复合材料期末复习资料

复合材料期末复习资料
复合材料期末复习资料

复合材料C 复习

第一章概论

1. 复合材料的定义?

复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。

三要素:基体(连续相)增强体(分散相)界面(基体起粘结作用并起传递应力和增韧作用)

复合材料的特点:(明显界面、保留各组分固有物化特性、复合效应,可设计性)(嵌段聚合物、接枝共聚物、合金:是不是复合材料??)

2、复合材料的命名

f(纤维),w(晶须),p(颗粒)比如:TiO

/Al

2p

3. 复合材料的分类:

1) 按基体材料类型分为:

聚合物基复合材料;金属基复合材料;无机非金属基复合材料(陶瓷基复合材料)。

2)按增强材料分为:

玻璃纤维增强复合材料;碳纤维增强复合材料;有机纤维增强复合材料;晶须增强复合材料;陶瓷颗粒增强复合材料。

3) 按用途分为:功能复合材料和结构复合材料。

结构复合材料主要用做承载力和此承载力结构,要求它质量轻、强度和刚度高,且能承受一定温度。

功能复合材料指具有除力学性能以外其他物理性能的复合材料,即具有各种电学性能、磁学性能、光学性能、声学性能、摩擦性能、阻尼性能以及化学分离性能等的复合材料。

第二章增强体

1、增强体

定义:结合在基体内、用以改进其力学等综合性能的高强度材料。

要求: 1) 增强体能明显提高基体某种所需性能;2) 增强体具有良好的化学稳定性;3) 与基体有良好润湿性。

分类: f,w,p

2、纤维类增强体

特点:长径比较大;柔曲性;高强度。

?玻璃纤维

主要成分:SiO

2

性能:拉伸强度高;较强耐腐蚀;绝热性能好。(玻璃纤维高强的原因(微裂纹)及影响因素(强度提升策略:减小直径、减少长度、降低含碱量,缩短存储时间、降低湿度等))

分类:无碱(E玻璃)、有碱(A玻璃)

制备:坩埚法(制球和拉丝)、池窑法(熔融拉丝)。

浸润剂作用:(i) 粘结作用,使单丝集束成原纱或丝束;(ii) 防止纤维表面聚集静电荷;(iii)进一步加工提供所需性能;(iv) 防止摩擦、划伤。(无偶联剂作用)

玻璃纤维表征:(i) 定长法:“tex”(含义); (ii) 质量法:“支”(含义)

?硼纤维

芯材:钨、碳和石英

制备:化学沉积(CVD)法原料:卤化硼或氢化硼

形貌:玉米棒状(W芯)光滑(C芯)

表面涂层:SiC (防止脆性相的产生 or 便于与基体结合)

目前比模量和比强度最高的陶瓷增强纤维

?碳纤维

1)制备:有机纤维碳化法

有机纤维前驱体满足条件:碳化过程不熔融,保持纤维形态,碳化收率高···三种重要的前驱体:聚丙烯腈;黏胶纤维(人造丝);沥青纤维。

以PAN为例(制造高强度、高模量碳纤维多选用聚丙烯腈):拉丝--牵引--稳定化--碳化--石墨化

拉丝:即PAN原纤维制备,湿法纺丝、干法纺丝,不能熔融纺丝;PAN特性:受热分解不熔融。

施加牵伸力目的在于使纤维产生择优取向,提高强度和模量。

碳纤维的表面处理方法(见第4章)

石墨纤维和碳纤维的区别:处理温度不同、C含量不同、晶型不同

碳纤维结构:乱层石墨结构。

特性:导热系数较高、线膨胀系数具有负的温度效应(可以抵消热胀冷缩现象)例1)碳纤维增强复合材料是在合成树脂的基体中加入了碳纤维做增强体,具有韧性好等特点,下列物质中可用于制造的是()。

A、电话亭和餐桌椅

B、网球拍和钓鱼竿

C、飞机用隔热瓦

2)在PAN法制备CF的工艺过程中,为什么要进行预氧化、碳化和石墨化三个处理过程?(P20)

聚丙烯腈纤维(PAN)是线性高分子结构,耐热性差,高温会裂解,不能经受碳化的高温得到碳纤维,预氧化可避免直接碳化处理时爆发产生有害的闭环和脱氢

保护下进行热解反应,将等放热反应,防止后续工序中纤维熔并。碳化是在N

2

结构中不稳定部分与非碳原子裂解出去,同时进行分子间的缩合,形成碳素缩合环。石墨化处理可以使碳纤维发生石墨化结晶,形成石墨纤维,以较大幅度提高碳纤维的模量

?SiC纤维

1) 特点:高比强度、高比模量、高温抗氧化性、优异的耐烧蚀性、耐热冲击性和吸波隐身性能等。

2) 碳纤维增强铝基复合材料可用于飞机、导弹、发动机的高性能结构件。 碳化硅纤维增强聚合物基复合材料,可以吸收或透过部分雷达波;作为雷达天线罩、火箭、导弹和飞机等飞行器部件的隐身结构材料,和航空、航天、汽车工业的结构材料与耐热材料。

3) 制备: (i) 化学气相沉积法 CH 3SiCl 3 → SiC ↓ +3 HCl ↑

(ii) 先驱体法: (Nicalon) 制备聚碳硅烷、熔融纺丝、不熔化处理和高温烧成。

3、晶须

1) 晶须与纤维的区别: ①晶须是单晶;纤维可以是非晶、单晶或多晶; ②晶须直径< 3 μm; 纤维直径几微米至几十微米。 ③晶须较纤维缺陷少,强度高(机械强度近似相邻原子之间的作用力)、模量大。

2) 晶须主要分陶瓷晶须(Al 2O 3、SiC) 和金属晶须两大类。

3) 唯一一种具有空间结构的晶须: ZnO 晶须

4、颗粒

颗粒增强体(炭黑)与填料(滑石粉、CaCO 3)的区别:前者以增强为主要目的,

后者以填充体积为主要目的。

刚性颗粒增强体:指具有高强度、高模量、耐热、耐磨、耐高温的陶瓷和石墨等非金属颗粒,如碳化硅、氧化钛、氮化硅、石墨、细金刚石等。

延性颗粒增强体:主要为金属颗粒,加入到陶瓷基体和玻璃陶瓷基体中增强其韧性,如Al 2O 3中加入Al ,W C 中加入Co 等。金属颗粒的加入使材料的韧性显著提高,但

高温力学性能会有所下降。

例:下列哪一项不是颗粒增强体的特点( )。

A 、选材方便

B 、力学性能取决于颗粒的形貌、直径、结晶完整度、体积分数等

C 、成本高

5、有机高分子纤维

? Kevlar 纤维(芳纶纤维):聚合物大分子的主链由芳香环和酰胺键构成。

(PPTA )

合成方法:1) PPTA 分子合成(P42);2) 纺丝: 湿纺、干喷和干喷—湿纺(溶致液晶)

可用来制备防弹衣

Kevlar 纤维化学结构特点:含有大量苯环,内旋转困难,为处于拉伸状态的刚性伸直链晶体。苯环与酰胺键交替排列对称性好,结晶性好。分子间有氢键。 ? 芳香族聚酯纤维 :可以进行熔融纺丝。

? UHMW-PE :密度最低的高性能纤维。

第三章 复合理论

? 复合理论:包括组分相(基体、增强体)的合理设计、组分相间的复合机理

(复合效应与增强原理)。

1、复合材料设计的原理

复合材料为什么具有可设计性?

2、复合材料的复合效应

? 线性效应(平均效应、平行效应、相补效应、相抵效应)

? 平均效应:

密度、单向纤维复合材料的纵向杨氏模量等 单向纤维复合材料的横向杨氏模量等

例: SiC f /硼硅玻璃复合材料的强度随增强纤维体积含量线性增加反映的是复合

线性效应中的( )

A 、平均效应

B 、平行效应

C 、相补效应

D 、相抵效应

? 平行效应:c

i K K

? 即:复合材料的某项性能与某一组分的该项性能相当。(如玻璃纤维增强环氧树脂的耐蚀性能与基体相当)

? 相补效应:组成复合材料的基体与增强体,在性能上互补,从而提高了综合性能,显示出相补效应。

? 相抵效应:基体与增强体组成复合材料时,组分间性能相互制约,限制了整体性能提高(性能低于混合定律的预测值),则复合后显示出相抵效应。

(脆性的纤维增强体与韧性基体组成的复合材料,当两者界面结合很强时,复合材料整体显示为脆性断裂) ()

11()c i i i c i K K K K φφ==∑∑并联模型串联模型

? 非线性效应(相乘效应、诱导效应、系统效应、共振效应)

? 相乘效应: (/)(/)/X Y Y Z X Z ?=

例: 用作温度自控发热体的石墨粉/聚合物复合材料,可以达到自动控温的效果,其利用的是复合效应的________。

? 诱导效应:诱导另一相材料产生特殊的界面层,传递载荷,改变功能。

(在碳纤维增强尼龙或聚丙烯中,由于碳纤维表面对基体的诱导作用,致使界面上的结晶状态与数量发生了改变,如出现横向穿晶等,这种效应对尼龙或聚丙烯起着特殊的作用。)

? 系统效应:复合材料具有单个组分不具有的某种性能。(涂膜的硬度大于基体和膜层硬度之和)

? 共振效应(强选择性效应):A 组分的大多数性能受到抑制,而其某一项性能

充分发挥。(导电不导热)

例:彩色胶卷仅含有三种感光乳剂层却能记录各种颜色,利用了复合效应中的()

A 、诱导效应

B 、系统效应

C 、相补效应

3、复合材料的增强机制

? 颗粒增强机制(颗粒切过、颗粒未切过)

? 颗粒切过增强机制

1) 适用于:颗粒的尺寸较大(> 1 μm),自身强度不高,结合力较强

2) 受力特点:基体承担主要的载荷,颗粒阻止位错的运动,并约束基体的 变形。

3) 位错切过强化:(有序增强机制、界面强化机制、共格应变强化机制等)

4) 颗粒的尺寸越小,体积分数越大,强化效果越好。

? 颗粒未切过增强机制(颗粒较小,<1 μm )

