基于压缩感知的图像重构技术研究

基于压缩感知的图像重构技术研究
基于压缩感知的图像重构技术研究

基于压缩感知的图像重构技术研究

压缩感知理论表明,若信号在某变换域具有稀疏表示,且采样矩阵与稀疏矩阵不相关,则可从远低于信号维度的少量非自适应测量值中精确恢复原信号。目前,压缩感知理论已被广泛用于各类磁共振成像中,以便在不降低成像质量的情况下减少采样点数,提高系统扫描速度。

本文即研究从亚采样的磁共振数据中,怎样快速而有效地恢复目标图像。主要研究内容包括:(1)为消除亚采样的磁共振成像重构时可能出现的过光滑(over-smoothed)和混叠伪影现象,将重构问题转化成含复合正则项的约束最小化问题,并提出一种高效的算法来求解。

该算法首先利用Bregman迭代技术,将约束问题转化成一系列无约束问题。然后利用算子分裂技术,将各无约束问题分解成一个梯度问题和一个能使用修改的SBD(Splitting Bregman Denoising)算法来求解的复合正则项的去噪问题。

最后再用加速方案对无约束问题的求解予以加速。本文将该算法称作BFSA (Bregman based Fast SBD Algorithm)。

对非笛卡尔轨迹采样的重构,本文还提出了一种动态更新L的方法。实验结果表明,新算法能够获得比其他算法更好的重构质量。

(2)为了克服现有动态磁共振成像重构速度较慢的问题,本文基于BFSA

算法框架,提出一种高效的动态磁共振成像重构算法ktBFSA。该算法利用SBD3D (Splitting Bregman Denoising for3D images)来求解含复合正则项的3D去噪问题。

实验结果表明,ktBFSA在重构速度和重构质量上都有优势。(3)SENSE (Sensitivity encoding)是常用的并行磁共振成像技术,引入压缩感知后重构

质量可有较大提升。

本文针对现有SENSE重构算法速度较慢的问题,基于BFSA算法框架,提出一种快速SENSE重构算法FSRA(Fast SENSEReconstruction Algorithm)。实验结果表明,新算法能极大地减少重构所需时间。

自校准方案无需显式使用线圈灵敏度信息,因此避免了SENSE重构中的灵敏度估计的困难。为了提高基于自校准技术框架SPIRiT的重构质量,提出一种高效的算法ERAS(Efcient Reconstruction Algorithm for SPIRiT Based ParallelImaging)。

该算法用算子分离算法将重构问题分解成一个梯度计算问题和一个能通过联合软阈值法求解的去噪问题,最后再用加速方案进行加速,并使用动态更新方法更新L。实验结果表明,新算法的重构图像质量好于POCS。

(4)对压缩感知在视频编码中的应用进行了初步研究,提出一种基于压缩感知的改进视频编码方案。该方案基于原始图像的梯度比残差图像的梯度更稀疏这一特点,利用像素域最小全变分法对图像块进行重构,并选择具有较小误差的方法作为最终重构方法。

仿真实验表明,将该方案分别与MPEG-2和H.264视频编码标准相结合,可取得一定的编码增益。

基于压缩感知的雷达成像

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程报告 课程名称:现代信号处理专题论文题目:基于压缩感知的雷达成像院系:电信学院 班级:电子一班 设计者:刘玉鑫 学号:13S005061 指导教师:张云 时间:2014.06 哈尔滨工业大学

第一章压缩感知理论基本原理 1.1 压缩感知的基本知识 压缩感知理论的核心思想主要包括两点。第一个是信号的稀疏结构。传统的香农信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。 压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。 1.2 压缩感知的主要原理内容 总的说来,压缩感知方法的处理流程可简要描述为:基于待处理信号在某个基上的稀疏性或可压缩性,设计合理的测量矩阵,获得远小于信号维数但包含足够信号特征信息的采样,通过非线性优化算法重构信号。 在传统理论的指导下,信号X的编解码过程如图1-1所示。编码端首先获得X的N店采样值经变换后只保留其中K个最大的投影系数并对它们的幅度和位置编码,最后将编得的码值进行存储或者传输。 解压缩仅仅是编码过程的逆变换。实际上,采样得到的大部分数据都是不重要的,即K值很小,但由于奈奎斯特采样定理的限制,采样点数N可能会非常大,采样后的压缩是造成资源浪费的根本所在。

