频分复用(OFDM)系统的原理

频分复用(OFDM)系统的原理
频分复用(OFDM)系统的原理

On wireless communication,the high rate and high quality of communication service are required to offer,and OFDM h as the advantage of the high bandwidth efficiency and strong anti-multipath ability ,so OFDM receives widespread atte ntion in recent years. OFDM is actually one kind of multi-carrier modulation .and the main idea of OFDM is Channel will be divided into several subchannels orthogonal,and then turn High-speed data signals into parallel low-speed data-f low , modulation in each of the subchannels on transmission.

The design is the use of MATLAB design a structured, modular, graphical simulation software. To provide simulation platform for OFDM technology. OFDM is required to complete the simulation modeling. The major signal mapping, m odulation, and other sub-module . Signal mapping module which is based on the corresponding modulation encoding ea ch bit Table Group into a plural . After string and the conversion of binary data , Road map on each divided into two gr oups a bit, By map the QAM constellation into plural. By using look-up table method QAM constellation is mapped. Q AM constellation is drawn. And modulation or demodulation module can be used to achieve IFFT or FFT . OFDM syst ems are used more coherent demodulation. When receiver data is demodulation, Channel estimation need to correct by the frequency selective fading and sub-carrier frequency offset the random phase shift and the magnitude of the decline. Otherwise, the bit error rate performance is very difficult to achieve practical requirements. Channel estimation is used LMS channel estimation algorithm. Finally additive white Gaussian noise channels of signal-to-noise ratio (SNR) - bit

error curves is drawn.

KEY WORDS wireless communication, multicarrier modulation, OFDM, Channel Estimation

目录

摘要 I

ABSTRACT II

第一章绪论 1

1.1正交频分复用(OFDM)的来源 1

1.2 正交频分复用(OFDM)的研究背景 1

1.2.1 无线通信的发展 1

1.2.2 第4代(4G)无线通信系统 2

1.3正交频分复用(OFDM)的意义 2

1.3.1正交频分复用(OFDM)的优点 2

1.3.2 正交频分复用(OFDM)的不足之处 4

1.4 多载波技术的发展 4

第二章频分复用(OFDM)系统的原理 6

2.1 多载波调制基础 6

2.2 频分复用(OFDM)系统的技术原理 6

2.2.1 OFDM的基本原理 7

2.2.2 信号映射(mapping) 7

2.2.3 OFDM系统的数学模型 11

2.2.4 用DFT实现OFDM的调制与解调 14

2.2.5 FFT/IFFT 14

2.2.6保护间隔和循环前缀 15

2.2.7 交织 17

2.2.8 OFDM的同步技术 17

2.2.9 OFDM系统的重要参数设计 18

第三章 OFDM系统的仿真设计 20

3.1 OFDM的MATLAB仿真 20

3.1.1 MATLAB语言简介 20

3.1.2 正交频分复用(OFDM)仿真系统说明 21

3.1.3 仿真程序说明 23

3.1.4 调试过程和结果分析 33

第四章结束语 35

4.1总结 35

4.2不足与展望 35

致谢 37

参考文献 38

摘要

在无线移动通信中,要求提供高速率和高质量的通信服务,而正交频分复用(OFDM)因具有频带利用率高和抗多径能力强等优点,近年受到广泛的重视。OFDM(正交频分复用)技术实际上是多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传

输。

本设计是利用MATLAB设计一种结构化,模块化,图形化的仿真软件,为OFDM技术的研究提供仿真平台。要求完成OFDM的仿真建模,主要完成信号映射,调制等子模块的演示。其中信号映射模块主要是根据相应的调制编码表把每个比特组转换成一个复数。经过串/并转换的二进制数据,每一路按映射方式分为2比特一组,按QAM的星座图映射成复数。而调制/解调子模块可以用IFFT/FFT来实现。OFDM 系统中更多的采用相干解调,接收端解调数据时,需要信道估计来纠正由频率选择性衰落和子载波频率偏移产生的随机的相位偏移和幅度衰落,否则系统的误码率性能很难达到实用要求。本文中信道估计采用了LMS信道估计算法。最后得到在加性高斯白噪声信道下的信噪比(SNR)-误码率曲线图。

关键词:无线移动通信,多载波调制,正交频分复用,信道估计

ABSTRACT

第一章绪论

1.1正交频分复用(OFDM)的来源

进入21世纪以来,无线通信技术正在以前所未有的速度向前发展。随着用户对各种实时多媒体业务需求的增加和互联网技术的迅猛发展,可以预计,未来的无线通信技术将会具有更高的信息传输速率,为用户提供更大的便利,其网络结构也将发生更本的变化。目前普遍的观点是,下一代的无线通信网络将是基于统一的IPv6包交换方式,向用户提供的峰值速率超过100Mbit/s【1】,并能支持用户在各种无线通信网络中无缝漫游的全新网络。为了支持更高的信息传输速率和更高的用户移动速度,在下一代的无线通信中必须采用频谱效率更高,抗多径干扰能力更强的新型传输技术。在当前能提供高速率传输的各种无线解决方案中,以正交频分复用(OFDM)为代表的多载波调制技术是最有前途的方案之一。

1.2 正交频分复用(OFDM)的研究背景

1.2.1 无线通信的发展

人类采用无线方式进行通信的历史可以追溯到19世纪末。1864年,英国物理学家麦克斯韦(J.C.Maxwell)创造性地总结了人们已有的电磁学知识,预言了电磁波的存在。1887年,德国物理学家赫兹(H.R.Herts)用试验产生出电磁波,证明了麦克斯韦的预言。1897年,意大利科学家马可尼(G.Maroni)和俄国军官波波夫(A. S.Popov)首次使用无线电波进行信息传输并获得成功。1901年,马可尼实现了从英国到纽芬兰的跨大西洋无线电信号接收,这是一次超过2700公里的远距离通信,充分显示了无线通信的巨大发展潜力。在随后一个多世纪的时间里,伴随者计算机技术和大规模集成电路技术的发展,无线通信的理论和技术不断取得进步,今天的移动通信技术已成为人们日常生活中不可缺少的重要通信方式。