● 低温、高外加应力----位错绕过理论(Orowan 机制)(注意:有位错环)

1) 硬质颗粒如Al 2O 3,TiC ,SiC 阻碍基体(金属基)中的位错运动或分子链

(高聚物基)运动。

2) 载荷主要由基体承担,弥散微粒阻碍基体的位错运动。

3) 颗粒尺寸越小,体积分数越大,强化效果越好。一般V p 为1%~15%,d p 为0.001μm ~ 0.1μm 。

● 高温、低外加应力----位错攀移机制

1) 形式:局部攀移和整体攀移

● 残余应力强化机制:增强体颗粒与基体的膨胀系数和弹性模量存在差异,

使得裂纹在界面处发生偏转(消耗更多能量),起到增韧补强复合材料。 ● 影响颗粒增强因素:颗粒的性质、基体性质、结合界面、制备工艺(P61)。

? 纤维增强机制

受力特点:高强度、高模量的纤维承受载荷,基体只是作为传递和分散载荷的媒介。

● 单向排列连续纤维增强原理(单向长纤维)纵向:

1) 初始阶段(纤维、基体、复合材料具有相同的应变)

c f f m m

E E V E V =+

纤维/基体弹性模量的比值↑,纤维体积含量↑,则纤维承载比↑。

2) 断裂顺序和断裂强度: (会分析,判断谁先断裂,然后该材料断裂后另一种材料能否承受全部载荷)

? 纤维的强化作用取决于纤维与基体的性质、二者的结合强度、纤维在基体中

的排列方式。

? 为了达到纤维增强的效果,须遵循以下原则:(简答题)

1) 纤维的强度和弹性模量应远高于基体(使纤维尽可能多的承担外加负荷);

2) 纤维与基体间应有一定的界面结合强度,以保证基体所承受的载荷能通过界面传递给纤维,并防止脆性断裂;

3) 纤维的排列方向要与构件的受力方向一致;

4) 纤维与基体的热胀系数应匹配(纤维的热膨胀系数略大于基体);

5) 纤维与基体不能发生使结合强度降低的化学反应;

6) 纤维所占体积分数、纤维长度和直径及长径比等必须满足一定要求。

? 复合材料的物理性质

1) 热膨胀系数: 满足平均效应。

一般无机材料的热膨胀系数较聚合物的要小得多,所以,以无机材料为增强体的聚合物基复合材料其热膨胀系数要较纯聚合物的小,其数值接近于金属的热膨胀系数。

2)导热系数: 不满足平均效应,复合材料的导热系数小于组分的导热系数 空气为填料的泡沫塑料是良好的隔热材料,而以碳纤维、金属粉等为增强体的复合材料则可作为导热性复合材料使用。

3) 阻燃性质:

i) 氧指数:聚合物着火后刚够维持燃烧时的氧气在试验气体(氧、氮混合气体)中的最小百分含量。 (聚合物阻燃性的判据)

ii) 阻燃增强体: 三氧化二锑(与有机卤化物合用);钼化物(高效抑烟);磷化物;氢氧化铝

iii) 满足以下条件的才能成为有效的阻燃剂:产生不燃性气体的温度略低于聚合物热分解温度;在复合塑料的混炼、成型温度下不产生不燃性气体。

第四章 界面理论

? 复合材料的界面:复合材料的界面是指基体与增强体之间化学成分有显著变化、能够彼此结合、传递载荷的微小区域。(界面结构与性质都不同于两相中的任何一相)界面起“纽带”和“桥梁”作用。

? 界面的种类:1) 机械结合界面(钢筋混凝土中钢筋表面有螺纹的作用:表面越粗糙,互锁作用越强,机械粘结作用越有效);

2) 溶解和润湿结合界面(基体润湿增强材料,相互之间发生原子扩散和溶解,形成结合;在制备聚合物基复合材料时,树脂对增强材料的浸润性是指树脂能否均匀地分布在增强材科的周围,这是树脂与增强材料能否形成良好粘结的重要前提);

3) 反应结合界面(偶联剂);

4) 交换结合界面(生成化合物并通过扩散发生元素交换,如分子链的缠结);

5) 混合结合界面

?界面的作用:(传递效应;阻断效应;不连续效应;散射和吸收效应;诱导效应)

例1:复合材料的界面有哪些作用?

界面的作用归纳为几种效应:传递效应:界面能传递力,能将外力传递给增强体,在基体和增强体间起“桥梁”作用。阻断效应:结合适当的界面有阻止裂纹扩展、中断材料破坏、减缓应力集中的作用。不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现等现象,比如抗电性、尺寸稳定性等。散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生散射和吸收,如透光性、隔热性、隔音性等。诱导效应:一种物质(增强体)的表面结构使另一种(聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由此产生一些现象,如强的弹性、低的膨胀性等。

例2:在纤维增强聚合物基复合材料中,纤维与基体界面阻止裂纹进一步扩展,从而可提高复合材料的韧性。这里界面起到的主要作用是___ ___。

?界面的润湿性:

表示方法:接触角。

润湿是组分良好粘结的必要条件,并非充分条件。

?聚合物基复合材料的界面

1) 聚合物基复合材料分为热塑性聚合物基复合材料和热固性聚合物基复合材料。

i) 热塑性复合材料的成型分两步:①热塑性聚合物基体的熔体和增强体之间的接触与润湿;②复合后体系冷却凝固成型。

ii) 热固性复合材料的成型工艺:常用预先形成预浸料(干法、湿法)的办法,以提高聚合物基体对增强体的润湿程度。

2)界面形成:聚合物基复合材料的界面在成型过程中形成。分为两个阶段。(P89)第一阶段是基体与增强纤维的接触与浸润过程。由于增强纤维对基体分子的各种基团或基体中各组分的吸附能力不起着同,它总是要吸附那些能够降低其表面能的物质,并优先吸附那些能较多降低表面能的物质,因此,界面聚合层在结构上与聚合物本体是不同的。第二阶段是聚合物的固化阶段。在此过程中聚合物通过物理的或化学的变化而固化,形成固定的界面层。

3)界面层的包括:界面的结合力、界面的厚度和界面的微观结构等几个方面。

4)界面作用机理:(偶联剂的作用??)

?浸润吸附理论(两相充分润湿,两相界面处产生的物理吸附主要是由范德华力的作用实现粘接;产生良好界面的条件:①液体的粘度尽量低;

②γ

S 略大于γ

L

例:若双酚A环氧树脂的表面张力为42.5×10-5N/m,聚酯树脂为35×10-5N/m,而给定的玻璃纤维的表面张力为38.3×10-5N/m,选用________作为玻纤增强聚合物复合材料的基体较为合适。

?化学键理论(基体树脂表面的活性官能团与增强体表面的官能团能起化学反应,大部分偶联剂的作用)

?物理吸附理论:机械咬合和基于次价键作用的物理吸附。

?变形层理论:(增强体优先吸附树脂分子在界面上形成可塑的“柔性层”,可以起到松驰界面上应力集中的作用)

?扩散层理论、静电吸引等

例:碳纤维复合材料,当碳纤维经过某些柔性聚合物涂层处理后,力学性能可改善。而柔性聚合物与树脂和碳纤维都不起化学反应。下列( )不是此时复合材料界面的主要作用?

A. 浸润吸附

B.化学键增强

C. 物理吸附理论

5)改善界面结合的原则:i) 改善树脂基体对增强材料的浸润程度 (延长浸渍时间,增大体系压力、降低熔体粘度; 对增强体进行表面改性,增加表面能,提高浸润性;增强体比表面积增加,界面增大,粘合强度提高);ii)适度的界面黏结;iii)减少复合材料成型中形成的残余应力;iv)调节界面内应力、减缓应力集中。

增强体的表面处理:

1) 玻璃纤维(偶联剂的定义)

?表面处理剂主要分为有机铬络合物和有机硅烷两大类。

i) 有机铬络合物 (沃兰)

作用机理(P100)

ii) 有机硅烷(P101)

2) 碳纤维

?表面处理机理:

i) 表面粗糙度:增加表面粗糙度有利于碳纤维与基体树脂的机械粘合。

ii) 石墨微晶大小:微晶越小,活性碳原子的数目就越多,越有利于纤维与树脂的粘合。

iii) 碳纤维表面官能团种类与数量:官能团如 -OH、-NH

2

、-COOH等。

经表面处理后,碳纤维表面石墨微晶变细,不饱和碳原子数目增加,极性基团增多,这些都有利于复合材料性能改善。

第五章聚合物基复合材料

?聚合物基复合材料的特点:高的比强度、比模量;抗疲劳性能好;减振性好;

耐烧蚀性卓越;可设计性强,成型工艺简单;过载安全性好。

?聚合物的基体:

热固性:不饱和聚酯树脂、环氧树脂、酚醛树脂等

(优点:良好的工艺性;宜于在常温常压下浸渍纤维;固化后具有良好的耐化学药品性和抗蠕变性。缺点:预浸料需低温冷藏且贮存期有限;成型周期长和材料韧性差)

热塑性:聚丙烯、聚酰胺、聚碳酸酯、聚醚砜、聚醚醚酮等

(优点:具有高断裂韧性(高断裂应变和高冲击强度);预浸料不需冷藏且贮存期无限、成型周期短、可再成型、易于修补、废品及边角料可再生利用。

缺点:熔体或溶液粘度很高,成型要在高温高压下进行;成品耐热性、抗蠕变性)

聚合物基复合材料结构包括:链结构及聚集态结构。

?基体材料的作用:i) 均衡载荷、传递载荷;ii) 保护纤维,防止纤维磨损;iii)决定复合材料一些性能,如耐热性、耐腐蚀性、耐溶剂、抗辐射及吸湿性、横向性能、剪切性能;iv)决定复合材料成型工艺方法及工艺参数选择;v)对复合材料的一些性能有重要影响,如纵向拉伸、尤其是压缩性能、疲劳性能、断裂韧性等。

?不饱和聚酯树脂

1、组成:不饱和二元酸或酸酐、饱和二元酸或酸酐与二元醇缩聚得到的低分子量聚合物。

2、合成:

3、原材料:

二元酸:不饱和二元酸 + 饱和二元酸

不饱和酸:顺丁烯二酸酐(顺酐)、反丁烯二酸(反酸)(作用:提供不饱和度,改善固化速率)

饱和酸:邻苯二甲酸酐,间苯二甲酸酐、己二酸(作用:①调节分子链中的双键

密度,降低树脂的脆性,增加柔顺性;②改善聚酯在烯类单体中的溶解度,并降低成本。)

二元醇:常用乙二醇、丙二醇、二乙二醇和二丙二醇

交联剂:烯类单体,既是溶剂,又是交联剂。能溶解不饱和聚酯树脂,使其双键间发生共聚合反应,得到体型产物,以改善固化后树脂的性能

(苯乙烯:与UP相容性良好,固化时与聚酯中的不饱和双键能很好的共聚,固化树脂物理性能良好,价格便宜,是最常见的交联单体)

固化剂:是在促进剂或其它外界条件作用下而引发树脂交联的一种有机过氧化物,又称为引发剂。

促进剂是能促使有机过氧化物在室温下就能分解而产生自由基的物质。(实现室温固化)

(如:二甲基苯胺、二乙基苯胺、二甲基甲苯胺等)

固化过程的特征:凝胶阶段(失去流动性);硬化(定型)阶段;完全固化阶段凝胶阶段:从加入固化剂、促进剂以后算起,直至树脂凝结成胶冻状而失去流动性的阶段。

?环氧树脂(Epoxy Resins)

1) 什么是环氧树脂?其结构特点是什么?