压缩感知的重构算法

压缩感知的重构算法 算法的重构是压缩感知中重要的一步,是压缩感知的关键之处。因为重构算法关系着信号能否精确重建,国内外的研究学者致力于压缩感知的信号重建,并且取得了很大的进展,提出了很多的重构算法,每种算法都各有自己的优缺点,使用者可以根据自己的情况,选择适合自己的重构算法,大大增加了使用的灵活性,也为我们以后的研究提供了很大的方便。 压缩感知的重构算法主要分为三大类: 1.组合算法 2.贪婪算法 3.凸松弛算法 每种算法之中又包含几种算法,下面就把三类重构算法列举出来。 组合算法:先是对信号进行结构采样,然后再通过对采样的数据进行分组测试,最后完成信号的重构。 (1) 傅里叶采样(Fourier Representaion) (2) 链式追踪算法(Chaining Pursuit) (3) HHS追踪算法(Heavy Hitters On Steroids) 贪婪算法:通过贪婪迭代的方式逐步逼近信号。 (1) 匹配追踪算法(Matching Pursuit MP) (2) 正交匹配追踪算法(Orthogonal Matching Pursuit OMP) (3) 分段正交匹配追踪算法(Stagewise Orthogonal Matching Pursuit StOMP)

(4) 正则化正交匹配追踪算法(Regularized Orthogonal Matching Pursuit ROMP) (5) 稀疏自适应匹配追踪算法(Sparisty Adaptive Matching Pursuit SAMP) 凸松弛算法: (1) 基追踪算法(Basis Pursuit BP) (2) 最小全变差算法(Total Variation TV) (3) 内点法(Interior-point Method) (4) 梯度投影算法(Gradient Projection) (5) 凸集交替投影算法(Projections Onto Convex Sets POCS)算法较多,但是并不是每一种算法都能够得到很好的应用,三类算法各有优缺点,组合算法需要观测的样本数目比较多但运算的效率最高,凸松弛算法计算量大但是需要观测的数量少重构的时候精度高,贪婪迭代算法对计算量和精度的要求居中,也是三种重构算法中应用最大的一种。下面分别就贪婪算法中的MP,OMP算法以及凸松弛算法中的BP算法进行详细的介绍。 三种重建算法 本节主要是介绍一些基本的重建算法,比如贪婪迭代算法中的匹配追踪算法,正交匹配追踪算法,以及凸松弛算法中的基追踪算法,对其原理进行了介绍,并用matlab代码重构出来一维和二维的图形,进而比较这几种算法的性能。

压缩感知理论综述(原创)

压缩感知理论综述 摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及仿真,举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。 关键词:压缩感知;稀疏表示;观测矩阵;编码;解码 一、引言 Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。解决这些压力常见的方案是信号压缩。但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。 于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist 采样定理要求的速率采样信号,同时又可以完全恢复信号。与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。事实上,稀疏性在现代信号处理领域起着至关重要的作用。近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。 简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。在该理论框架

OMP压缩感知重构仿真

clc;clear %% 1. 时域测试信号生成 %产生长度为N=256的稀疏信号,其稀疏度K=23且这23个非零值随机分布于信号256个位置 %观测向量y的长度M=80,即采样率M/N=0.3 N=256; K=23; M=80; x = zeros(N,1); q = randperm(N); x(q(1:K)) =randn(K,1); %原始信号 %% 2. 测量矩阵及观测值获得 Phi=randn(M,N); %测量矩阵% 感知矩阵(高斯分布白噪声)M*N matrixNorm = Phi.'*Phi; matrixNorm = sqrt(diag(matrixNorm)).'; Phi = Phi./repmat(matrixNorm, [M,1]); %注意,观测矩阵是要归一化的,因为原子范数要是1! y=Phi*x ; %获得线性测量 %% 3.用MP算法重构信号 iterations=K; % 算法迭代次数(m>=K) %signal_reconstruct=zeros(1,1); % 近似解矩阵(初始值为空矩阵) r_n=y; % 残差值M*1 x_rec=zeros(N,1); for times=1:iterations for col=1:N %感知矩阵的所有列向量 innerpro(col)=Phi(:,col)'*r_n; %计算余量和感知矩阵每一列的内积end [val,pos]=max(abs(innerpro) ); %找出内积中绝对值最大的元素和它的对应的感知矩阵的列pos x_rec(pos)=x_rec(pos)+innerpro(pos); %计算新的近似x_rec r_n=r_n-innerpro(pos)*Phi(:,pos); %更新残差 end norm(x_rec-x)/norm(x) % 重构误差 subplot(3,1,1);plot(x);title('origin'); subplot(3,1,2);plot(x_rec);title('reconstruct'); subplot(3,1,3);plot(r_n);title('残差');