早期的无线通信主要用于船舶,航空,列车,公共安全等专用领域,用户数量很少。20世纪60年代,贝尔实验室提出了蜂窝的概念,使无线通信摆脱了传统的大区制结构,为无线通信的大规模商用奠定了基础。20世纪70年代,具有高可靠性的固态微型射频硬件的发展使移动通信逐渐成熟起来。从20世纪70年代末到现在的20多年时间里,无线通信系统从第1代发展到了第3代,进入一个飞速发展的时期。据统计,1990年全球蜂窝电话的用户仅为1千万,而目前蜂窝电话的用户的数量已达到7亿。在中国,目前蜂窝电话的用户已超过

1.4亿,每月新增蜂窝电话的数量将超过1500万,移动通信市场出现了空前的繁荣。见文献[1]。

1.2.2 第4代(4G)无线通信系统

根据无线通信每10年发展一代的特点,20世纪90年代末自ITU-R推出3G移动通信的标准之后,各个国家和地区为了在下一代无线通信系统的标准中占有一席之地,纷纷启动了新一代无线通信系统的技术和标准化研究工作。有关新一代无线通信系统的名称目前尚不统一,这些名称有4G,Beyond3G,Beyond IMT-2000等多种,

在此,我们将其统称为4G无线通信系统。

对4G系统研究最为积极的地区和国家当属欧盟,美国,东亚的日本,韩国和中国。欧盟的研究工作主要包括欧盟信息技术协会(IST)第5框架和第6框架研究计划下的多个研究项目(如MIND,Moby Dick,OverDRIVE, SCOUT,MATRICE等)以及世界无线通信技术研究坛(WWRF)的工作。美国对4G的研究比较分散,主要体现在美国电器与电子工程师协会(IEEE)主办的各种会议和研讨会上发表的有关4G系统的报道,DARPA 资助的下一代(XG)通信系统的研究计划和MIT正在进行的Oxygen研究项目。日本的4G系统研究机构主要有移动信息技术论坛,日本通信技术研究所(CRL)和NTTDoCoMo公司。目前,NTTDoCoMo公司的4G 研究工作非常引人瞩目,他们提出了基于正交频率码分复用(OFCDM)技术具有可变扩频因子的4G系统实现方案,并于2002年10月推出了下行链路速率为100Mbit/s【1】,上行链路速率为20Mbit/s的试验系统。在韩国,对4G移动通信系统的研究工作主要由韩国电子通信研究所(ETRI)来承担,目前,ETRI已经确定了4G系统的远景目标和研究时间表,并与国内外的大学和研究机构密切协作,全力推动4G系统的标准化工作。在中国,2001年启动的”十五”863重大研究计划项目中专门设立了面向4G的FuTURE计划,该计划的研究目标是在新技术产生的初期,对国际主流核心技术的发展以及知识产权的形成有所贡献,实现移动通信技术跨越式发展,开展高技术研究和试验,侧重于可实现性的关键技术开发与演示,并于2005年底进行关键技术

的演示。

1.3正交频分复用(OFDM)的意义

1.3.1正交频分复用(OFDM)的优点

宽带无线通信系统中存在的主要问题是频率选择性衰落所引起的符号间干扰(ISI)问题。传统上克服ISI的方法有两种:第一种方法是采用单载波调制加时域均衡的方法,如2G蜂窝系统GSM中即采用了这种方法;第二种方法是采用直接序列扩频码分多址(DS-CDMA)加Rake接收技术,如2G蜂窝系统IS-95和3G蜂窝系统IMT-2000中均采用了这种方法。上述两种方法在各自的系统中都能很好地克服因频率选择性衰落所引起的符号间干扰问题,但是,对于高速数据业务来说,传统的单载波系统和CDMA系统都存在很大的缺陷。由于无线信道存在时延扩展,而且高速信息流的符号宽度又相对较短,所以符号之间会存在着较严重的ISI,由此对单载波系统中所使用的均衡器提出非常高的要求,即抽头数量要足够大,训练符号要足够多,训练时间要足够长,这样均衡算法的复杂度也会大大增加。对于CDMA系统来说,其主要问题在于扩频增益与高速数据流之间的矛盾。在保证相同带宽的前提下,对高速数据流所使用的扩频增益不能太高,否则就大大限制了CDM A系统噪声平均的优点,从而使系统的软容量受到一定的影响,如果保持原来的扩频增益,则必须要相应地提高带宽。此外,受系统实现复杂度的限制,CDMA系统中Rake接收机的分支数量不能太多(目前为5左右),在高速宽带系统中可分解的多径数量较多,此时会有较大的能量损失。

近年来,备受人们关注的一项宽带传输新技术是以正交频分复用(OFDM)为代表的多载波传输技术【2】。多载波传输技术【3】把数据流分解为多个独立的子比特流,这样每个子数据流将具有低得多的比特速率,用这样的的低比特率形成的低速率多状态符号再去调制相应的子载波,从而构成多个低速率符号并行发送的传输系统。正交频分复用(OFDM)是多载波传输方案【4】的实现方式之一,在非对称数字用户线(ADSL)中,正交频分复用(OFDM)也被称为离散多音(DMT)调制。正交频分复用(OFDM)利用逆快速傅利叶变换(IFFT)和快速傅利叶变换(FFT)来分别实现调制和解调,是实现复杂度最低,应用最广的一种多载波传输方案。除了正交频分复用(OFDM)方式之外,人们还提出了许多其它的实现多载波调制的方式,如矢量变换方式【5】,基于小波变换的DWMT方式【6】,采用滤波器组的滤波多音(FMT)调制方式【7】等,但这些方式与正交频分复用(OFDM)相比,实现复杂度相对较高,因而在实际系统中很少采用。因此,与传统的单载波系统和CDMA系统相比,正交频分复用(OFDM)系统的主要优势在于:1)可以有效地对抗多径传播所造成的符号间干扰,与其他实现方法相比,多载波系统实现复杂度较低;2)在变化相对较慢的信道上,多载波系统可以根据每个子载波的信噪比来优化分配每个子载波上传送的信息

比特,从而大大提高系统传输信息的容量;

3)多载波系统可以有效地对抗窄带干扰,因为这种干扰仅仅影响系统的一小部分子载波;

4)在广播应用中,利用多载波系统可以实现非常具有吸引力的单频网络。

1.3.2 正交频分复用(OFDM)的不足之处

在与传统的单载波传输系统相比,正交频分复用(OFDM)系统的主要缺点在于:

1)对于载波频率偏移和定时误差的敏感程度比单载波系统要高;

2)多载波系统中的信号存在较高的峰值平均功率比(PAR)使得它对放大器的线性要求很高。

1.4 多载波技术的发展

多载波调制技术本质上是一种频分复用技术。频分复用技术早在19世纪以前就已经被提出,它把可用带宽分成若干相互间隔的子频带,同时分别传送一路低速信号(如电报),从而达到信号复用的目的。各子载波上的被调制数据可以来自同一信号源,也可以来自不同信号源。这种传统的多载波调制方式复杂性比较高,因为各子载波都需要自己的模拟前端,同时为了使得接收机可以区分各子频带,各子频带之间必须有足够的间隔,从而避免经过信道后发生频谱混叠,所以频谱效率通常很低。但是在这种并行传输机制下,因为各载波上的数据速率较低,相应的信号的码元符号周期较长,并远大于信道的最大时延扩展,从而可以有效地减少由于信道单

位时延扩展引起的符号间干扰问题。

为了提高FDM技术的频谱利用率,G.A.Doelz等在20世纪50年代提出了Kineplex系统。该系统的设计目标是在严重多径衰落高频无线信道中实现数据传输。系统使用了20个子载波,使用差分QPSK调制,且实现方式几乎和现代的OFDM一样:相邻子载波间的间隔近似等于子载波的符号速率,从而保证各子载波的频谱相互重叠,但又是正交的,于是可以大大地提高频谱利用率,但系统仍采用了传统的多载波调制系统实现方式。

随后的多载波系统也是利用类似的技术提高频谱利用率。

以上系统中的子载波频谱没有经过滤波,各子载波频谱形状均为sin(kf)/f函数形式。为了限制系统频谱,R.W. Chang等分析了多载波通信系统如何使经过滤波,带限的子载波保持正交。随后S.B.Weinstein和P.M.Ebert提出了使用离散傅利叶变换(DFT)实现多载波的基带调制和解调,这样便不再对每个子载波都使用模拟前端,从而大大地降低了多载波系统的复杂度,为正交频分复用(OFDM)的演进作出了巨大的贡献。另外,Weinst ein等提出了通过插入一段空白区作为保护间隔来消除符号间干扰,但这种办法不能保证信号经过色散信道后仍然保持保持正交,为此,A.Peled和A.Ruiz提出了采用循环前缀(CP)的方法保证信号经过色散信道后仍然保持各子载波间的正交性。至此,现代正交频分复用(OFDM)的概念便形成了。1985年,Cimini把正交频分复用(OFDM)的概念引入蜂窝移动通信系统,为无线正交频分复用(OFDM)系统的发展奠定了基础。正交频分复用(OFDM)技术具有良好的抗多径能力,从而受到大量关注。目前正交频分复用(OFDM)作为

核心技术已被多种有线和无线标准采纳:

1) ADSL,被广泛用于提高铜双铰电缆用户的接入能力;

2) 在无线局域网领域的IEEE802.11a,HIPERLAN-2;

3) 欧洲数字音频广播(DAB)和数字视频广播(DVB);

4) 无线城域网标准IEEE802.16a等等。

同时,正交频分复用(OFDM)除了作为一种传输技术,还具有支持多用户接入的功能。

正因为正交频分复用(OFDM)潜在的多径对抗能力,且可以灵活地和其它接入方式结合成衍生系统,所以正交频分复用(OFDM)已被列为4G无线通信系统的可能解决方案,而受到研究者的广泛关注。

第二章频分复用(OFDM)系统的原理

2.1 多载波调制基础

任何实际的通信信道均存在各种干扰,这些干扰限制了系统的最大传输速率。在宽带无线数字通信系统中,影响信息高速传输的主要干扰是由信道的多径效应所引起的频率选择性衰落。频率选择性衰落表现为对信号的某些频率成分衰减严重,而对其它频率成分衰减较小,造成系统性能的下降。克服频率选择性衰落的传统方法是在接收端采用均衡器或者采用直接序列扩频加Rake接收的方法,这两种方法在2G和3G蜂窝系统中都发挥了重要作用。随着信息传输速率的进一步提高,以上方法在实现复杂度和性能方面都面临许多障碍。为了克服多径信道的频率选择性衰落,一个很自然的想法就是将信道在频域上划分成多个子信道,使每一个子信道的频谱特性都近似平坦,使用多个互相独立的子信道传输信号并在接收机中予以合并,以实现信号的频率分集,这就是多载波调制的基本思想。与常规的单载波调制不同,在多载波调制中,多数的信号处理是在频域内完成的,当子信道的数目很多时,每个子信道都可以看作是一个无ISI的子信道,发送端不需要采用复杂的信号处理技术即可实现各子信道的无ISI信息传输,而且还可以根据每个子信道的衰落况来动态调整每个子信道上所传送

的信息比特数。实现多载波调制的方法有多种:矢量编码方式、小波变换方式、结构化信道信号方式(SCS)

【8】、滤波多音方式、以及OFDM方式等。

2.2 频分复用(OFDM)系统的技术原理

无线传输信道的一个主要特征就是多径传播,即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机的,这些信号的到达时间和相位都不相同。不同相位的多个信号在接收端叠加,同相叠加会使信号幅度增加,而反相叠加则会削弱信号的幅度。这样,接收信号的幅度将会发生急剧变化,从而产生衰落。同时由于多径传输,在发射端发射的一个脉冲信号,在接收端将收到多个脉冲信号,这就造成了信道的时间弥散性。这种时间弥散性会造成接收信号中的一个符号的波形会扩展到其他符号当中,造成符号间干扰【9】(IS I)。为了避免产生ISI,应该令符号宽度要远远大于无线信道的最大时延扩展。而增大符号宽度必然会使数据传输速率降低,这就给在无线信道中高速传输数据造成了困难OFDM就是为了解决在无线信道中高速传输数据而被提出的。它通过快速傅立叶反变换IFFT【10】将数据调制到多个正交子载波上,在保证总的传输速率很高的前提下,使每个子载波上数据以较低的速率传输,从而能克服ISI。