分子结构中含有两个或两个以上环氧基团,并在适当的化学试剂存在下能形成三维网状固化物的化合物的总称。结构特点:分子链中含有活泼的环氧基团。

2) 环氧树脂的特性指标有哪些?

i) 环氧当量(或环氧值):环氧当量是指含有1mol环氧基的环氧树脂的质量克

数;环氧值是指100 g

ii) 羟值(或羟基当量) :羟基当量是指含有1mol羟基的环氧树脂的质量克数;羟值是指100 g环氧树脂中所含的羟基的摩尔数

iii) 酯化当量; iv) 软化点;v) 氯含量

3)缩水甘油醚类环氧树脂中最主要且产量最大的是什么环氧?它有哪两类物质反应得到?

双酚A型环氧树脂;属于缩水甘油醚类;可由双酚A(二酚基丙烷)和环氧氯丙烷在NaOH催化下反应制得。

环氧氯丙烷与双酚A的摩尔比必须大于1:1才能保证聚合物分子末端含有环氧基。

4) 环氧树脂的固化机理和常用的固化剂有哪些?

环氧树脂的固化是通过加入固化剂,利用固化剂中的某些基团与环氧树脂中的环氧基或羟基发生反应来实现的。常用的固化剂为:胺类固化剂、酸酐类固化剂、

合成树脂类固化剂、聚硫橡胶类固化剂。

胺类固化剂:氨基与环氧基反应有严格定量关系,氨基上一个活泼氢和一个环氧基反应。

例: E-51环氧树脂,用三乙烯四胺作固化剂,100 g环氧理论上需要固化剂的含量是多少?

?聚合物基复合材料的制备工艺

聚合物基复合材料的制备工艺特点:(1) 材料的形成与制品的成型同时完成,复合材料的制备过程也就是复合材料成品的生产过程;(2) 聚合物基复合材料成型方便。

1) 聚合物基复合材料的制备主要包括如下过程:预浸料的制备、制件的铺层、固化及制件的后处理与机械加工等。

?预浸料的制备:

?预浸料是指将树脂体系浸涂到纤维或纤维织物上,通过一定的处理过程后贮存备用的半成品。

热固性预浸料:溶液浸渍法和热熔法(P139)

例:溶液浸渍法和热熔法各有何优缺点?

溶液浸渍法可充分浸渍纤维增强体,适宜制备薄型或厚型预浸料,且设备造价低廉。但是预浸料有溶剂残留,成型时易成孔隙,影响复合材料性能。

热熔法无需使用溶剂,但是难以浸透厚度较大的纤维,当树脂粘度较高时基体也难以浸渍纤维。

热塑性预浸料:溶液预浸;熔融预浸;膜层叠;粉末浸渍;纤维混杂。(P141)

?手糊成型

原料:

树脂主要为不饱和聚酯树脂(用量约占各类树脂的80% ),其次是环氧树脂。

增强材料主要是玻璃纤维,其次碳纤维、芳纶纤维和其他纤维。

为调节树脂粘度,有时还需加入一定量的稀释剂。

手糊成型的辅助材料主要有填料和颜料。(降低固化收缩率和热膨胀系数;改善制品性能;增粘或赋予触变性;降低成本常用CaCO

3

、石棉、铝粉、石英粉、

Al

2O

3

粉、TiO

2

(提高粘附力))

脱模剂:外脱模剂(如:聚酯薄膜、聚乙烯醇溶液、凡士林油等)

模具材料:如玻璃钢、木材、石蜡等

?工艺流程:增强材料剪裁→磨具准备→涂脱模剂→喷涂胶衣层→成型操作→脱模→修边→装配。

?树脂胶液的配置:胶液的工艺性是影响手糊制品质量的重要因素。胶液的工艺性主要指胶液粘度和凝胶时间。

1) 胶液粘度,表征流动特性。对手糊作业影响大,粘度过高不易涂刷和浸透增强材料;粘度过低,在树脂凝胶前发生胶液流失,使制品出现缺陷。粘度可通过加入稀释剂调节。

2) 凝胶时间。凝胶时间过短,由于胶液粘度迅速增大,不仅增强材料不能被浸透,甚至发生局部固化,使手糊作业困难或无法进行。反之,如果凝胶时间过长,不仅增长了生产周期,而且导致胶液流失,交联剂挥发,造成制品局部贫胶或不

能完全固化。

?胶衣层作用:提供颜色;增强胶衣层(防止龟裂);有利于胶衣层与结构层(玻璃布)的粘合。

?手糊成型特点:1) 操作简便;2) 投资少、费用低、能生产大型和复杂制品、制品可设计性好;3) 属劳动密集型、成型效率低;4) 制品质量受操作者技术水平限制;5) 生产周期长,产品强度较其它方法低。

?模压成型

?模压成型是将一定量的模压料放入金属对模中,在一定的温度和压力作用下固化成型制品的一种方法。

?成型过程:1) 将一定量的模压料置于敞开的金属模型腔内,闭模后加热使其熔化;2) 以一定温度和压力,使型腔内的模压料在温度和压力作用下熔融并充满型腔,形成与模腔相同形状的模制品;3) 再经加热使树脂进一步发生交联反应而固化,或者冷却使热塑性树脂硬化,脱模后得到复合材料。?模压成型的优缺点:优点:①较高的生产效率;②制品尺寸准确、表面光洁;③多数结构复杂的制品可一次成型、无需有损制品性能的二次加工;④制品外观及尺寸的重复性好,容易实现机械化和自动化等。缺点:①模具设计制造复杂;②压机及模具投资高;③制品尺寸受设备限制,一般只适合制造批量大的中、小型制品。

?喷射成型

?成型过程:1) 将分别混有促进剂和引发剂的不饱和聚酯树脂从喷枪两侧的两个喷口喷出,同时将玻璃纤维无捻粗纱用切割机切断并由喷枪中心喷出,这三组喷射物相遇并均匀混合后沉积到模具上。2) 待沉积到一定厚度,用手辊液压,使纤维浸透树脂、压实并除去气泡,再进行加热或常温固化;3) 固化后脱模得到制品。

?喷射成型对所用原材料有一定要求,例如树脂体系的粘度应适中,容易喷射雾化、脱除气泡和浸润纤维以及不带静电等

?喷射成型的优缺点:优点:①生产效率比手糊提高2~4倍,生产率可达15kg/min;②可用较少设备投资实现中批量生产;③可用玻璃纤维无捻粗纱代替织物,材料成本低,产品整体性好,无接缝;④可自由调变产品壁厚、纤维与树脂比例。缺点:①现场污染大;②树脂含量高;③制品强度较低。

?拉挤成型(型材)

?拉挤成型是将浸渍过树脂胶液的连续纤维束或带状织物在牵引装置的作用下通过成型模定型,在模中或固化炉中固化,制成具有特定横截面形状和长度不受限制的复合材料型材的方法。拉挤成型属于连续成型工艺。可用切割机将拉挤的型材切割成要求的长度。

?拉挤成型工艺流程如下:玻璃纤维粗砂排布→浸胶→预成型→挤压模塑及固化→牵引→切割→制品。

?原料:1) 树脂基体:要求粘度低、固化过程无挥发物等;2) 热固性基体主要有不饱和聚酯树脂、环氧树脂、乙烯基酯树脂等;热塑性基体主要有聚丙烯、ABS、尼龙、聚碳酸酯、聚砜、聚醚砜、聚亚苯基硫醚等;3) 增强体:要求纤维本身强度高、不易产生静电、集束性好;4) 大部分是玻璃纤维,其次是聚酯纤维和其他纤维。在玻璃纤维中,应用最多的是无捻粗纱;5) 辅助材料:内脱模

剂、填料等;6) 内脱模剂:硬脂酸锌、硬脂酸钙、硬脂酸铝和烷基磷酸酯等。?优缺点:优点:①生产效率高,便于实现自动化;②制品中增强材料的含量一般为40 ~ 80 % ,能够充分发挥增强材料作用,制品性能稳定可靠;③生产过程中无边角废料,产品不需后加工,因此较其他工艺省工、省原料、省能耗;

④生产过程中树脂损耗少;⑤制品的纵向和横向强度可任意调整,以适应不同制品的使用要求;⑥其长度可根据需要定长切割。缺点:产品形状单调,只能生产线形型材,而且横向强度不高。

第六章陶瓷基复合材料

?定义:以陶瓷材料为基体,以高强度纤维、晶须、晶片和颗粒为增强体,通过适当的复合工艺所制成的复合材料。

?特点:熔点高,耐高温;硬度大;化学稳定性好;韧性差(限制陶瓷材料的主要缺陷)

?陶瓷基复合材料的基体:(P159)