基于压缩感知的图像重构模型的设计

基于压缩感知的图像重构模型的设计 压缩感知打破了传统的奈奎斯特采样定律,可以用远小于奈奎斯特采样定律所要求的采样率从较少的测量值中高精度的重构出原始信号。文章利用MATLAB GUI对基于压缩感知理论的图像压缩重构模型进行设计,该模型界面友好,操作简单方便。 标签:压缩感知;小波变换;图像重构;模型设计 引言 压缩感知理论为信号采集带来了革命性的突破,在信号具有可压缩性或稀疏性的前提下,压缩感知理论能以远低于奈奎斯特频率的采样率对信号进行采样,通过数值最优化准确重构原始信号[1-4]。压缩感知理论是编解码思想的一个突破,减轻了信号采样、传输和存储遇到的巨大压力,是一种信息获取及处理的全新的理论框架。 本文将利用MATLAB GUI进行基于压缩感知理论的图像重构模型的设计,使模型使用者方便操作界面。MATLAB是Math Works公司用C语言开发的集编程、数据结构和图形用户界面于一身的广泛被大家使用并具备矩阵及科学计算功能的一款较完备的软件,在该软件平台下进行的仿真以及系统模型的设计,在界面和性能上面远远超过很多软件,其专业性更是使其在很多领域有广泛的应用,其中能快速的利用图形用户界面(GUI)方式进行程序设计,这给设计者带来了极大的便利[5]。 1 基于小波变换的压缩感知 本节通过对原始图像采用小波变换,从而获得稀疏的小波系数矩阵,并利用高斯随机测量矩阵对稀疏变换后的小波系数进行测量,得到M个测量值,再通过OMP算法重构小波变换域下的稀疏矩阵,最后通过稀疏逆变换就可以得到重构后的图像。 本节选取大小为256×256的图像X,采样率为0.5对图像进行变化重构。本文实验仿真所得的PSNR值均经过10次仿真测量求平均值所得。 2 模型设计的主要步骤 根据上述基于小波变换的压缩感知进行模型设计[6],主要步骤包括: (1)根据需求制定模型的重点功能,继而根据功能设计各个功能子模块。 (2)根据初始需求以及大致目标设计出最原始的软件界

几种压缩感知算法

.1压缩感知部分 压缩感知算法主要可分为三类:贪婪迭代算法、凸凸优化(或最优化逼近方法)和基于贝叶斯框架提出的重构算法。由于第三类方法注重信号的时间相关性,不适合图像处理问题,故目前的研究成果主要集中在前两类中。目前已实现6中算法,分别为正交匹配追踪法()、迭代硬阈值法()、分段正交匹配追踪法()、分段弱正交匹配追踪法()、广义正交匹配追踪()、基追踪法()。 1.1 正交匹配追踪法() 在正交匹配追踪中,残差是总与已经选择过的原子正交的。这意味着一个原子不会被选择两次,结果会在有限的几步收敛。的算法如下 (1)用x表示你的信号,初始化残差e0; (2)选择与e0内积绝对值最大的原子,表示为φ1; (3)将选择的原子作为列组成矩阵Φt,定义Φt列空间的正交投影算子为 通过从e0减去其在Φt所张成空间上的正交投影得到残差e1; (4)对残差迭代执行(2)、(3)步; 其中I为单位阵。需要注意的是在迭代过程中Φt为所有被选择过的原子组成的矩阵,因此每次都是不同的,所以由它生成的正交投影算子矩阵P每次都是不同的。 (5)直到达到某个指定的停止准则后停止算法。 减去的是在所有被选择过的原子组成的矩阵Φt所张成空间上的正交投影,而减去的是在本次被选择的原子φm所张成空间上的正交投影。 经算法重构后的结果如下所示: 算法的使用时间如下:

1.2 迭代硬阈值法() 目标函数为 这里中的M应该指的是,S应该指的是。这里要求: 之后我们利用式 对目标函数进行变形。接着便是获得极值点: 利用该式进行迭代可以得到极值点,我们需要的是最小值。此时目标函数的最小值就得到了。此时便得到我们需要的公式: 我们要保证向量y的稀疏度不大于M,即,为了达到这一目标,要保留最大的M项(因为是平方,所以要取绝对值),剩余的置零(注意这里有个负号,所以要保留最大的M项)。 算法结果:

图像压缩研究背景意义及现状

图像压缩研究背景意义及现状 1图像压缩的可能性与必要性 2图像压缩方法的分类 3静止图像压缩的发展历史与现状 4图像压缩的基本原理 图像是对客观事物的一种相似性的、生动的描述,是对客观对像的一种比较直观的表示方式。它包含了被描述对像的有关信息,是人们最主要的信息源。据统计,一个人获得的信息大约有75%来自视觉。进入信息化时代人们将越来越依靠计算机获取和利用信息,而数字化后的多煤体信息具有数据海量性,与当前硬件技术所能提供的计算机存储资源和网络带宽之间有很大的差距。这样,就对信息的存储和传输造成了很大困难,成为阻碍人们有效获取和利用信息的一个瓶颈问题。图像信息作为计算机上最重要的资源,对其进行有效的压缩处理无疑将会给人们带来巨大的好处。静止图像压缩不但是各种动态图像压缩、传输的基础,而且还是影响其效果好坏的重要因素。 1图像压缩的可能性与必要性 图像数字化后的数据量是很大的,例如,一幅1024*768的24位BMP图像,其数据量约为2.25MB。大数据量的图像信息会给存储器的存储容量,通信干线信道的带宽,以及计算机的处理速度增加极大的压力。单纯靠增加存储器容量,提高信道带宽以及计算机的处理速度等方法来解决这个问题是不现实的,这时就要考虑压缩。数字图像的冗余主要表现在以下几种形式: (1) 空间冗余。在一幅图像中,规则物体和规则背景(所谓规则就是指表面有序而不是完全杂乱无章的排列)等所具有的相关性,应用一些算法提取并减少这些图像素之间的相关性就可以达到数据压缩的目的。 (2) 时间冗余。指序列图像(电视图像,运动图像)所包含的相邻图像之间的相关性。 (3) 结构冗余。有些图像有着非常强的纹理结构(如草席的图案)或自相似性,称之为结构上的冗余。 (4) 信息熵冗余。如果图像中平均每个像素使用的比特数大于该图像的信息熵,则图像存在冗余,这种冗余称为信息熵冗余。 (5) 视觉冗余。人眼接收信息的能力是有限的,对图像的分辨率也是有限的。去掉或减少人眼不能感知或不敏感的那部份图像信息,从而达到压缩的目的。 (6) 知识冗余。指有些图像中包含与先验知识有关的信息,如人脸的固定结构。