2.2.1 OFDM的基本原理

图 2.1 是OFDM系统的原理框图。编码和交织后的数据进行串/并转换为多路信号,每一路信号进行星座映射为复信号,再进行IFFT完成多载波基带调制,然后经过串/并转换后,插入保护间隔,接下来进行加窗处理及D/A转换,并进行上变频,将信号进行频带调制。在接收端信号经历了与此对反的解调过程。

图2.1 OFDM系统原理框图

2.2.2 信号映射(mapping)

这里信号映射【11】指的是一种数字调制方式,根据相应的调制编码表把每个比特组转换成一个复数。IEEE 8 02.11a中规定OFDM系统有四种调制方式,即BPSK,QAM,16-QAM和64-QAM。经过串/并转换的二进制数据,每一路按映射方式分为1. 2. 4或6比特一组,按BPSK,QAM,16-QAM和64-QAM的星座图映射成复数。

映射是按格雷码星座图进行的,如图2.2所示。图中表示最先输入的比特。输出值d可表示为:

(2.1)

其中,是归一化因子,依调制方式不同而取不同的值,具体参照表2.1。乘归一化因子的目的是为了让不同映射达到相同的平均功率。例如,对于16-QAM,当输入序列为 =0010时,对照表2.1查出,对照表2.2查出I=

-3,Q=3,由式(2.1)得到输出值d为:

(2.2)

图2.2 BPSK,QAM,16-QAM的星座图

图2.2 BPSK,QAM,16-QAM的星座图

依此类推,可以画出64-QAM的星座图(限于篇幅故不再列出)。

表2.1 不同调制方式下的值

BPSK 1

QAM

16-QAM

64-QAM

表2.2 16-QAM映射表

输入比特()

00 -3

01 -1

11 1

10 3

()

输出

00 -3

01 -1

11 1

10 3

2.2.3 OFDM系统的数学模型

图2.3 OFDM系统的数学模型框图

一个OFDM符号是多个子载波的合成信号,用N表示子信道的个数,T表示OFDM

符号宽度,(i=0,1,2,…N-1)表示分配给第i个子信道的数据符号,表示第i个子载波的载波频率,rect(t)=1, ;

则从t= 开始的一个OFDM符号可以表示为:

而当t取其它值时,s(t)=0。 (2.3)

多数文献中,采用复等效基带信号【12】来描述OFDM的输出信号:

而当t取其它值时,s(t)=0。 (2.4)

上式中的实部和虚部分别对应于OFDM符号的同相分量和正交分量,在实际中可以分别与相应子载波的Cos 分量和Sin分量相乘,构成最终的子信道信号和合成的OFDM符号。

图2.4 一个OFDM符号内包括的4个子载波实例

图 2.4 中给出OFDM符号内包括的4个子载波实例,每个子载波在一个OFDM符号周期内都包含整数个周期,而且相邻子载波之间相差1个周期,这一特性可以来解释子载波之间的正交性。即:

(2.5)

例如对式(2.4)第j个子载波进行解调,然后在时间长度T内进行积分,即:

= =

(2.6)

由上式可以看到,对第j个子载波进行解调可以恢复出期望符号 ,,而对于其他载波,在积分间隔内,频率差

别(i-j)/T可以产生整数倍周期,所以其积分结果为0。

图2.5 以一个OFDM符号内包括的4个子载波为例相应的时域信号和子载波的频谱示意图(经矩形脉冲成

形)

这种正交性还可以从频域角度来理解。根据式(2.3),每个OFDM 符号在其周期T内包括多个非零的子载波。因此其频谱可以看作是周期为T的矩形脉冲的频谱与一组位于各个子载波频率上的S函数的卷积。矩形脉冲的频谱幅值为sine函数,这种函数的零点出现在频率为1/T整数倍的位置上。这种现象可以参见图2.5,其中图2.5b给出相互覆盖的各个子信道内经过矩形脉冲成形得到的sine函数频谱。在每一子载波频率的最大值处,所有其他子信道的频谱值恰好为零。由于在对OFDM 符号进行解调的过程中,需要计算每个子载波上取

最大值的位置所对应的信号值,因此可以从多个相互重叠的子信道频谱中提取出每个子信道符号,而不会受到其他子信道的干扰。从图2.5可以看出,OFDM符号频谱实际上可以满足无ISI奈奎斯特准则,但传统的奈奎斯特准则是在时域上保证前后发送符号之间无干扰,此处指的是频域中各子信道间不存在干扰,这种消除ICI 的方法是通过在时域中使用矩形脉冲成形,在频域中每个子载波的最大值处取样来实现。

2.2.4 用DFT实现OFDM的调制与解调

实际上,对于N比较大的系统来说,式〔2.4)中定义的OFDM 复等效基带信号可以采用离散逆傅立叶变换(ID

FT)【12】来实现。

令(k=0,1,2,…,N-1),则可以得到:

(2.7)

上式中,s(k)即为的IDFT运算,在接收端,可以对s(k)进行DFT变换恢复出原始数据符号 :

(2.8)

根据上述分析可以看到,OFDM 系统的调制和解调可以分别由IDFT/DFT来代替。在实际应用中,可以采用更加方便快捷的快速傅立叶变换(IFFT/FFT)【13】来实现调制和解调。N点的IDFT运算需要实施N2次的复数乘法,而IFFT可以显著地降低运算复杂度。对于常用的基2IFFT来说,其复数乘法的次数仅为(N/2)* log2(N),而采用基4IFFT算法来实施变换,其复数乘法的数量仅为:(3 /8)*N*(log2N一2)。

2.2.5 FFT/IFFT

OFDM在调制端是通过快速傅立叶反变换【13】(IFFT)将数据调制到多个子载波上的。而在接收端则通过快速傅立叶变换 (FFT)将调制在子载波上的信号解调出来的。其调制和解调过程可用式(2.9)和式(2.10)表示为:

() (2.9)

() (2.10)

通过IFFT得到的多个正交子信道符号的频谱如图2.6所示。

图2.6 OFDM系统中子信道符号的频谱

由图2.6可见,各子载波频谱虽然相互重叠,但在每个子载波频率的最大值处,所有其他子信道的频谱都为零。在对OFDM符号进行解调时,只需计算每一个子载波频率的最大值,因此可以从多个相互重叠的子信道符号频谱中提取出每个子信道符号,而不会受到其他子信道的千扰。这样,也就提高了频谱的利用率。