1) 氧化物陶瓷基体:主要有Al

2O

3

陶瓷、ZrO

2

陶瓷等;2) 氮化物陶瓷基体:如

Si

3N

4

陶瓷、AlN陶瓷、BN陶瓷等;3) 碳化物陶瓷基体:如SiC陶瓷、ZrC陶瓷、

WC陶瓷、TiC陶瓷等;4) 玻璃和玻璃陶瓷基体:高硅氧玻璃、硼硅玻璃、铝硅玻璃,铝锂硅酸盐玻璃陶瓷等。

微晶玻璃:是通过加入晶核剂等方法,经过热处理过程在玻璃中形成晶核,再使晶核长大而形成的玻璃与晶体共存的均匀多晶材料,又称为玻璃陶瓷。微晶玻璃的结构和性能与陶瓷、玻璃均不同,玻璃陶瓷的性能受晶相的数量、晶粒大小、界面强度以及玻璃相与晶相之间机械和物理相容性的影响。

?陶瓷基复合材料的增强体:

由于陶瓷基体中加入的增强体主要增强陶瓷的韧性,所以陶瓷基复合材料中的增强体通常也称为增韧体。

1) 长纤维: 在陶瓷基复合材料中使用得较为普遍的是碳纤维、玻璃纤维、硼纤维等;(增韧效果优越,但制备工艺复杂且纤维在基体中不易分布均匀)

2) 短纤维:将长纤维剪短(小于3mm),再与集体粉末混合,经过一定工艺,亦可实现增韧效果。

3) 晶须:晶须具有细小组织结构、缺陷少,而具有很高的强度和模量。常用的

有SiC、Al

2O

3

、Si

3

N

4

等陶瓷晶须。

4) 颗粒:有一定的韧化效果,同时还会带来高温性能的改善。但颗粒的增韧效

果不如纤维和晶须。常用的颗粒有SiC、Si

3N

4

等。

?碳/碳复合材料

1) 定义:碳纤维或石墨纤维为增强体,以碳或石墨为基体的复合材料,是具有特殊性能的新型工程材料,也称为“碳纤维增强碳复合材料”。

2) 特点:密度低;高的导热性;低的热膨胀系数;超高温力学性能;耐摩擦等。

3) C材料最大的弱点是易氧化。可加入抑制剂(B、B

2O

3

、B

4

C、ZrB

2

、B/SiC等)

抑制剂作用:600℃下可起到阻止碳氧化或替代碳氧化的作用。在600℃以上抑制剂又形成封闭剂。

注意各性质与用途的联系。

例:目前,作为一种新型的复合材料,碳/碳复合材料已经广泛应用于飞机刹车片,从而提高了其耐用性能。这里没有用到碳/碳复合材料的()性能。

A 高温耐磨擦性

B 热导性

C 密度低

D 生物相容性

第七章金属基复合材料

?定义:以金属或合金为基体,以高性能的纤维、晶须、晶片和颗粒为增强体,通过适当的复合工艺而制成的复合材料。

?特点:1) 相对于传统的金属材料来说,具有较高的比强度与比刚度;2) 与树脂基复合材料相比,具有优良的导电性与耐热性;3) 与陶瓷基材料相比,具有高韧性和高冲击性能。

?金属基复合材料组成特点:

1) 连续纤维增强金属基复合材料:

纤维是主要承载物体,纤维本身具有很高的强度和模量,而金属基体的强度和模量远远低于纤维。基体的主要作用应是以充分发挥增强纤维的性能为主,基体本身应有良好的塑性,与纤维应有良好的相容性,而并不要求基体本身有很高的强度。

2) 非连续纤维(短纤维、晶须、颗粒)增强金属基复合材料:

基体是主要承载物,基体的强度对复合材料具有决定性的影响,因此要获得高性能金属基复合材料,必须选用高强度金属或合金作为基体,这与连续纤维增强金属基复合材料中基体的选择完全不同。

第八章纳米复合材料

?聚合物/层状纳米无机物复合材料

?增强体:层状硅酸盐,最常见的是蒙脱土。

?插层复合法:是制备聚合物/层状硅酸盐(Polymer/ Lavered Silicate,PLS)纳米复合材料的方法。

1) 原理:首先将单体或聚合物插入经插层剂处理的层状硅酸盐片层之间,

进而破坏硅酸盐的片层结构,使其剥离成厚为1 nm、面积约为100 nm ×100 nm的层状硅酸盐基本单元,并均匀分散在聚合物基体中,以实现高分子与粘土类层状硅酸盐在纳米尺度上的复合。

2) 方法:①插层聚合法(原理)②熔体插层法③溶液插层法 (P249)

3) 插层剂的作用:利用离子交换的原理进入蒙脱土片层之间;扩张片层间

距;改善层间的微环境;使蒙脱土的内外表面由亲水性转化为疏水性;增强蒙脱土片层与聚合物分子链之间的亲和性;降低硅酸盐材料的表面能。

常用的插层剂有烷基铵盐、季铵盐、吡啶类衍生物和其他阳离子型表面活性剂。

复合材料教学大纲

《复合材料》教学大纲 一、课程名称:复合材料 二、学分、学时:2学分、32学时 三、教学对象:06级应用化学本科 四、课程性质、教学目标 《复合材料》是应用化学专业的一门学科基础课程,选修。复合材料是包括多学科、多领域的一门综合性学科。 本课程以恰当的比例分别对复合材料的各种增强材料、复合材料的各种基体材料以及聚合物基复合材料、陶瓷基复合材料等的性能、制备、应用和发展动态进行了较为系统的讨论。使学生在已有的材料科学的基础上,较为系统地学习复合材料的各种基体材料和增强材料,以及各种复合材料的性能、制备方法与应用,了解材料的复合原理,以及复合材料的发展方向。从而丰富和拓宽学生在材料及材料学方面的知识。 五、课堂要求 要求认真随堂听课,认真阅读指定教材,广泛查阅有关复合材料方面的最新资料。按教学要求完成专题综述论文的撰写,并进行课堂交流。 六、教学内容与基本要求 (一)绪论(2学时) 复合材料的国内外发展状况及今后的发展方向;复合材料的分类;复合材料的基本性能;复合材料的增韧增强原理;复合材料的特性;复合材料的应用。 基本要求:掌握复合材料的基本性能及分类,了解复合材料的应用。 (二)材料的基体材料 (6学时) 金属材料:金属的结构与性能、各种合金材料; 陶瓷材料:包括水泥、氧化物陶瓷、碳化物陶瓷、氮化物陶瓷; 聚合物材料:聚合物的种类、结构与性能,复合材料选用聚合物的原则。 基本要求:掌握常用基体材料的种类、结构性能及其选用的原则。 (三)材料的增强材料 (6学时) 玻璃纤维及其制品的分类、制备、性能与应用; 碳纤维的分类、制备、性能与应用; 陶瓷纤维、芳纶纤维、晶须的制备、性能与应用; 填料(高岭土、石墨、烹饪土、烹饪土、碳酸钙、化石粉等)的性能与应用。 基本要求:掌握常用增强材料的种类、性能及其选用的原则。 (四)传统复合材料的新发展 (4学时) 航空用先进树脂基复合材料的发展:先进复合材料在飞机上的应用、材料技术的进展、低成本复合制造技术的进展; 热塑性片材与热塑性树脂基复合材料:由片材制造成品的成型工艺、GMT片材在汽车工业中的应用; 熔体自发浸渗制备金属基复合材料:熔体自发浸渗制备金属基复合材料的原理及方法及研究现状; 陶瓷基层状复合材料:陶瓷制品的仿生结构构思、材料体系和制备技术、陶瓷基层状复合材料的结构性能及其强韧化机制、陶瓷基层状复合材料的发展方向。 基本要求:掌握常见几种传统复合材料的新应用、制备工艺与性能的基本知识,了解传统复合材料的发展方向。 (五)功能复合材料(4学时)

透光复合材料

透光复合材料 蒙晓霞,1100501227 中国计量学院材料学院11材料2班,杭州 310018 摘要透光复合材料是一种新型采光材料,它具有强度高、韧性好、比重小、不易碎、易成型等优点,在工农业与民用建筑等领域中得到日益广泛的应用,本文将从透光复合材料的优缺点及其分类、结构、原材料及其制备工艺和应用发展等方面展开做简要的相关介绍。 关键词透光,玻璃钢,透明树脂,玻璃纤维,手糊成型,防老化 随着现代科技的迅速发展,多年来沿用的采光材料——玻璃,已不能满足现代工农业技术发展的要求。因此,探求新的采光材料,越来越引起人们的重视。透光复合材料是一种新型的复合材料类采光材料,发展至今已有60多年的历史,主要研究方向为:提高机械化生产水平;提高耐老化性能,延长使用寿命;开发新产品,扩大使用范围。美国1949年首先研究出不饱和聚酯透明玻璃钢,20世纪60年代初期,透明玻璃钢才在建筑工程中得到推广应用,我国研究透明玻璃钢始于1965年,1975年武汉理工大学研究成功透光率达89%的高透明玻璃钢,从而扩大了透明玻璃钢的使用范围。如今,我国在透光玻璃钢防老化、工艺设备及应用技术等方面均取得了很大的进展。 1 透光复合材料的特点 透光复合材料是的一种以玻璃纤维或金属细丝增强合成树脂而复合制成的新型透光材料,俗称透明玻璃钢,又称为透明增强塑料或透明复合材料。其技术性能在很多方面都优于普通玻璃。 1.1透明玻璃钢的技术优越性 1)透明玻璃钢的抗冲击性能优越。不怕冰雹和碰撞,不像玻璃那样容易自爆,因此也比玻璃安全,可以用在玻璃不能胜任的地方,省去了采光窗口上下的防护网,提高采光系数。 2)透光率高。透明玻璃钢的透光率可达85%~90%,接近于玻璃,但它有足够的强度和刚度,兼有采光和结构材料的特点,是一种既能透光又能承受荷载的多功能材料,可以减少采光工程的结构材料如窗框窗扇,从而降低造价,提高采光系数。 3)轻质高强。透明玻璃钢的相对密度(1.5~1.9)小于玻璃,约为玻璃的60%~76%,其拉伸强度、弯曲强度比玻璃高1~8倍。因此,使用透明玻璃钢能大大降低采光制品的自重,增大产品尺寸,提高采光工程的安装效率等。 4)透光均匀。属非均质透光材料,光线透过时能产生散射作用。因此,用透明玻璃钢采光的建筑工程,室内光照均匀、无光斑、不眩目。 5)热导率小。隔热性强。 6)成型工艺简单。一次能够生产出造型复杂、尺寸任意的采光制品。 7)施工运输方便。制品质量小,抗冲击韧性大,施工运输过程损坏率低,可降低工程造价。 8)设计自由度大。透明玻璃钢最大的优点就是可按设计要求任意配色,使产品色泽鲜艳、美观,适用于各类装饰工程。 1.2透明玻璃钢的缺点 1)耐久性差。一般未经防护处理的透明玻璃钢,使用3~4年后强度和透光率便会降低。但是如果采用防老化措施(如用聚氟乙烯薄膜保护),其使用寿命可达20年以上。 2)透明度低。透明玻璃钢的透明度最高达80%,比玻璃(99%)低很多。