压缩感知在雷达成像中的应用

2014雷达对抗原理期末报告 题目:压缩感知在雷达成像中的应用 院(系)信息与电气工程学院 专业电子信息工程 学生 班级 学号 教师 报告日期2014-11-25 1.课题来源 1.1摘要 以 ISAR 和 InISAR 为代表的高分辨率雷达成像技术在军事和民用领域有着广泛的需求。通常情况下,高分辨率雷达图像的获得需要宽带雷达信号,而宽带雷达信号则又会导致雷达数据率的增加。近年来在雷达技术领域得到高度关注的压缩感知理论,其非相关测量过程能够有效地降低高分辨率雷达成像系统的数据率,有望解决雷达系统中超大数据量的采集、存储与传输问题。因此压缩感知理论和技术在雷达成像领域的应用,有可能会为高分辨率雷达成像技术带来巨大变革。压缩感知在高分辨率雷达成像中的应用研究工作虽然取得了一定的进展,但还没有针对压缩感知雷达成像理论进行系统性研究,也没能在此基础上给出实用化的成像算法。论文以基于压缩感知的雷达成像理论与算法作为研究内容,将压缩感知理论应用到高分辨率雷达成像算法中。论文围绕着成像数据获取方法、

成像信号处理方法和压缩感知在宽带雷达成像中的应用等紧密联系而侧重不同的三个方面展开了研究,建立了匹配滤波体制和去斜体制下的基带回波信号稀疏表示模型,提出了压缩感知测量器应用到雷达接收机的数字方案与模拟方案,构建了具有保相性的压缩感知距离压缩算法,通过距离-方位解耦合的雷达成像框架,将压缩感知距离压缩算法与传统的雷达二维成像和 InISAR 三维成像算法相结合,形成了压缩感知雷达成像算法,并将其应用到调频步进宽带雷达成像中。论文通过对仿真和实测数据的处理,证明了所提出的方法的有效性。 1.2研究的目的和意义 在压缩感知雷达成像算法研究中,首先在常用的稀疏信号重建算法中筛选出适合雷达成像的算法,然后与雷达回波信号稀疏表示模型以及非相干测量矩阵一起构建了具有保相性的压缩感知距离压缩算法。在此基础上利用距离-方位解耦合的雷达成像框架,将压缩感知距离压缩算法与传统的雷达二维成像和 InISAR 三维成像算法相结合,形成了压缩感知雷达成像算法。 在压缩感知宽带雷达成像算法研究中,结合调频步进信号的子脉冲合成方法,提出了针对调频步进信号的压缩感知测量方法,实现了压缩感知宽带雷达成像。 2.国内外在该方向的研究现状及分析 雷达成像的历史可以追溯到 20 世纪 50 年代。1951 年 6 月,美国Goodyear Aircraft 公司的 Carl Wiley 首先提出利用频率分析方法改善雷达的角分辨率,并设计了实验装置进行验证,这是合成孔径雷达思想的最初体现。1957 年 8 月,Michigan 大学雷达和光学实验室的 Cutrona 和 Leith 等人研制的机载合成孔径雷达进行了飞行试验,得到了第一张大面积的聚焦型合成孔径雷达图像。70 年代,Kirk 等人研制了第一台 SAR 数字处理系统。1978年 5 月,星载 SAR SeaSat 升空,标志着 SAR 技术已进入空间领域。目前,美国、欧空局、加拿大、日本等都有自己的实用化机载和星载合成孔径雷达系统,机载 SAR 系统有美国的 AN/APY-6,德国的 AER-Ⅱ,英国的 DERA ‘ESR’,以及瑞士的 DO-SAR 等;星载SAR 系统有美国的 SIR-A 和 SIR-B 卫星,欧空局的 ERS-1 和 ERS-2 卫星,日本的 JERS-1和 ALOS 卫星,加拿大的 Radarsat-1 和 Radarsat-2 卫星,意大利航天局的 COSMO-SkyMed高分辨雷达卫星星座系统,美国航天局、德国空间局和意大利空间局联合发射的SIR-C/X-SAR 以及德国空间中心和欧洲EADS Astrium 公司合作开发的 TerraSAR-X 卫星等。在国内,从七十年代开始大力研究 SAR 相关技术,中国科学院电子学研究所在 1979年成功研制了机载合成孔径雷达原理样机,并获得首批 SAR 成像数据。从“八五”开始,对SAR 系统的研究就一直是遥感技术中的重点研究方向之一。目前,中科院电子所、信息产业部 14 所、38 所、航空工业总公司 607 所,以及航科集团等单位都已对 SAR 技术开展了研究,许多单位已经有了机载 SAR 的实验系统,并获得了大量实际成像数据。bZ0YfRP。 逆合成孔径雷达是在合成孔径雷达的基础上发展起来的又一种高分辨成像雷达,其历史可以追溯到二十世纪六十年代。六十年代,在 Brown 领导下的Willow Run 实验室就开展了对旋转目标的成像。Walker 从 1970 年起开展对旋转目标成像的研究,他的研究工作对距离-多普勒成像理论做了更明确的阐述,并且由于引入了极坐标存储技术(光学处理),解决了运动穿越分辨单元的处理