2.2.6保护间隔和循环前缀

应用OFDM的一个主要原因是它可以有效地对抗多径时延扩展,通过把输入的数据流串/并变换到N个并行的子信道中,使得每个用于调制子载波的数据符号周期可以扩大为原始数据符号周期的N倍,时延扩展与符号周期的比值也相应降低N倍。为尽可能的消除符号间干扰,还可在每个OFDM符号之间插入保护间隔 (GI),而且该保护间隔的时间长度一般要大于无线信道的最大时延扩展,这样一个符号的多径分量就不会对下一个符号造成干扰。在这段保护间隔内,可以不插入任何信号,即是一段空闲的传输时段。然而在这种情况中,由于多径传播的影响,不同的子载波之间会产生干扰。如图2.7所示。

图2.7 多径情况下空闲GI对子载波解调造成干扰的示意图

由于每个OFDM符号中都包括所有的非零子载波信号,而且也同时会出现该OFDM符号的时延信号,因此图2.7中给出了第1子载波和第2子载波的延时信号。从图中可以看到,在FFT运算时间长度内,第1子载波与带有时延的第2子载波之间的周期个数之差不再是整数,所以当接收机试图对第1子载波进行解调时,第2子载波会对解调造成干扰。同样,当接收机对第2子载波进行解调时,也会存在来自第1子载波的干扰。为了消除由于多径传播造成的ICI,一种有效的方法是将原来宽度为T的OFDM符号进行周期扩展,如图2.7所示。将保护间隔内(持续时间用Tg表示)的信号称为循环前缀 (Cyclic Prefix,CP )。由图中可以看出,循环前缀中的信号与OFDM符号尾部宽度为Tg的部分相同。在实际系统中,OFDM 符号在送入信道之前,首先要加入循环前缀,然后送入信道进行传送。在接收端,首先将接收符号开始的宽度为Tg的部分丢弃,然后将剩余的宽

度为T的部分进行傅立叶变换解调。在OFDM符号内加入循环前缀可以保证在一个FFT积分区间内,各子载波的周期个数之差仍是整数,这样,时延小于Tg的时延信号就不会在解调过程中产生ICI.

图2.8 循环前缀的插入过程示意图

这种保护间隔是一种循环复制,增加了符号的波形长度,在交接点没有任何的间断。

因此,在OFDM系统中,CP主要有两个作用:

(1)作为保护间隔,减少了ISI;

(2 )保持各子载波的正交性,减小了ICI;

与此同时,加入CP后会带来一定的能量损失,功率损失可以定义为:

(2.11)

可见,CP越长,能量损失越大。

2.2.7 交织

交织的目的是在时域或频域或同时在时域频域上分布发射比特,以便在解调后获得理想的误码分布。获得一个理想的误码分布取决于采用的前向纠错码(FEC),而需要什么样的交织模式取决于信道特性。如果系统在一个纯粹的AWGN环境下运行,就不需要交织,这是因为通过重新分配位的方法是无法改变误码分布的。通信信道分为快衰落和慢衰落两种信道,如果信道的冲击响应的变化与通信系统的符号速率相当时这个信道就是快衰落信道,而在慢衰落信道中,冲击响应在几个符号上都保持不变。

2.2.8 OFDM的同步技术

同步在通信系统中占据非常重要的地位,其性能直接关系到整个通信系统的性能。在OFDM系统中主要考虑三部分同步:符号同步、样值同步和载波同步,如图2.9所示。

图2.9 OFDM系统内的同步示意图

符号同步就是确定OFDM符号的起始位置,即每个FFT窗的位置。如果符号同步的起始位置在循环前缀长度内,载波间的正交性仍然保持,在这种情况下,符号同步的偏差可以看作是由信道引入的相位旋转,而这一旋转角度可由信道均衡器来求出:如果符号同步的偏差超过了保护间隔,就会引入载波间干扰。子载波的频率越高,旋转角度就越大,因此在频带的边缘,相位的旋转最大。样值同步是指接收端和发射端的抽样频率要一致。如果在样值定时中存在偏差,则会有两方面的影响:一是产生时变的定时偏差,导致接收机必须要跟踪时变的相位变化;二是样值频率的偏差就意味着FFT周期的偏差,因此经过抽样的子载波之间不再保持正交性,从而产生ICI。但幸运的是,这种影响比较小。载波同步是指接收端的振荡频率要与发送载波同频同相。由于OFDM各子信道带宽较小,对载波频率偏差的敏感程度非常高,因此需要非常精确的载波同步。频率偏移是由收发设备的本地载频之间的偏差、信道的多普勒频移等引起的,由子载波间隔的整数倍偏移和子载波间隔的小数倍偏移构成。子载波间隔的整数倍偏移仅使信息符号在子信道上平移,并不破坏各子载波间的正交性,不会引起ICI,但它却导致整个解调结果完全错误,系统的误码率近似为50%。子载波间隔的小数倍偏移由于抽样点不在顶点,破环了子载波之间的正交性引起了ICI,导致系统误码率下降。关于载波频率粗同步和细同步进行的顺序,一般是先粗同步再细同步。但如果以子载波之间的间隔为单位,将载波频率偏差从分成整数部分和小数部分,其中,只有小数部分影响子载波之间的正交性,而为整数倍的频率偏差只是将接收机中FFT的输出进行循环移位,那么,可在时域先进行载波细同步,估计载波频率偏差的小数部分,再在频域进行频率粗同步,估计整数倍的频率偏差。这种先细同步再粗同步的顺序安排,可先消除载波频偏小数部分引起的ICI,使随后的载波粗同步不受ICI影响。否则,ICI将严重破坏载波粗同步的性能。

2.2.9 OFDM系统的重要参数设计

从上面我们看到,一个OFDM 系统包括几个基本参数:保护间隔(循环前缀)长度、OFDM符号时间、子载波频率间隔和子载波个数〔系统带宽)。这些参数的确定是根据系统的实际应用要求进行折中选取。给定的基本参数有:系统带宽、数据比特速率和应用环境。由于应用OFDM 系统的主要目的是对抗信道多径时延扩展,首先要根据系统应用环境中的典型信道时延扩展。选取一定时间长度的保护间隔T。为完全消除ISI,保护间隔的长度通常要大于时延扩展,显然,保护间隔越大,对抗信道时延扩展的稳健性越好;另外,如果使用保护间隔做符号同步,一般保护间隔要长于信道时延扩展一定的时间,以保证系统在一定的信噪比下、尽量少的OFD M 符号数量内实现同步。但由于保护间隔内不传输有效信息,浪费了系统的发送功率。为尽量减小保护间隔