纺织结构复合材料中的纺织品

纺织结构复合材料中的纺织品 刘洪玲 (东华大学纺织学院,上海,200051) 摘 要:本文从结构的角度分别综述纺织结构复合材料中的几种纺织品:机织物、编织物、针织物和非织造布,分析各种织物的结构特点及性能,同时也指出了各种织物应用于复合材料时存在的不足。 关键词:纺织品,复合材料,结构,特性 中图分类号:TS10616 文献标识码:A 文章编号:1004-7093(2001)10-0002-05 1 概述 利用纺织品作为增强材料与基体相结合所形成的复合材料称为纺织结构复合材料。应用于复合材料的纺织品,广义上包括纤维束、纱线、机织物、针织物、编织物及非织造布等。由于纤维束和纱线并不是纺织所特有的,因此,一般只将机织物、针织物、编织物及非织造布等作为应用于复合材料的纺织品[1~3]。 以纺织品作为增强结构的纺织结构复合材料的应用由来已久。早在一百多年前,就出现了用机织物与橡胶复合制造的轮胎,以后又陆续出现了充气筏、传送带、篷面材料、灯箱材料等柔性纺织结构复合材料。20世纪50年代,刚性纺织结构复合材料诞生了,它具有比强度高、比模量大的优点,可作为金属和木材的替代物,能够显著减轻重量[4]。但这类层压织物复合材料的层间剪切强度低,易分层,这主要是由于织物层间仅靠性能较低的基体粘结。为了解决分层问题,人们采取了很多措施,主要包括基体改性、厚度方向缝纫和衬入纤维,但这些方法不仅成本较高,而且还不能从根本上解决分层问题[5]。三维纺织结构复合材料能够从根本上解决分层问题,这类纺织品包括三 收稿日期:2001-03-27 作者简介:刘洪玲,女,1973年生,博士研究生。从事纺织材料及纺织品的开发研究。维机织物、三维编织物、多轴向缝编针织物等。在这类结构中,纤维束在空间相互交错、交织形成一个整体结构,从而在厚度方向引入增强纤维,提高了复合材料的层间剪切强度和损伤容限,因此它不会分层。这类结构的另一优点是可以加工各种不同形状的预型件,在浸渍前最终产品已经预成型,因而避免了由切割加工引起的性能下降[3,6]。因此,近几年来三维纺织结构复合材料的发展极为迅速,各种新型织机及其相应的产品不断出现,其性能研究也逐步深入,从而大大推动了纺织结构复合材料的发展与应用[7,8]。本文拟从结构的角度分析纺织结构复合材料中机织物、编织物、针织物和非织造布,分析各种织物的结构特点及性能(而不是从具体加工工艺的角度分析各种织物),同时也指出了各种织物存在的不足。 2 机织物 机织物是应用于纺织结构复合材料中最常见的纺织品。它既有平面二轴向结构,也有平面多轴向结构,还有空间三维结构。 2.1 平面机织物 2.1.1 平面二轴向机织物 根据织物组织结构,平面二轴向机织物可以分为以下几种:①平纹织物,它是机织物中最简单的组织,经纬纱交织次数最多。当经纬纱号数、密度相同时,可织成经纬向各向同性的增强结构。 ②斜纹织物,它较平纹织物有更好的变形能力。

复合材料概论复习题

复合材料概论复习提要 一、名词解释 1、复合材料 2、基体 3、增强体 4、聚合物基复合材料 5、金属基复合材料 6、陶瓷基复合材料 7、水泥基复合材料 8、碳/碳复合材料 9、玻璃钢 10、脱模剂 11、复合材料的蠕变: 材料在常应力作用下,变形随时间的延续而缓慢增长的现象。 12、CVD 13、玻璃纤维:以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的一种性能优异的无机非金属材料 14、碳纤维 15硼纤维 16氧化铝纤维 17、晶须 18、A玻纤、E玻纤、S玻纤、M玻纤 19、玻璃纤维增强环氧树脂 20玻璃纤维增强酚醛树脂 21玻璃纤维增强聚酯树脂 22、单模、对模 23、等代设计法。 24、水泥 二、重要知识点 1、复合材料中的基体有三种主要作用。 2、复合材料的界面的作用和效应。 3、复合材料的可设计性以及意义、如何设计防腐蚀(碱性)玻璃纤维增强塑料。 4、增强材料的表面处理、沃兰(V olan)的结构式,沃兰和有机硅烷对玻纤表面处理的机理。 5、玻璃纤维、碳纤维、硼纤维、芳纶的生产过程以及性能(优点和缺点)、表面处理方法。 6、不饱和聚酯树脂的固化过程以及性能(优缺点)。 7、玻璃纤维增强环氧树脂、玻璃纤维增强酚醛树脂、玻璃纤维增强聚酯树脂主要性能。 8、铝基复合材料的制造与加工。 9、陶瓷基复合材料的使用温度范围。 10、晶须或者纤维增韧陶瓷基复合材料的制造工艺和成型加工方法。 11、RTM成型工艺、模压成型工艺和手糊成型工艺。 12、在连续玻璃纤维及其制品的制造过程中,拉丝时要用浸润剂的原因。 13、金属基纤维复合材料的界面结合形式以及影响界面稳定性的因素。

复合材料

一. 1、(知道)复合材料的定义:广义定义:复合材料是由两种或两种以上异质、异形、异性的材料复合形成的新型材料。一般由基体组元与增强体或功能组元所组成。复合材料(Composite Materials ),以下简称CM。 狭义定义:通常研究的内容)用纤维增强树脂、金属、无机非金属材料所得的多相固体材料。 2、复合材料的组成:基体、增强体、界面 3、基体相功效:基体相是一种连续相材料,它把改善性能的增强相材料固结成一体,并起传递应力的作用; 4、增强相功效:增强相起承受应力(结构复合材料)和显示功能(功能复合材料)的作用。 5、CM与化合材料、混合材料的区别: 多相体系和复合效果是复合材料区别于传统的“混合材料”和“化合材料”的两大特征。 举例:砂子与石子混合(混合材料),合金或高分子聚合物(单相材料) 6、复合材料的整体性能(复合效应)并不是其组分材料性能的简单叠加或者平均。 复合效应分为混合效应和协同效应。 协同效应是复合材料的本质特征。 7、复合材料的性能中可设计性好是复合材料区别于传统材料的根本特点之一 二. 1、(知道)复合包装材料的定义:复合包装材料是由层合、挤出、贴面、共挤塑等技术将几种不同性能的基材结合在一起形成的一个多层结构,以满足运输、贮存、销售等对包装功能的要求及某些产品的特殊要求。 2、复合包装材料的一般性质:保护性、操作性、商品性、卫生性(无臭无毒污染少) 三、 1、包装复合材料的组成:基材、粘合剂、封闭物及热封合材料、印刷与保护性涂料 2、封闭物及热封材料的封合方式:热封合、冷封合、粘合剂封合 3、(可能考)层合粘合剂:粘合剂的主要功能是将两种材料粘合在一起。为了使两种材料粘合在一起,必须使材料表面具有“可润湿性”,因此粘合剂必须能在基材的表面均匀流动。四、 1、干法复合定义:干法复合又称干式复合,它是利用水或溶剂型的液态黏合剂均匀涂布于某复合基材薄膜上(第一基材),再经过干燥烘道使黏合剂中的溶剂挥发成固态“干”的状态,然后与第二层基材经热压黏合在一起的工艺方法。 2、湿法复合定义:湿法复合,又称湿式复合,它是用水或溶剂型的液态黏合剂将两层基材薄膜通过钢辊和橡皮复合辊之间压黏合在一起,然后经干燥烘道烘干除去黏合剂中的水分或溶剂,使黏合剂固化粘牢基材的复合工艺方法。 3、干湿法区别:工艺过程不同:干法复合是先干燥,后复合。而湿法复合是先复合再干燥, 它们正好相反。 基材选用不同:干法复合几乎适合所有的复合基材。而湿法复合要求两种 基材至少有一种基材具有较好的透气性,这样才有利于复 合后干燥时,黏合剂中溶剂或水的挥发透过而使其充分干 燥固化,提高复合强度。 因此,湿法复合工艺几乎只适用于铝箔或镀铝膜基材与纸基材的复合、塑料基材与纸基材的复合、纸基材与纸基材的复合等。 4、干法复合的优点:(1)基材的选择面宽广,几乎所有的片材都可以使用不同的黏结剂来生 产多层次的包装制品,例如纸、金属箔、玻璃纸、各种塑料及橡胶薄

纺织结构复合材料三维模型设计[1]

