)的汽车。通过合理复合动力系统,灵活调控整车功率流向,使发动机保持在综合性能最佳的区域工作,从而降低油耗与排放。美国的PNGV (Partnership for a New Generation of Vehicles)、欧洲的“The Car of Tomorrow ”计划、日本的“Advanced Clean Energy Vehicle Project”以及我国的“清洁汽车行动”都正是基于HEV而制定的战略计划。刚刚闭幕的“十一五”规划着力自主创新,混合动力技术可能是我国汽车行业自主创新的最大突破口,而在HEV关键技术中,整车控制策略占据着核心灵魂位置,因此,科学深入研究混合动力汽车的整车控制策略显得必然重要。作者对混合电动汽车的控制理论及技术现状作了系统分析,并指出了HEV控制策略研究关键技术和发展方向。 2 概念与结构 混合动力汽车主要有串联(SHEV)、并联(PHEV)和混联(SPHEV),和传统汽车的主要区别在于其多了电动机或发电机,不同混合动力之间的结构区别主要在于起能量流向的不同,图1和图2给出了串联和并联混合动力汽车的能量流向。抽象的混合动力控制策略,就是通过合理规划整车在具体行使工况中的不同动作,使整车能量高效、合理流动,达到整车经济性、动力性、排放等各项指标达到最佳结合点。 由于各种混合动力电动汽车结构上的差异,因而需要不同的控制策略来调节和控制功率流从不同元件的流进和流出,采用不同控制策略的目的是为了实现不同的控制目标。具体来说,混合动力控制策略的控制目标主要有以下四个:燃油经济性;排放指标;系统成本;最驱动性能。 - 1 -

电动汽车用电机控制策略分析

电动汽车用电机控制策略分析摘要 第一章绪论 1.1引言 1.2电动汽车的定义及优势 1.2.1电动汽车的定义 1.2.2电动汽车的优势 1.3电动汽车的基本结构 1.4本论文选题的意义及主要内容 1.4.1选题的意义 1.4.2本文的主要内容 第二章电动汽车电机驱动系统介绍 2.1电动汽车驱动电机分类 2.2电机驱动系统系统构成与布置方式 2.3电动汽车中电动机类型及其驱动系统 2.4电动汽车电机驱动控制的发展现状和趋势 第三章交流感应电动机及其控制策略 第四章无刷直流电动机及其控制策略 第五章永磁同步电动机及其控制策略 5.1永磁同步电机的结构和特点 5.2永磁同步电机矢量控制理论 5.2.1电动机的转矩控制 5.2.2 PMSM坐标变换 5.2.3 PMSM数学模型 5.2.4电流极限圆和电压极限圆 5.3永磁同步电动机恒转矩控制

5.3.1id =0控制 5.3.2最大转矩/电流比控制 5.3.3恒磁链控制 5.3.4 cosφ=1控制 5.4永磁同步电动机弱磁控制 第六章全文总结与展望 摘要 第一章绪论 1.1引言 在未来的一段时间内,我国将成为世界最大的汽车消费国,2010年我国汽车增加到五千六百万辆以上,不过空气污染源也会大幅度提高,空气污染将有64%来自于汽车尾气的排放,在2020年左右,我国石油消费量将超过4.5亿吨,而我国能源系统效率平均低于国际先进水平10%,但是我国60%石油消费量依赖于进口,要是仍然采用传统的内燃机技术发展汽车工业将会使我国为此付出巨大代价和对环境保护也会造成巨大的压力。在这种严峻的形势下,我国汽车工业的未来发展需要我们好好思考。 根据现在世界人口和汽车的增长趋势来看,今后50年中,世界人口和汽车数量分别从60亿增加到100亿和7千万增加到2亿5千万辆以上。若这些车辆都采用内燃机,能源需求和空气污染将会给人类造成巨大的压力和损坏。因此我们必须开发节能环保型以及高效智能型的交通车辆,只有这样才能在本世纪实现交通的可持续发展。能源危机曾经对世界经济带来严重影响,因此石油毕源的争夺更加强烈,石油纠纷在国际上也不断发生,甚至为了争夺石油资源而爆发的战争在近几年也不断发生。因此石油资源的解决是当今世界每个国家所面临的首要考虑的问题,石油资源解决的好坏是当今世界是否稳定的重要因素。 电动汽车是将机算机、电子与化学各学科领域中的高新技术于一体,是汽车、计算机、电力拖动、新材料、新能源、功率电子、自动控制、化学电源等工程技术中最新成果的集成产物。混合动力电动汽车、燃料电池汽车和纯电动汽车对世界汽车的发展以及环境的保护都起到一个前所未有的阶段,具有里程碑的意义。 1.2电动汽车的定义及优势 我国政府已将电动汽车的快速发展列入我国“十五”国家863计划,加大了对电动汽车开发和产业化的投入,与世界发达国家电动汽车发展接轨,目前已经取得了一定得成就。我国不少高等院校、相关的研究以及国内部分企业都加强了对电动汽车研究开发的力度,加快了汽车事业的发展速度。目前我国纯电动汽车研发比较顺利,可以小批量生产与应用;与此同时混合动力汽车的发展目前它的产业化也可以说具备条件;值得炫耀的是我国的燃料电池汽车研发目前达到国际先进水平。因此我国建立电动汽车产业,逐步实施车用能源动为系统转型,实现节能环保目标奠定了技术基础。 1.2.1电动汽车的定义 电动汽车是指以车载电源为动力,用全部或部分由电机驱动,并配置大容量电能储存装置,符合道路交通、安全法规各项要求的车辆 1.2.2电动汽车的优势 现如今各国都在发展电动汽车事业,是由于它具有以下几个方面的优点:

混合电动汽车模糊控制策略仿真分析

(研究生课程论文) 汽车动力学 论文题目:混合电动汽车模糊控制策略仿真分析 2014年1 月4 日 混合电动汽车模糊控制策略仿真分析 摘要:本文以ADVISOR软件中本田In sight的整车模型为研究对象,该车型搭载了ISG启动电机,是一款典型的并联式混合动力汽车。文章首先对其主要模块:车辆动力学、发动机、电机和蓄电池的仿真模型进行了详细地数学建模分析。然后基于后向仿真的原理在MATLAB/SIMULINK 环境中建立了模糊逻辑的 控制策略。对ADVISOR软件进行二次开发,将建立的控制策略嵌入到ADVISOR操作系统中进行仿真测 试。最后,在ADVISOR的GUI界面中选择1.0L、41kW的发动机和10kW的电机,选择典型城市道路循环工况 (UDDS )对模糊控制策略进行性能仿真,验证该控制策略下车辆的动力性、燃油经济性与排放性能并记录仿真结果。 关键词:混合动力电动汽车、ISG、ADVISOR、控制策略、后向仿真 Abstract: The paper takes Honda In sight parallel hybrid electric vehicle (HEV) as the research subject, which is assisted by an integrated starter generator. We firstly mathematical modelingandanalyzing the main units of

theInsight vehicle simulation model (such as: the vehicle dynamics module, engine module, and motor controller module) in the ADVISOR software, the n formulates the Rule-based Con trol Strategy and the Fuzzy Logic Con trol Strategy in the MATLAB/SIMULINK environmentbased on the Backward Simulation principle. In order to embed the two control strategies into the operating system of ADVISOR, the paper redeveloped the ADVISOR2002 for the off-line simulation of the twocontrol strategies. Finally, we chose1.0L, 41kW engine and 10kW motor in theGUI in terface of ADVISOR, test the vehicle ' fuel economy, emissi on, and power performa nee in the UDDS con diti ons, and recorded the simulati on results in the table. Keywords:Hybridelectric vehicle; ISG; ADVISOR; control strategy; backward simulatio n 1仿真软件MATLAB/SIMULINK 及ADVISOR的介绍 1.1 MATLAB/SIMULINK 简介 MATLAB的全称是矩阵实验室。不仅具有强大的数值计算能力,它还可以提供了专业的文字处理、符号计算、实时控制和可视化建模仿真等功能。SIMULINK是MATLAB软件下的一个模块,它主要是用来 对动态系统各种信号流进行建模、仿真计算和结果分析的MATLAB软件包。 SIMULINK在混合动力汽车模拟仿真过程中的主要作用是:利用提供的现有模块对混合动力系统近似 建模、仿真和分析,可以在设计之初,根据仿真结果对模型进行调整和修改,也对设计的参数选定有一定的帮助,对控制系统也能进行一定的优化。 1.2 ADVISOR 简介 ADVISOR是美国能量部为了便于管理一些关于混合动力的动力系统的项目在二十世纪九十年代基于 MATLAB开发的,并在1998年命名为ADVISOR⑴,ADVISOR的主要功能有以下几点: (1)ADVISOR的主要功能是模拟各种汽车(传统汽车,电动汽车等)在整个循环工况中的车辆动力性能、经济燃油性指标以及排放指标,并具有强大的动力性分析、能量流分配分析、效率数据分析能力[2]。 (2 )可用来对设计参数的优化匹配,包括整车质量、滚动阻力系数、变速比等,为优化整车及车辆

相关文档
最新文档