带来的系统功率损失,在确定保护间隔后应尽量加大OFDM有用符号时间T。但OFDM系统中子载波间隔为有用符号时间T的倒数,符号时间越长,子载波间隔越小,则OFDM系统对频率偏移越敏感,而且给定系统MB带宽所确定的子载波个数就越大。由于OFDM系统的峰均功率比(PAPR)跟系统的子载波个数成正比,对系统中放大器的线性范围要求更高,增加了系统实现的成本。因此,有用符号时间长度要权衡系统功率和系统性能进行折中选取,一般选择T=4 保证保护间隔带来的系统功率损失在20%以内。在一定的系统带宽资源下,符号时间确定后子载波个数(IFFT/FFT点数)也就相应确定,实际系统中因为考虑到对其它邻近信道的干扰,所以对系统的频谱哀减有一定要求,实际可用的子载波数通常小于IFFT/FFT点数,然后可以根据信源的

信息速率要求确定子载波上的调制方式。

第三章 OFDM系统的仿真设计

要求在MATLAB平台上完成了OFDM系统仿真程序的设计。

3.1 OFDM的MATLAB仿真

3.1.1 MATLAB语言简介

从事科学研究和工程应用的人可能都注意到并为之所困扰,当我们在计算涉及矩阵运算或画图时,采用FORT RAN, C及C++语言等计算机语言进行程序设计是一项很麻烦的工作。不仅需要对所利用的有关算法有深刻的了解,还需要熟练掌握所有语言的语法和编程技巧。例如对矩阵求逆这样的一种运算,首先要选择一个较好的求逆算法然后利用FORTRAN或C语言等高级语言编程来逐步的实现此算法,经过了艰巨烦琐的调试工作终于实现算法达到目的后,我们会发现,所编制的百余条甚至几百条语句仅仅是完成了一个矩阵的求逆工作,我们不免为自己的工作效率大发感叹。并不复杂的计算任务,用计算机来实现竟是如此的烦恼,面对手头要完成的研究任务,也许会产生畏惧之感。MATLAB正是为免除无数类似上述的尴尬局面而产生的。在1980年前后,美国的Cleve Moler博士在New Mexico大学讲授线性代数课程时,发现应用其他高级语言编程极为不便,便构思并开发了MATLAB(MATrix LABoratory,矩阵实验室),它是集命令,翻译,科学计算于一身的一套交互式软件系统,经过在该大学进行了几次的试用之后,于1484年推出了该软件的正式版本。在MATLAB 下,矩阵的运算变得异常的容易,后来的版本中又增添了丰富多彩的图形图象处理及多媒体功能,使得MAT LAB的应用范围越来越广泛,Moler博士等一批数学家与软件专家组建了名为MathWorks的软件开发公司,专门扩展并改进MATLAB。 1990年MathWorks软件公司为MATLAB提供了新的控制系统模型图形输入与仿真工具,并定名为SIMULAB,该工具很快在控制界得到了广泛的使用。

与 C, C ++,FO RTRAN,PA SCAL和BASIC这类高级程序设计语言相比,MATLAB

不但在数学语言的表达与解释方面表现出人机交互的高度一致,而且具有作为优秀高技术计算环境所不可缺少

的如下特征:

(1) 高质量,高可靠的数值计算能力。

(2) 基于向量,数组和矩阵的高级程序设计语言。

(3) 高级图形和可视化数据处理能力。

(4) 广泛解决各学科专业领域内复杂问题的能力。

(5) 拥有一个强大的非线性系统仿真工具箱一SIMULINK。

(6) 支持科学和工程计算标准的开放式,可扩充结构。

(7) 跨平台兼容。MATLAB程序直接可以映射为DSP芯片可接受的代码,大大提高了现代电子通信设备的研

发速率。

目前 MATLAB已经成为国际上最为流行的软件之一,它除了传统的交互式编程之外,还提供了丰富可靠的矩阵运算、图形绘制、数据处理、图象处理、方便的Windows编程等便利工具,出现了各种以MATLAB为基础的实用工具箱,广泛地应用于自动控制、图象信号处理、生物医学工程、语音处理、雷达工程、信号分析、振动理论、时序分析与建模、化学统计学、优化设计等领域,并表现出一般高级语言难以比拟的优势。

较为常见的MATLAB工具箱主要包括:控制系统工具(controlsystemstoolbox)、系统辨识Z具箱(systemi dentifica tionto olbox).鲁棒控制-T具箱(robustco ntroltoolbox),多变量频率设计工(multivariablefrequencydesigntoolbox)、分析与综合工具箱(analysisan dsy nthesisto olbox)、神经网络1具箱(neuralne tworkto olbox)、最优化工具箱(optimi zationtoolbox)、信号处理工具箱(signalpr ocessingto olbox)、模糊推理系统工具箱(fuzzyin ferencesy stemt oolbo x)、小波分析工具箱〔waveletto olbox)、通信工具箱(communication toolbox)

MATLAB/Simulink属于一种通用的科学计算和系统仿真语言。在MATLAB/Simulink下,从数学模型到计算机

仿真模型的转换非常容易。MATLAB/Simulink提供了三种方法【14】:

(1)M文件编程实现的方法:根据数学模型所建立的方程和数据参数,通过编程实现方程的表示和数值求解。其特点是灵活性好,数学关系显式地表达在程序语句中,但是仿真的直观性方面稍显欠缺,通常在仿真计算完

毕之后才能看到结果。

(2)Simulink方法:可以根据数学模型建立对应的系统方框图,通过所见即所得的方式连接模块,然后选择求解方式和精度,运行仿真。其特点是直观性好,可以在仿真过程中实时的修改系统模块的参数。并能够实时的显示当前的仿真结果。而本人采用的是M文件编程实现的方法,具体情况见下。