纺织结构复合材料三维模型设计 Design3D Models of Textile St ruct ural Composites 杨朝坤,朱建勋,张建钟,徐正亚,胡方田 (中材科技股份有限公司南京210012) YAN G Chao2kun,ZHU Jian2xun, ZHAN G Jian2zhong,XU Zheng2ya,HU Fang2tian (Sinoma Science&Technology Co.Lt d.,Nanjing210012,China) 摘要:根据纺织复合材料结构和工艺的特点,考虑到空间纤维束的相互纽结和紧密挤压而造成的纤维束的弯曲和截面变形,建立了机织和编织三维实体几何模型和工艺过程的动画模拟。所建模型与通过切片制作、数据采集和处理的图像进行比较并修正,取得了较为合理的纤维束中心线拟合效果。为纺织结构复合材料的有效弹性性能预报和R TM工艺模拟仿真奠定了模型基础。 关键词:纺织结构复合材料;三维模型;纤维束;图像处理 文献标识码:A 文章编号:100124381(2007)Suppl20207205 Abstract:The t hree2dimension Woven and braided geomet rical model and t he animating simulation of t he craft process is p ropo sed based on t he characteristics of t he textile st ruct ural composites and craft. t he state of intertwisted and tightly squeezing yarns in model is taken into account which result s in yarns curving and deforming.Wit h comparing t he established model and images which obtaining f rom slice2making and data acquisition and image processing,reasonable fitting curves of yarn center line are achieved.The investigation offers a f undamental support to predict effective elastic properties and R TM simulating work. K ey w ords:textile st ruct ural compo sites;t hree2dimension model;fibre tow;image p rocessing 在先进航空材料中,纺织结构复合材料占有重要的一席之地。纺织结构复合材料是用于结构或承载的包含纺织物的刚性材料。随着三维纺织预形体(t hree -dimensional textile p reforms)技术的快速发展,逐渐形成了3D机织(t hree2dimensional weaving)、3D编织(braiding)、穿刺(stitching)和针织(knitting)为主的复合材料增强织物产业。采用纺织结构复合材料具有以下优点:(1)净尺寸贴模仿形,如各种叶片、起落架、雷达罩等;(2)纤维分布的细观结构和复合材料力学性能可以根据用途要求进行设计;(3)减重和提高刚/强度。随着R TM(resin t ransfer moulding)工艺模拟仿真技术的迅速发展,提出了在等温和非等温条件下的三维仿真模型的要求,迫切需要3D纺织结构模型作基础模型,为准确计算渗透率提供依据。纺织结构复合材料的力学性能主要由纺织预形体的细观结构参数所决定,这些参数包括:纤维分布方向角、纤维体积含量、纤维束体积含量、纤维束截面形状及其形心迹线规律等。Xuekun Sun[1,2]建立了剔除物理意义的数字单元,该模型更有利于描述纤维束的弯曲路径;王君泽[3]在三维编织计算机仿真方面作了研究,利用计算机三维动画技术3DSMAX,动态模拟出来各种结构的编织物以及不同工艺的编织过程;张小萍和王君泽[4]利用虚拟现实构造语言(V RML)结合VB语言构建的三维编织仿真设计系统可在虚拟环境中实现自由缩放、移动、旋转织物模型功能,清除展现编织纤维束的运动过程。本研究根据纺织复合材料结构和工艺的特点,考虑到空间纤维束的相互纽结和紧密挤压而造成的纤维束的弯曲和截面变形,建立了机织和编织三维实体几何模型和工艺过程的动画模拟,所建模型与通过切片制作、数据采集和处理的图像进行比较并修正,取得了较为合理的纤维束中心线拟合效果。为纺织结构复合材料的有效弹性性能预报和R TM工艺模拟仿真奠定了模型基础。 1 纺织结构三维模型的设计 工程中一般要求三维织物的纤维体积含量尽量高,因此,纤维束在织物中呈紧密接触状态,而多数情

纺织品各类功能整理剂介绍

多功能整理剂则是随化学、生物医学、高分子复合材料学、光化学、热力学、电学、生态学等多学科技术的发展而发展起来的一类功能整理剂。由于纺织品的功能整理是针对纺织品某些特定的性能的,因而目的性强效果好产品的附加值也高。 1、抗静电整理剂及性能指标 永久性抗静电整理剂主要成分为聚氧乙烯衍生物物化性能为假阳离子型,微黄透明粘稠液体.1%稀释液pH值510~515。整理用浸渍、浸轧法整理效果表现为对涤纶、腈纶、PVA、醋酐维的散纤维、纱线、面料均可获得永久的抗静电效果同时还适于各类合成纤维与天然纤维的混纺织物。 生态指标显示可生物降解,多功能整理及抗静电剂QMILEASE)主要成分为亲水性高聚物物化性能为含固里99.9%。非离子性熔点50C淡黄色固体易分散于热水中。 可与阴离子、阳离子、非离子助剂同浴使用。整理用浸渍去整理效果表现为:在整个显整理过程中应用,可防止“鸡爪痕”及褶皱并可防污。染色中加入可防止染色疵病。在后整理过程中应用对合成纤维织物具有优良的抗静电效果,且耐

洗性好,织物柔软性好可提高缝纫性。生态指标显示生产过程中无泡无不良气味产生。 抗静电剂主要成分为有机氮化合物物化性能为:外观为无色透明的液体阳离子型助剂,pH值5~ 51525C时密度约105能用水稀释。整理用浸责法、浸轧法。整理效果表现为可赋予合成纤维及其混纺的各类针纺织品优良的抗静电性能有良好的干洗牢度可与拒油、拒水整理同时进行,无明显的相互抑制作用可使织物获得丰满、柔软的手感。生态指标显示不产生泡沫,无毒性。 2、防紫外线整理剂及性能指标 紫外线吸收剂:主要成分为杂环化合物:物化性能为阴离子型白色粘稠液体pH值6.与水、酸、碱接稳定性好:与非离子、阴离子型物质相容性好与阳离子相容可能出现沉淀。 整理用浸责法、浸轧法整理效果表现为纤维反应性紫外吸收剂主要用于纤维素纤维和锦纶织物与羟基基团和氨基基团反应而产生紫外线吸收效果。耐日晒和耐水洗效果优良。生态指标显示无泡可按一般染化料对待。

纺织复合材料

纺织复合材料的应用及研究进展 陈新琪(学号:1015033006)杨小玲(学号:1015063005) (武汉纺织大学材料与工程学院) [摘要]纺织复合材料具有质轻、高强、刚性好等性能,由于其优越的性能,其应用范围日益扩大,纺织复合材料几乎可渗透到所有的领域。本方主要介绍了纺织复合材料的基本概念,论述了纺织复合材料的成型技术、纺织复合材料的应用及其研究进展。 [关键词]纺织;复合材料;应用;研究进展 1 前言 复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。纺织复合材料的定义是在复合材料的基础上定义的,它是含有纤维、纱线或织物的复合材料。 纺织复合材料的原材料包括增强材料和基体材料。作为增强材料的纤维一般有碳纤维、玻璃纤维、硼纤维和芳纶;基体材料主要包括金属基体材料、陶瓷基体材料和树脂基体材料,其中树脂基体材料使用最为广泛。树脂的基本功能是为纤维提供一种支撑,并将纤维在材料中预定的位置固定,使构件具有完整稳定的结构。 纺织复合材料具有质轻、高强、刚性好等性能。纺织复合材料的强度、刚性比金属的大,而密度则比金属的小。经研究表明:钢的强度数值为 1.8,而玻璃纤维复合材料的为7.1,碳纤维复合材料的是11.2;代表刚性大小的比弹性模量值按上述材料排列的顺序分别是 2.2、2.8、10.0。但是,纺织复合材料的密度则为钢的1/4、铝的1/2[1]。 2 纺织复合材料成型技术 2.1 手糊成型工艺 纤维增强材料和树脂胶液在模具上铺覆成型,室温或加热、无压或低压条件

纺织复合材料技术的发展和应用

( 二 〇 一 零 年 零 六 月 纺织复合材料论文 题 目:纺织复合材料技术的发展和应用 姓 名: 学 院:轻工与纺织学院 班 级:纺织工程08-2班 学 号:

摘要 纺织复合材料涉及日常生活方方面面,研究其发展和应用有极其重要的社会价值和现实意义。 本文是纺织复合材料从十九世纪开始发展历经二百余年的发展过程的缩影包括19世纪的纤维素化学和碳纤维20世纪的煤炭化学、玻璃纤维和复合材料、合成纤维和复合材料、太空时代的先进复合材料;纺织复合材料的应用领域包括、航天航空领域飞行器的重量、降落伞、个体防护装备、弹射座椅、等其它航空装备中复合材料的应用,船舶工业,汽车工业,军事工业和其他行业。 关键词:纺织复合材料、发展、应用、玻璃纤维、航空、军事、船舶

Abstract Textile composite materials involved in every aspect of daily life, study their development and application of a very important social value and practical significance Textile composite materials involved in every aspect of daily life, study their development and application of a very important social value and practical significance Keywords: textile composite、developing 、application glass fiber、aviation、car military、shipping

纺织复合材料复习

一、第一章 (一)绪论 1、复合材料:两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。 2、复合材料的组成及作用 3、基体、界面和增强体 基体:复合材料中的连续相,起到将增强体粘结成整体、并赋予复合材料一定形状、传递外界作用力、保护增强体免受外界环境侵蚀的作用。(环氧树脂、酚醛树脂、不饱和聚酯树脂、高性能树脂基体) 增强体:高性能结构复合材料的关键组分,在复合材料中起着增加强度、改善性能的作用。(玻璃纤维、碳纤维、芳纶纤维、其他高性能纤维(高强高模聚乙烯纤维、陶瓷纤维、金属纤维、硼纤维)) 界面:复合材料中增强体与基体接触构成的界面。 (二) 1、纺织复合材料:以纺织材料(纤维、纱线、织物作为增强体)与基体结合形成的复合材料是现代纺织材料技术和复合材料技术的集成与创新。 特点: 1)显著的抵抗应力集中、冲击损伤和裂纹扩展的能力,而且还能实现复合材料结构件的近净体加工。 2)受到航空、航天、国防等领域的广泛重视,成为国家防御、航空航天、能源环境、交通运输等领域的重要基础材料。 2、分类(按基体材料分) 1)聚合物基复合材料(热塑性树脂基、橡胶基、热固性树脂基) 2)金属基复合材料(高熔点金属基、轻金属基、金属间化合物基) 3)陶瓷基复合材料(玻璃基、高温陶瓷基、玻璃陶瓷基) 4)水泥基复合材料 5)碳基复合材料 3、高比强度、高比模量(刚度) 比强度= 拉伸强度/密度MPa /(g/cm3)质量相等的前提下,衡量材料承载能力; 比模量= 弹性模量/密度GPa /(g/cm3)质量相等的前提下,刚度特性指标; 1)一般比强度愈大,原料自重就愈小;比模量越大,零件的刚性就愈大。 2)据估计,当用复合材料和用高强度钢制成具有相同强度的零件时,其重量可减轻70%左右,这对于需要减轻材料重量的构件具有十分重大的意义。 二、第二章 1、复合材料组成部分中增强材料所起的作用 1)纤维在复合材料中起增强作用,是主要承力组分 2)纤维不仅能使材料显示出较高的抗拉强度和刚度而且能减少收缩,提高热变形温度和低温冲击强度等 2、三大纤维 1)玻璃纤维 分类(以不同的含碱量来区分):无碱玻璃纤维、中碱玻璃纤维、高碱玻璃纤维、特种玻璃纤维 生产玻璃纤维的常用方法主要有:坩埚法拉丝、池窑漏板法拉丝法。 一)玻璃纤维的物理性能 1.外观和密度