压缩感知原理

压缩感知原理(附程序) 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图2.1。 图2.1 传统的信号压缩过程 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。 由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理 压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基 上具有紧凑的表示。即这些信号是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。

图像压缩综述

图像压缩综述 摘要:随着信息时代的不断发展,数字图像处理技术得到了广泛的应用,而作为数字图像处理技术的重要组成部分——数字图像压缩,也得到了迅猛的发展。本文从数字图像压缩的概念、发展历史、图像压缩的必要性和可能性、图像压缩标准、图像压缩基本方法和图像压缩效果评价等方面进行了综述。 引言 在当前这个信息化社会中,新信息技术革命使人类被日益增多的多媒体信息所包围。多媒体信息主要是由图像、文本和声音三大元素组成。图像作为其主要元素之一,发挥着越来越重要的作用。而传输和存储图像需要占用大量的数据空间,这严重影响了传输速率和实时处理量,极大地制约了图像通信的发展。其中,数据量最大的是数字视频数据。未经处理的数字视频信息需要消耗巨大的存储资源,以主流高清视频为例,在分辨率为1280×720,帧率为30帧每秒的视频应用中,存储一分钟的视频信息,需要约18.5G(以常4:2:0视频,每像素12比特)比特存储空间,一部120分钟高清电影约需要2225G比特的存储空间。可见未经处理的视频信息量非常大,为了满足存储和传输需求,视频信息的压缩是十分必要的。在同等的通信容量下,如果图像数据可以压缩之后再传输,就可以使传输的数据量变得很小,也就能够增加通信能力。因此图像压缩编码技术受到了越来越多的关注及广泛的应用。如数码相机、USB摄像头、可视电话、视频点播、视频会议系统、数字监控系统等等,都使用到了图像或视频的压缩技术。 数字图像压缩是以尽可能少的比特数代表图像或图像中所包含的信息量的技术,图像通过压缩处理去掉其中的数据冗余、符号冗余、视觉冗余等各种冗余信息,提高传输速率,节省存储空间。 1图像压缩的发展历史 自1948年提出的电视信号数字化设想后, 即开始了图像压缩的研究,到现在已有60多年的历史。20世纪五六十年代的图像压缩编码主要集中在预测编码、哈夫曼编码等技术的研究,还不成熟。1969年在美国召开的第一届“图像编码会议”,标志着图像编码作为一门独立学科的诞生。到了七八十年代,图像压缩技术的主要成果体现在变换编码技术上, 矢量量化编码技术也有较大的发展。80年代末,小波变换理论、分形理论、人工神经网络理论、视觉仿真理论建立,人们开始突破传统的信源编码理论, 图像压缩编码向着更高的压缩率和更好的压缩质量的方向发展,进入了一个崭新的发展时期。 2图像压缩的可能性 图像之所以能够进行压缩有以下几个方面的原因: 一是原始图像数据是高度相关的,存在很大的数据冗余。如图像内相邻像素之间的空间冗余度、系列图像前后帧之间的时间冗余度、多光谱遥感图像各频谱间的频率域冗余度等,它们造成了大量的比特数浪费,消除这些冗余就可以节约码字,大大减少数据量,达到数据压 缩的目的。 二是信源符号出现的概率不同,若用相同码长表示不同出现概率的符号,就会造成符号冗余度。如果采用可变长编码技术,对出现概率高的符号用短码字,对出现概率低的符号用长码字表示,就可以消除符号冗余度,从而节约码字。 三是人眼具有视觉冗余,允许图像编码有一定的失真。人类视觉系统(HVS)是有缺陷的,人眼对于某些失真不敏感难以察觉。在许多场合中,并不要求经压缩及复原以后的图像和原始图像完全相同,可以允许有少量的失真,只要这些失真并不被人眼所察觉即可。这就为压缩比的提高提供了十分有利的条件,这种有失真的编码称为限失真编码。在多数应用中,人眼往