3.1.2 正交频分复用(OFDM)仿真系统说明

我们在通过MATLAB语言进行OFDM系统仿真时,是将OFDM系统分为发送和接收两大部分来进行的,然后再通过信道模型将这两部分连接起来。程序的编程过程是按模块化来进行的,各子模块分别完成发送和接收中的一部分特定功能。最后再分别按发射机中的调制顺序和接收机中的解调顺序进行组合。各子模块在功能上相互独立,只是通过相应的接口进行连接,这样进行编程的好处在于各模块功能明确,在一定意义上相互独立,各个模块并不需要了解其他模块的具体实现过程,而只通过接口与其他模块发生联系,从而易于编程和修改,如对其中一个模块进行改动,并不需要对其他所有模块也进行大的改动,这非常符合国际上所达成共识的程序设计标准–结构化程序设计,即要求各个模块之间耦合性越弱越好,内聚性愈强愈好。下面将分别具体示

出OFDM系统发送部分的结构图和接收部分的结构图:

1.发送部分的结构图如图3.1所示。

图 3.1 OFDM发送部分系统框图

由以上发送部分框图不难看出发送部分具体过程如下:首先,由随机码产生器产生二进制随即序列,接着通过信号映射器映射成I,Q,两路信号,这两路信号经过导频处理和傅利叶反变换(IFFT)变化来调制原始信号,OFDM系统可以采用的调制方式有BPSK,QAM,16-QAM,64-QAM多种调制方式,这里采用的是QA M调制方式,具体情况见以下程序。为了消除由于多径传播造成的ICI,一种有效的方法便是将原来宽度为T 的OFDM符号进行周期扩展,用扩展信号来填充保护间隔,而且保护间隔的长度应大于无线信道的时延扩展,这样一个符号的多径分量才不会对下一个符号造成干扰。而保护间隔内的信号就称为循环前缀。所以调制后的信号要经过加入保护时隙和加入训练符号才能送入信道中去进行传送。

同理,由下面所示的接收部分系统图不难发现:在接收端,首先将接收符号开始的一定宽度的部分丢弃,然后将剩余的部分进行傅利叶变换(FFT),然后进行解调。

2.接收部分的结构图如图

3.2所示。

图 3.2 OFDM接收部分系统框图

3.1.3 仿真程序说明

为了更好地说明以上OFDM系统原理的具体实现过程,以便使读者更好地了解OFDM系统的仿真实现方法。

下面将整个仿真程序分为发送和接收两部分来分别进行说明。

1.发送部分程序说明

发送部分的程序设计流程图如图3.3所示。

图3.3发送部分程序设计流程图

发送部分仿真程序中需要说明的地方有:

(1) 参数初始化程序

仿真程序中需要初始化的参数如下:

采样频率:20MHz

包含数据的子载波数目:52个

包含数据的子载波的位置:[7:32 34:59]

包含用户数据的子载波数目:48个

正交频分复用通信系统设计及其性能研究

正交频分复用通信系统设计及其性能研究 年级: 学号: 姓名: 专业: 指导老师: 二零一五年五月

摘要 由于OFDM技术出现了近四十年的时间,该技术在移动通信上已经得到快速发展。本论文主要研究OFDM系统的应用,介绍了OFDM技术的基本概念和发展历程,并简要阐述OFDM在无线移动技术中的发展前景。在介绍OFDM原理的同时,比较FDM与OFDM 的异同点,认识保护间隔和循环前缀对OFDM的意义,简述OFDM的优势和缺点,了解OFDM的关键技术,研究OFDM频域和时域的波形图,利用加窗技术来提高OFDM的功率谱密度。 关键字:正交频分复用;码间干扰;循环前缀;高斯白噪声

Abstract Because of OFDM technology emerged about forty years, it has developed rapidly in the field of mobile communications,This thesis mainly studies the application of OFDM system, introduces the basic concepts and development of the OFDM technology, besides, the thesis also describes the future development in wireless mobile technology. While introduce the principles of OFDM, comparing the similarities and differences between FDM and OFDM, understanding the significance of protection interval and cyclic prefix in OFDM,I described the advantages and disadvantages of OFDM briefly, and known the key technologies of OFDM,studied the domain waveform figure OFDM frequency domain and time domain, by using the window technology to improve the power spectral density of OFDM. Keywords: OFDM; ISI; CP; WGN

频分复用原理及其应用研究

2015届学士学位论文 频分复用原理及其应用研究

频分复用原理及其应用研究 摘要频分复用(FDM)是通信系统中信号多路复用方式中的一种,本质上是依据频率来分隔信道的。频分复用技术在当今通信领域有着很重要的地位。根据性质和特点的不同频分复用还可以被细分为传统的频分复用(FDM)和正交频分复用(OFDM)。 本论文主要由以下几个部分组成。第一部分介绍频分复用基本原理,系统实现以及其应用特点;第二部分介绍正交频分复用的基本原理及DFT的实现;第三部分主要介绍在实际应用中当载波频率接近时,频谱会发生重叠,传统的频分复用解调效果容易出现失真,正交频分复用由于其载波的正交性特点,在频谱发生重叠时可以保证解调效果;最后通过MATLAB程序中的SIMULINK仿真图来表现正交频分复用的优越之处。 关键词频分复用;正交频分复用;MA TLAB仿真

Frequency division multiplexing principle and its application research Abstract Frequency division multiplexing (FDM) is a kind of signal multiplexing mode in communication system, which is divided by frequency channel essentially. Frequency division multiplexing technology is very widely used in today's communication. Frequency division multiplexing can also be divided into the traditional frequency division multiple(FDM) and orthogonal frequency division multiplexing(OFDM) depending on the nature and characteristics. This paper consists of the following parts. The basic principle of frequency division multiplexing, system implementation and its application characteristics are introduced in the first part . The basic principle of orthogonal frequency division multiplexing and its realization of DFT are introduced in the second part .Due to its characteristics ,orthogonal frequency division multiplexing can guarantee the demodulation compare with the traditional frequency division multiplexing when the carrier frequency is close to in the practical application, spectrum overlap happens ,which is introduced in the third part .Finally by SIMULINK of MA TLAB simulation diagram to show the superiority of the orthogonal frequency division multiplexing. Keywords Frequency division multiplexing; Orthogonal frequency division Multiplexing ;MA TLAB simulation