复合材料

课后练习题 一、填空题 1.写出层合板的铺设顺序: [(0/±45)2/0/90]S = 0/+45/-45/0/+45/-45/0/90/90/0/-45/+45/0/-45/+45/0 2.C/C 复合材料中的基体碳可以是石墨、焦炭和烧结炭。 3.按基体材料分类,复合材料可分为聚合物基体、金属基体、无机非金属基体。 4.按增强纤维种类分,复合材料可分为玻璃纤维复合材料、碳纤维复合材料、陶瓷纤维复合材料、 有机纤维复合材料、金属纤维复合材料等。 5.表面处理剂处理玻璃纤维的主要方法有前处理法、后处理法、迁移法。 6.玻璃/环氧复合材料的基体材料是环氧树脂。 7.玻璃钢是以环氧树脂为基体,玻璃纤维做增强体的复合材料。 8.玻璃纤维 40 支纱表示:质量为1g的原纱长40m 9.玻璃纤维的生产中需使用浸润剂,其作用有:使多根单丝集中成股;增加原纱的耐磨性和提高拉伸强 度;保护纤维免受大气和水分的侵蚀。 10.玻璃纤维增强树脂基复合材料又称玻璃钢。 11.单位长度内纤维与纤维之间所加的转数,称为捻度。 12.电热混凝土是由胶凝材料、导电材料、介电骨料和水等组分,按照一定配合比混合凝结而成的多 相复合材料,通电后能发热。 13.非线性效应可为乘积效应、系统效应、诱导效应、共振效应。 14.复合材料的结构通常是一个相为连续相,称为基体材料;而另一相是以独立的形态分布在整个连续 相中的分散相,称为增强材料。 15.复合材料的界面不是一个单纯的几何面,而是一个多层结构的过渡区域。 16.复合材料的界面效应有传递效应、阻断效应、不连续效应、散射和吸收效应和诱导效应。 17.根据复合材料的命名规则,玻璃纤维和环氧树脂构成的复合材料可称为玻璃纤维/环氧树脂(玻璃纤 维/环氧)复合材料。 18.复合材料定义所阐述的主要有两点,即组成规律和性能特征。 19.复合材料区别于传统的“混合材料”和“化合材料”的两大特征是多相体系和复合效果。其最 大的特点是可设计性好。 20.复合材料设计包括单层材料设计、铺层设计、结构设计三个层次。 21.复合材料中,希望界面应有足够的强度,但并不是界面结合强度越高越好。如果界面结合过强,材料 会呈脆性。 22.复合材料中基体的三个作用是:将增强体连成一整体;传递和承受载荷;保护纤维不受影响。 23.改善复合材料界面的方法有:降低界面残余应力、基体改性以及选择合理的复合工艺和使用条件。纤 维表面处理和涂层(表面改性)

复合材料的性能和应用

摘要:近年来,各种复合材料制备技术日益更新,从陶瓷基复合材料、金属基复合材料到聚合物基复合材料,各种制备技术都得到了很大改善,使得复合材料的性能和应用得到了显著提高。本文综述陶瓷基复合材料、金属基复合材料、聚合物基复合材料等几种重要的研究方法以及应用。 关键词:先进,复合材料,制造技术。 正文:一·陶瓷基复合材料 工程陶瓷的开发是目前国内外甚为重视的新型材料研究领域。纯陶瓷材料因其脆性,不能满足苛刻条件下的使用要求。因此,目前广泛采取增韧技术来提高陶瓷的使用性能。纤维和晶须增韧陶瓷是一类有效的方法。用纤维来增韧陶瓷的技术是十年代以后开始的,最初是用碳纤维增强陶瓷,八十年代以来又开发了用陶瓷纤维和晶须增韧陶瓷,增韧效果不断取得进展,增韧技术也不断有所创新。连续纤维增强陶瓷基复合材料是最有前途的高温结构材料之一,以其优异的高韧性、高强度得到世界各国的高度重视。 连续纤维补强陶瓷基复合料(Continuous Fiber Reinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用.20世纪70年代初,科学家在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。 由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性[5-6],因此,在重复使用的热防护领域有着重要的应用和广泛的市场。连续纤维增韧陶瓷基复合材料具有类似金属的断裂行为,对裂纹不敏感,不会发生灾难性破坏。其耐高温和低密度特性,使其成为发展先进航空发动机、火箭发动机和空天飞行器防热结构的关键材料。 二·金属基复合材料 金属基复合材料具有比强度高,比刚度高,耐热,耐磨,导热,导电,尺寸稳定等优点,是一种很有发展前途的新材料,金属基复合材料广泛应用于制造航空抗天零部件,也用于制造各种民用产品。 按基体分,金属基复合材料分为:铝基、镁基、钛基、锌基、铁基、铜基等金属基复合材料;按增强材料分,可分为:纤维增强金属基复合材料;其纤维有C、SiC、Si3N4、B4C、Al2O3等纤维;粒子增强金属基复合材料,增强粒子有:Al2O3、TiC、SiC、Si3N4、BN、SiC、MgO等。 纤维增强金属基复合材料的制造方法: (1)叠层加压法:工艺过程是:将金属(合金)箔片或纤维增强金属片按要求剪裁,并一层一层的进行叠层,然后加热加压进行成型和连接,一般是在真空或气体中进行。适于这种方法的材料有铝、钛、铜、高温合金,其增强纤维随需要而定。为了改善连接性能,有事在两片之间加入中间金属或在待连接表面涂覆或沉积一层中间金属。 (2)辊轧成型连接法:其主要的基材是铝、钛箔片,增强纤维主要是B、C、SiC、Si3N4等,有时在基材表面要涂覆一层低熔点的中间金属,增强纤维表面要预先浸沾铝或经物理气相沉积(PVI)、化学气相沉积(CVI)处理。 (3)钎焊法:在增强纤维与基材之间加入箔状、粉末状或膏状的钎料,经真空钎焊或保护钎焊而成。钎焊法可以制造管材、型材、叶片等。 (4)热等静压法:如图2所示,其工艺过程是:将纤维与基材进行叠层并装入一模具中,

复合材料

【重点难点】 重点:复合材料的优越性及在生产生活中的应用。 难点:激发同学们的学习激情,为祖国制造出新的复合材料。 【知识讲解】 “神州五号”载人飞船穿过大气层时,外壳和大气层摩擦产生几千摄氏度的高温,是什么材料经受了这种考验而使飞船安然无恙呢?运动员在撑杆跳项目中使用的撑杆极富弹性,你知道它是用什么材料制成的吗?是金属材料、无机非金属材料(比如:陶瓷),还是有机合成材料(如:塑料)? 下面我们先讨论一下各种单一材料的优缺点: 从上面可以看出,金属材料、无机非金属材料、有机合成材料都各有其优缺点,故飞船、撑杆不可能是由这样的单一材料制成的。 那么,它们究竟是用什么材料制成的呢? 一、认识复合材料 1、人们是怎样想到制造复合材料的 木材坚固、耐用,可作为建筑材料。它由木质长纤维组成,靠被称为木质素的物质黏结起来。木质纤维比较柔软,木质素较脆,它们各自都不能承受重压,但这两种物质复合后就构成了强壮的树干。 人们做泥砖时,往泥中掺入禾秸,这样可以提高泥砖的强度。将沙子、砾石与水泥混合在一起,其强度比单纯水泥的强度大得多。人们还把钢筋嵌入混凝土中,制成了更为坚固的钢筋混凝土,用来建造高楼。 其实,人们正是根据这种将不同性质的材料复合在一起有可能获得性能更佳的材料的想法来制造复合材料的。 2、什么是复合材料? 复合材料是将两种或两种以上性质不同的材料经特殊加工而制成的,具有比单一材料更优越性能的材料称为复合材料。 复合材料由两部分组成,一部分称为基体,在复合材料中起黏结作用;另一部分称为增强体,在复合材料中起骨架作用。 复合材料既保持了原有材料的特点,又使各组分之间协同作用,形成了优于原材料的特性。例如,金属材料易被腐蚀,有机合成材料易老化、不耐高温,陶瓷材料易破碎,这些缺点都可以通过复合的方法予以改善和克服。 3、复合材料 将复合材料按基体分类:可分为树脂基复合材料、金属基复合材料、陶瓷基复合材料。 将复合材料按增强体的形状分类:颗粒增强复合材料、夹层增强复合材料、纤维增强复合材

浅议纺织复合材料的技术及应用分析(一)