压缩感知磁共振成像技术综述

https://www.360docs.net/doc/bf15235370.html, 压缩感知磁共振成像技术综述 王水花,张煜东 南京师范大学计算机科学与技术学院,江苏南京210023 【摘 要】目的:综述近年来压缩感知磁共振成像技术的研究进展。方法:磁共振成像是目前临床医学影像中最重 要的非侵入式检查方法之一,然而其成像速度较低,限制其发展。压缩感知是一种新的信号采集与获取理论,它利用信号在特定域上的稀疏性或可压缩性,可通过少量测量重建整个原始信号。压缩感知磁共振成像技术将压缩感知应用到磁共振成像中,可在相同的扫描时间内获得更精细的空间组织结构,也可在相同的空间分辨率下加速成像。结果:本文概述了压缩感知磁共振成像的理论基础,分别从稀疏变换、不相干欠采样、非线性重建三个方面具体阐述,最后讨论了其研究展望与应用现状。结论:压缩感知磁共振成像具有较好的发展潜力,有逐渐增长的医用与商用价值。 【关键词】磁共振成像;压缩感知;稀疏变换;不相干欠采样;非线性重建【DOI 编码】doi:10.3969/j.issn.1005-202X.2015.02.002【中图分类号】R312;R445.2 【文献标识码】A 【文章编号】1005-202X (2015)02-0158-05 Survey on Compressed Sensing Magnetic Resonance Imaging Technique WANG Shui-hua,ZHANG Yu-dong School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China Abstract:Objective This paper focuses on the survey of compressed sensing in magnetic resonance imaging (CSMRI ).Meth -ods Magnetic resonance imaging is one of the most crucial non-invasive diagnostic implements in routine clinical examination.However,it is often limited by long scan https://www.360docs.net/doc/bf15235370.html,pressed sensing is a novel theory of signal acquisition and processing.It capitalizes on the signal's sparseness or compressibility in specific domain,allowing the entire original signal to be reconstruct-ed from relatively few measurements.CSMRI is proposed by integrating compressed sensing into MRI,providing more precise spatial tissue structure than normal technique in the same scan time,and accelerating imaging in the same spatial resolution.Results In this study we discussed in depth three components as sparse transform,incoherent subsampling,and nonlinear re-construction.We conclude the paper by discussing the research prospects and applications of CSMRI.Conclusion CSMRI has good development potential,and has increasing values for medical and commercial applications. Key words:magnetic resonance imaging;compressed sensing;sparse transform;incoherent subsampling;nonlinear recon-struction 前言 1971年,纽约州立大学的Paul https://www.360docs.net/doc/bf15235370.html,uterbur 教授提出磁共振成像(MRI),并于2003年获得诺贝尔生理医学奖。MRI 利用核磁共振原理,由于能量在不同物 质结构中有不同的衰减[1],通过外加梯度磁场检测电 磁波,可知构成物体原子核的位置和种类,从而绘制物体内部影像[2-3]。 MRI 是目前少有的对人体无伤害的安全、快速、准确的临床诊断方法,具有多方位、多参数、多模态等优点,不仅可显示人体组织的解剖信息,而且可显示功能信息。MRI 在临床上有广泛的应用,如今每年至少有6000万病例利用MRI 技术进行检查。但MRI 扫描时间过长、成像较慢[4],造成以下几个问题[5]:(1)给病人造成额外的痛苦;(2)由于器官运动(例如呼吸、眨眼、吞咽等非自主运动)造成图像模糊,增加伪影;(3)无法满足动态实时成像与导航的需要;(4)限制功能成像的推广,如波谱成像、磁敏感加权成像等。 2006年Candes 等[6]在前人的基础上,系统性地 【收稿日期】2014-12-21 【基金项目】国家自然科学基金(610011024);南京师范大学高层次人才 科研启动基金(2013119XGQ0061,2014119XGQ0080) 【作者简介】王水花,女,助教,研究方向:生物图像处理。【通信作者】张煜东,男,博士,教授,研究方向:医学图像处理。 158--

压缩感知重构算法之基追踪

压缩感知重构算法之基追踪(Basis Pursuit ,BP ) 除匹配追踪类贪婪迭代算法之外,压缩感知重构算法另一大类就是凸优化算法或最优化逼近方法,这类方法通过将非凸问题转化为凸问题求解找到信号的逼近,其中最常用的方法就是基追踪(Basis Pursuit, BP),该方法提出使用1l 范数替代0l 范数来解决最优化问题,以便使用线性规划方法来求解[1]。本篇我们就来讲解基追踪方法。理解基追踪方法需要一定的最优化知识基础,可参见最优化方法分类中的内容。 1、l1范数和l0范数最小化的等价问题 在文献【2】的第4部分,较为详细的证明了1l 范数与0l 范数最小化在某条件下等价。证明过程是一个比较复杂的数学推导,这里尽量引用文献中的原文来说明。 首先,在文献【2】的4.1节,给出了(P1)问题,并给出了(P1)的线性规划等价形式(LP),这个等价关系后面再详叙。 4.1 The Case 1p = In the case 1p =, (1P ) is a convex optimization problem. Write it out in an equivalent form, with θ being the optimization variable: 11() min ||||.n P subject to y θ θθΦ= This can be formulated as a linear programming problem: let A be the n by 2m matrix []Φ-Φ. The linear program ()min1,0T n z LP z subject to Az y x =≥. has a solution *z , say, a vector in 2m which can be partitioned as ***[]z u v =; then ***u v θ=- solves 1()P . The reconstruction *1,?n x θ=ψ. This linear program is typically considered computationally tractable. In fact, this problem has been studied in the signal analysis literature under the name Basis Pursuit [7]; in that work, very large-scale underdetermined problems. 2、基追踪实现工具箱l1-MAGIC 若要谈基追踪方法的实现,就必须提到l1-MAGIC 工具箱(工具箱主页:https://www.360docs.net/doc/bf15235370.html,/~justin/l1magic/),在工具箱主页有介绍:L1-MAGIC is a collection of MA TLAB routines for solving the convex optimization programs central to compressive sampling. The algorithms are based on standard interior-point methods, and are suitable for large-scale problems. 另外,该工具箱专门有一个说明文档《l1-magic: Recovery of Sparse Signals via Convex Programming 》,可以在工具箱主页下载。 该工具箱一共解决了七个问题,其中第一个问题即是Basis Pursuit : Min-1l with equality constraints. The problem 11()min ||||,P x subject to Ax b = also known as basis pursuit, finds the vector with smallest 1l norm 1||||:||i i x x = ∑ that explains the observations b . As the results in [4, 6] show, if a sufficiently sparse 0x exists such that 0Ax b = then 1()P will find it. When ,,x A b have real-valued entries, 1()P can be recast as an LP (this is discussed in detail in [10]).

图像的压缩与存储电子教案

《图形图像的存储格式与压缩》电子教案 教学内容及课时安排(2课时):根据学生基础 上课说明:这是我们送教下乡第一次的一节课,学校是克州阿克陶县巴仁乡巴仁中学,因为活动安排的时间紧,跟学校相关人员联系不上,所以按他们报的课程题目准备,对学生和学校条件,学生情况都不了解的情况下进行了,备课充分,但上课过程中因机房环境不熟悉、学生基础水平不了解的原因,所以本来一节课的内容,因为一节课40分钟,学生鼠标键盘操作不熟练等可分两个课时上。 教学目标: 一、知识与技能 1、了解图形图像文件存储和压缩的基本方法。 2、掌握图形、图像文件压缩工具的用法。(接受不了就下节讲) 二、情感、态度和价值观: 让学生对图形进行观察,对比、讨论、交流激发学生的好奇心与求知欲,并在不断的发现问题解决问题的过程中获得成功的体验。 三、过程与方法: 通过观察学生们提供的图片大小清晰度的变化,培养学生观察、分析、归纳能力。 通过通俗的案例迁移到图像压缩的基本过程抽象的知识体系,发展学生合情推理能力。 教学重点: 图像文件存储格式的多样性;多媒体文件压缩的宏观原理;无损

压缩与有损压缩 教学难点: 无损压缩和有损压缩的区别 学习目标: 1、比较图像文件常见的3种存储格式(BMP、JPG、GIF),知道图形、图像文件存储格式的多样性; 2、理解数据压缩的意义; 3、了解多媒体文件压缩的宏观原理;如果学生水平高,可以讲一些4、了解无损压缩和有损压缩的区别。 体验:大家打开图像格式文件夹欣赏里面的图片。在欣赏的过程中你发现了什么,为什么? 图像名称大小格式 图像一 5.49M bmp 图像二998K gif 图像三483K Jpg 图像四 4.53M pcx 图像五627K pdf 图像文件的格式。一般来说,在利用某种图像工具软件获取或加工图像后进行存储时,该图像软件采用的不同编码形式就是相应图像文件的格式。出于不同需要,在生成图形、图像会选择不同的存储格式,这样就产生了多种不同格式的文件。当然,每种图像文件的格式都与特定的编码方法相关。

基于MATLAB的图像压缩感知算法的实现毕业设计说明书

毕业设计(论文) 课题名称基于MATLAB的图像压缩感知 算法的实现

目录 目录......................................................... I 第1章绪论.. (1) 1.1 研究背景和意义 (1) 1.2 数据压缩技术 (2) 1.2.1 传统数据压缩技术 (2) 1.2.2 压缩感知理论(Compressed/Compressive Sensing/Sampling, CS) (3) 1.3 无线传感器网络 (6) 1.3.1 无线传感器网络概述 (6) 1.3.2 无线传感器网络数据压缩的必要性 (7) 1.4 本文主要工作和内容安排 (8) 第2章压缩感知理论 (9) 2.1压缩感知的前提条件—稀疏性和不相干性 (10) 2.2 三个关键技术 (13) 2.3信号的稀疏表示 (13) 2.4 观测矩阵设计 (15) 2.5 稀疏信号的重构 (17) 2.6 重构算法 (18) 2.7 压缩感知优势及不足 (20) 2.8 压缩感知在传感网中的观测方式 (21) 第3章压缩感知理论应用概述 (22) 3.1 压缩成像 (22) 3.2 模拟信息转换 (23) 3.3 生物传感 (23) 3.4 本章小结 (24)