浅议纺织复合材料的技术及应用分析(一) 论文关键词:化工行业;纺织材料;纺织复合材料论文摘要:本文介绍了一种新型材料—纺织结构复合材料的发展与应用情况,对其组成特点、成型工艺和设计因素进行了分析,并提出分析该种材料力学性能的一般性方法。 材料、能源和食品既是人类赖以生存的三大要素,又是人类与自然界作斗争所追求的三大目标,由它们组成的某个时代的物质世界就是人类历史演进的标志。 一、纺织复合材料技术分析 纺织结构复合材料是纺织技术和现代复合材料技术结合的产物,它与通常的纤维复合材料具有较大的区别。纤维复合材料是通过把纤维束按一定的角度和一定的顺序进行铺层或缠绕而制成的,基体材料和纤维材料于铺层或缠绕时同时组合,形成层状结构,因此也称层合(压)复合材料。纤维复合材料中的纤维是平行的、互不交叠的。而纺织结构复合材料是利用纺织技术首先用纤维束织造成所需结构的形状,形成预成型结构件(简称预成型),然后以预成型作为增强骨架进行浸胶固化而直接形成复合材料结构。正是这种工艺的变革,使纺织结构复合材料与普通复合材料相比具有许多突出的优点,同时由于细观结构的复杂化又给设计和分析增添了更多的困难。迄今虽然经过许多研究者的努力,已经发展了各种分析模型,能解决一些应用问题,但还远没有成熟,还需要经过比较、积累和进一步发展,以形成完善而统一的分析、设计方法和相应的标准,才能使纺织结构复合材料得到更广泛的应用。 二、纺织复合材料的发展 在20年代,波音公司就已经使用纺织结构来增强飞机的机翼。50年代,美国通用电器公司也选择纺织结构作为碳/碳复合材料鼻锥的增强形式。70年代初,在缠绕工艺的影响下,二维编织工艺被引入复合材料领域。随着复合材料的发展,二维编织工艺也得到了迅速的发展,并为制造复杂形状复合材料开辟了一条成功之路。80年代,通过纺织界与复合材料界的合作,编织技术由二维发展到三维,从而为制造高性能复合材料提供了新的途径。三维编织结构复合材料由于其增强体为三维整体结构,大大提高了其厚度方向的强度和抗冲击损伤的性能,因而倍受重视并获得迅速发展。创造不补充加油而连续环球飞行一周记录的“航行者”飞机与美国比奇公司的“星舟”1号公务机,都采用了一些编织结构件。英国道蒂公司的复合材料螺旋浆,其浆叶为编织结构,获得1991年英国女王技术成果大奖。美国航空航天局(NASA)大力开展三维编织结构复合材料研究工作。计划中包括开发编织技术和自动化加工、开发热塑性树脂等重要内容。 由此可见,现代纺织结构复合材料是在常规复合材料高度发展和广泛应用于各工业领域的基础上产生和发展起来的,通过吸收纺织学科各类织造技术,形成了机织、针织、编织等类别的纺织结构复合材料。值得指出的是,在过去40年里,还主要是以层板复合材料应用最广,特别是在航空航天、军事工业、交通等领域占据重要地位。复合材料的出现和发展对20世纪的结构工程产生了巨大的推动作用,并形成全球性的先进纤维材料的市场。在这种应用背景下,层板复合材料因存在“层”而带来力学性能的弱点:如分层、开裂敏感和损伤扩展快,垂直结构厚度方向强度低,抗冲击性能差等都显露出来。由此古代纺织结构复合材料的思想必然被人们接受用来消除复合材料的“层”。在常规复合材料成熟的设计分析方法、织造工艺以及高效的纺织织造技术的前提下,现代纺织结构复合材料以惊人的速度蓬勃发展,已波及美国、法国、英国、德国、俄罗斯、拉脱维亚、芬兰、比利时、中国、日本、南朝鲜等国。其重要原因之一,就是纺织构造的优越的力学性能,特别是不同的织造技术所形成的纤维束的微观构 型,适应十分广泛的载荷环境作用下的工程结构的要求。 三、纺织结构复合材料应用 (一)按当代历史观点,纺织结构复合材料的出现是近世纪材料科学发展的重大进步之一。

对纺织复合材料技术的应用及分析

对纺织复合材料技术的应用及分析 发表时间:2019-05-14T17:11:22.093Z 来源:《青年生活》2019年第02期作者:李雪,张雨婷,孙宁[导读] 摘要:纺织结构复合材料是近来在纺织行业中较为流行的一种材料,该种材料的纤维性和定型性特点,能够给纺织及服装加工带来一定的经济利润。 摘要:纺织结构复合材料是近来在纺织行业中较为流行的一种材料,该种材料的纤维性和定型性特点,能够给纺织及服装加工带来一定的经济利润。材料、能源和食品既是人类赖以生存的三大要素,又是人类与自然界作斗争所追求的三大目标,由它们组成的某个时代的物质世界就是人类历史演进的标志。本文介绍了一种新型材料—纺织结构复合材料的发展与应用情况,对其组成特点、成型工艺和设计因素进行了分析,并提出分析该种材料力学性能的一般性方法。 关键词:纺织工程,复合材料,技术应用,分析探究 一、纺织复合材料的发展在20年代,波音公司就已经使用纺织结构来增强飞机的机翼。50年代,美国通用电器公司也选择纺织结构作为碳/碳复合材料鼻锥的增强形式。70年代初,在缠绕工艺的影响下,二维编织工艺被引入复合材料领域。随着复合材料的发展,二维编织工艺也得到了迅速的发展,并为制造复杂形状复合材料开辟了一条成功之路。80年代,通过纺织界与复合材料界的合作,编织技术由二维发展到三维,从而为制造高性能复合材料提供了新的途径。三维编织结构复合材料由于其增强体为三维整体结构,大大提高了其厚度方向的强度和抗冲击损伤的性能,因而倍受重视并获得迅速发展。创造不补充加油而连续环球飞行一周记录的“航行者”飞机与美国比奇公司的“星舟”1号公务机,都采用了一些编织结构件。英国道蒂公司的复合材料螺旋浆,其浆叶为编织结构,获得1991年英国女王技术成果大奖。美国航空航天局(NASA)大力开展三维编织结构复合材料研究工作。计划中包括开发编织技术和自动化加工、开发热塑性树脂等重要内容。由此可见,现代纺织结构复合材料是在常规复合材料高度发展和广泛应用于各工业领域的基础上产生和发展起来的,通过吸收纺织学科各类织造技术,形成了机织、针织、编织等类别的纺织结构复合材料。值得指出的是,在过去40年里,还主要是以层板复合材料应用最广,特别是在航空航天、军事工业、交通等领域占据重要地位。复合材料的出现和发展对20世纪的结构工程产生了巨大的推动作用,并形成全球性的先进纤维材料的市场。在这种应用背景下,层板复合材料因存在“层”而带来力学性能的弱点:如分层、开裂敏感和损伤扩展快,垂直结构厚度方向强度低,抗冲击性能差等都显露出来。由此古代纺织结构复合材料的思想必然被人们接受用来消除复合材料的“层”。在常规复合材料成熟的设计分析方法、织造工艺以及高效的纺织织造技术的前提下,现代纺织结构复合材料以惊人的速度蓬勃发展,已波及美国、法国、英国、德国、俄罗斯、拉脱维亚、芬兰、比利时、中国、日本、南朝鲜等国。其重要原因之一,就是纺织构造的优越的力学性能,特别是不同的织造技术所形成的纤维束的微观构型,适应十分广泛的载荷环境作用下的工程结构的要求。 二、纺织结构复合材料应用优势在航天科技中,高温、烧蚀和高速冲刷的导弹头锥、火箭发动机的喉衬采用三维整体编织结构复合材料。发动机裙和导弹弹体以及飞机机身则采用二维编织或机织结构复合材料。目前对空间飞行器,特别是对那些长时间在轨道运行的空间站、空间实验室和重复使用的太空运输系统,正在进行一类智能型纺织结构复合材料的研究。这些复合材料的运用,能够在最大限度发挥材料力学的特点基础上,能够提高产品的稳固性,能够帮助材料形成很强的力度,从而适应材料在航空运用中的需要。该种材料运用于纺织中,能够在有效发挥材料的彼此合力作用前提条件下,能够形成一定的可塑性。因此具有具有高强度、高模量,特别是包括厚度方向、横向的全方位增强,使材料具有高损伤容限、高断裂韧性、耐冲击、抗分层、开裂和疲劳等。正是基于上述特点,我们可根据按加载方向增加纤维束数,以及按实际需要(整体)织造复杂形状的零、部件和一次完成组合件,如加筋壳、开孔结构的制造等,帮助设计制作,形成可定型性,满足不同物质材料的发展需要。在交通运输、建筑领域、体育用品等企业的生产过程中,选用合适的材料,并能够最大限度降低生产成本则是企业应该注意的地方。在生产过程中,可自动化高效率生产和接近实际产品形状的制造,使加工量和连接大大减少。因而经济性好、成本低、制造周期短。除此而外,在预成型和复合前安放机敏类材料,从而实现对复合工艺质量监控、产品在服务期间的寿命监测、振动控制等,这样既提高了产品质量又增加了可靠性。 三、三维纺织复合材料。三维纺织复合材料是一种先进的结构复合材料。它使用三维整体纺织预制件作为增强相,克服了以往各种结构复合材料层间强度低的致命缺点,具有优异的整体受力性能,可用以制造各种结构的主要承载构件。利用高强度纤维(例如碳纤维)制成的三维纺织复合材料具有比强度高,比模量大,扰疲劳性能好,以及良好的形态可设计性等优点。用它们代替钢制件时,在满足同样的强度和刚度的前提下,减轻重量70%左右。三维纺织复合材料还具有损伤后易修理,工艺上便于整体成型和一次成型的优点,可减少零件和模具的数量。目前,采用三维编织复合材料可以制作飞行器、汽车等上的多种不同形状的承力梁、接头,多种形式的耐烧蚀、高承受力的圆筒形、锥筒形的制件:还可以在人造生物组织方面发挥作用,制作人造骨、人造韧带,以及制作接骨板等。在保证力学性能相同或提高的情况下,大大减轻这些制件的重量,从而使整个飞行器、汽车等的性能得到提高。 结束语:综上所述,运用好纺织结构复合材料,应该在注意其性能特点的基础上,根据所使用领域的特殊要求,注重预成型和固化等技术方面的处理,不仅能够提高产品的使用效果,还能够满足企业在生产过程中的需要。通过合理的优化,能够更好满足未来生产发展需要,提高企业的市场竞争力。 参考文献: [1]管云青. 基于纺织复合材料技术及其运用探析[J].东方企业文化,2011年20期。 [2] 刘元坤常浩汤伟赵前进.织物及其复合材料的弹道冲击性能研究进展[J].纤维复合材料,2009年04期。 [3] 朱民儒.三维纺织复合材料的结构特点和应用[J].产业用纺织品,2002年06期。

相关文档
最新文档