第4章 CS在无线传感网中的应用 (24) 4.1 研究背景 (25) 4.1.1 基于感知数据相关性的压缩 (25) 4.1.2传统压缩重构方法 (25) 4.1.3 图像压缩重构质量的评价 (26) 4.2 压缩感知理论算法对一维信号的实现 (28) 4.2.1 CS用于WSN的优势 (28) 4.2.2 观测重构模型 (28) 4.2.2 正交匹配追踪算法(OMP) (29) 4.2.3 算法的实现及结果分析 (30) 4.3 压缩感知理论算法对二维图像重构的实现 (34) 4.3.1 基于小波变换的分块压缩感知理论 (34) 4.3.2 实现步骤 (35) 4.3.3 重构结果及分析 (38) 4.4 本章小结 (42) 第5章总结与展望 (42) 5.1 工作总结 (42) 5.2 后续展望 (43) 参考文献 (43) 致谢 (45) 附录 (46)

压缩感知新技术专题讲座_二_第3讲压缩感知技术中的信号稀疏表示方法

压缩感知新技术专题讲座(二) 第3讲 压缩感知技术中的信号稀疏表示方法 X 周 彬1,朱 涛2,张雄伟3 (1.解放军理工大学指挥自动化学院研究生2队,江苏南京210007; 2.中国人民解放军66242部队,内蒙古锡林郭勒026000; 3.解放军理工大学指挥自动化学院信息作战系)摘 要:信号的稀疏表示是信号分析领域的基本问题,也是近几年兴起的压缩感知理论的基础。文章首先 分析了信号稀疏表示的基本原理,然后介绍了当前信号稀疏表示的主要方法,并重点阐述了基于过完备字典的稀 疏表示方法及其在压缩感知中的应用,最后总结了稀疏表示所面临的问题和未来发展方向。 关键词:稀疏表示;压缩感知;字典学习 中图分类号:T N 911.7文献标识码:A 文章编号:CN 32-1289(2012)01-0085-05 Sparse Representation of Signals in Compressive Sensing ZH OU Bin 1,ZH U T ao 2,ZH A N G X iong -w ei 3 (1.Postg r aduate T eam 2ICA ,PL A U ST ,Nanjing 210007,China ; 2.U nit 66242of P LA , Xiling uole 026000,China; 3.Depar tment of I nfo rm atio n O peration Studies ICA ,PL A U ST ) Abstract :T he sparse representation is a basic problem in signal analy sis field and also the basis o f the new emerging compressiv e sensing theory .The definitio n and principles of the sparse representation w ere firstly reviewed.And then some m ain m ethods o f the sparse representation, especially those based on the overco mplete dictionary w er e inv estig ated .The applications of the sparse repr esentation in CS w er e discussed.Some problem s to so lve were given and further devel- opm ent w as pointed out . Key words :sparse representation;com pressive sensing ;ov ercomplete dictionary 随着现代传感器技术的发展,许多领域面临着日益膨胀的海量数据,如地球物理数据、视频数据、天文数据、基因数据等。如何实现对这些数据更为灵活、简洁的表达已成为一个倍受关注的问题。传统的信号表示方法通常是基于正交基(如傅里叶基,小波基)的展开。为了实现信号的灵活、简洁和自适应的表示,一种更好的信号分解方式是根据信号本身的特点,自适应地选择合适的基函数,来完成信号的分解,从而得到信号的一个非常简洁的表达,即稀疏表示。由于信号的稀疏表示能在一定程度上自然地贴近信号的本质特征,因而对稀疏分解的研究有极其重要而深远的理论意义和广泛的应用价值。 目前,稀疏表示被广泛应用于信号处理和图像处理的各个领域,如图像压缩、音频压缩、噪声抑制、盲信号分离、地震数据处理、系统辨识、雷达成像处理等等。尤其是近年来新兴起的压缩感知(com pressed sensing)理论[1,2],其优点就是针对可稀疏表示的信号,将传统的数据采集与数据压缩合二为一,在获取信号同时对数据进行压缩。压缩感知理论的一个重要基础和前提就是选择信号的稀疏域,只有选择合适的基矩阵才能保证信号的稀疏度,从而保证信号的恢复精度。由于压缩感知理论的提出和蓬勃发展,稀疏表示越来 第33卷第1期  2012年3月军 事 通 信 技 术Jour na l o f M ilitar y Co mmunicatio ns T echnolog y V ol.33N o.1M ar.2012X 收稿日期:2011-10-18;修回日期:2011-12-12 作者简介:周 彬(1986-),男,博士生.

相关文档
最新文档