频分复用系统设计报告

《信息处理课群综合训练与设计》任务书学生姓名:黄在勇专业班级:通信1104班 指导教师:周建新工作单位:信息工程学院 题目: 频分复用 初始条件: Matlab软件、信号与系统、通信处理等。 要求完成的主要任务: 根据频分复用的通信原理,用matlab采集两路以上的信号(如语音信号),选择合适的高频载波进行调制,得到复用信号。然后设计合适的带通滤波器、低通滤波器,从复用信号中恢复出所采集的语音信号。设计中各个信号均需进行时域和频域的分析。 参考书: [1]陈慧慧、郑宾. 频分多址接入模型设计及MATLAB仿真计算(第三版). 高等教育出版社,北京: 2000 [2]李建新、刘乃安、刘继平. 现代通信系统分析与仿真MATLAB通信工 具箱. 西安电子科技大学出版社,西安: 2000 [3]邓华等. MATLAB通信仿真及应用实例详. 人民邮电出版社,北京: 2003 时间安排: 1、理论讲解,老师布置课程设计题目,学生根据选题开始查找资料; 2、课程设计时间为2周。 (1)理解相关技术原理,确定技术方案,时间2天; (2)选择仿真工具,进行仿真设计与分析,时间6天; (3)总结结果,完成课程设计报告,时间2天。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................................................................ I Abstract ................................................................................................................. II 1绪论 (1) 1.1设计目的 (1) 1.2设计内容 (2) 1.3设计要求 (2) 2频分复用通信系统模型 (3) 3频分复用系统方案设计 (6) 3.1语音信号采样 (6) 3.2语音调制信号 (7) 3.3 系统的滤波器设计 (8) 3.4信道噪声 (9) 4频分复用原理实现与仿真 (11) 4.1 语音信号的时域和频域仿真 (11) 4.2 复用信号的频谱仿真 (12) 4.3 传输信号的仿真 (13) 4.4 解调信号的频谱仿真 (14) 4.5恢复信号的时域与频域仿真 (16) 5 心得体会 (18) 附录I 源程序 (19) 附录II 参考文献 (24)

FDMA频分复用系统设计

山东轻工业学院 课程设计任务书 学院电子信息与控制工程学院专业通信工程 姓名班级学号 题目频分复用系统设计 主要内容: 综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,从而加深对所学知识的理解,建立概念,加深理解滤波、FDM等的综合应用。设计5~8路基带信号(带宽相同)进行FDM传输的一个系统,调制方式可以选择DSB、SSB、AM或VSB,也可以采用多采样率系统实现;在接收端进行解复用和解调,恢复出原始的各路基带信号。 基本要求 (1)掌握数字信号处理的基本概念、基本原理和基本方法;掌握DFT对模拟信号进行频谱分析的方法;掌握设计FIR和IIR数字滤波器的方法; (2)掌握FDM系统的原理及简单实现方法 (3)设计出系统模块图,记录仿真结果; (4)对结果进行分析,写出设计报告。 主要参考资料 [1]高西全,丁玉美. 数字信号处理(第三版). 西安电子科技大学出版社. 2009.01 [2]A.V.奥本海姆,R.W.谢弗. 离散时间数字信号处理.(第二版) . 西安交通大学出版社. 2004.09 [3]胡广书. 数字信号处理. 清华大学出版社. [4]matlab数字信号处理的相关资料 [5]樊昌信. 通信原理. 国防工业出版社. 2008 完成期限:自 2012 年 6 月 28 日至 2012年 7 月 13 日 指导教师:张凯丽教研室主任:

目录 1 设计任务及要求 1.1 设计任务 1.2 设计要求 2 设计作用及其目的 3 设计过程及原理 3.1 频分复用通信系统模型建立3.2 信号的调制 3.3 系统的滤波器设计 3.4 信道噪声 4.基于simulink的FDMA仿真5参数设置 6频谱波形分析 7实验心得及体会 8 参考文献

电力系统网络通信作业答案教学内容

电力系统网络通信作 业答案

一、 1.通信系统的组成:通信系统由信息发送者(信源)、信息接收者(信宿)和处理、传输信息的各种设备共同组成。 2.通信网的组成:从物理结构或从硬件设施方面去看,它由终端设备、交换设备及传输链路三大要素组成。终端设备主要包括电话机、PC机、移动终端、手机和各种数字传输终端设备,如PDH端机、SDH光端机等。交换节点包括程控交换机、分组交换机、ATM交换机、移动交换机、路由器、集线器、网关、交叉连接设备等等。传输链路即为各种传输信道,如电缆信道、光缆信道、微波、卫星信道及其他无线传输信道等。 3.电力系统的主要通信方式:电力线载波通信:是利用高压输电线作为传输通路的载波通信方式,用于电力系统的调度通信、远动、保护、生产指挥、行政业务通信及各种信息传输。光纤通信:是以光波为载波,以光纤为传输媒介的一种通信方式。微波通信:是指利用微波(射频)作载波携带信息,通过无线电波空间进行中继(接力)的通信方式。卫星通信:是利用人造地球卫星作为中继站来转发无线电波,从而进行两个或多个地面站之间的通信。移动通信:是指通信的双方中至少有一方是在移动中进行信息交换的通信方式。 4.名词解释通信系统:从信息源节点(信源)到信息终节点(信宿)之间完成信息传送全过程的机、线设备的总体,包括通信终端设备及连接设备之间的传输线所构成的有机体系。 二、 1.数字通信系统模型: 2.根据是否采用调制,通信系统分为:基带传输系统和频带传输系统。

3.传输多路信号的复用方式有:频分复用(FDM)、时分复用(TDM)、码分复用(CDM)、波分复用(WDM)、空分复用(SDM)。 5.香农公式连续信道的信道容量取决于:信号的功率S;信道带宽B;信道信噪比S/N。 6.按照调制信号m(t)对载波信号c(t)不同参数的控制,调制方式分为:幅度调制、频率调制、相位调制。 7.调制的作用:(1)进行频谱搬移.把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输的已调信号.(2)实现信道多路复用,提高信道的频带利用率.(3)通过选择不同的调制方式改善系统传输的可靠性。 8.比较调制方式中调幅(AM)、抑制载波的双边带调制(DSB)、单边带调制(SSB)的功率利用率和频带利用率:AM功率利用率低,信号频带较宽,频带利用率不高;DSB节省了载波功率,功率利用率提高了,但它的频带宽度仍是调制信号带宽的2倍,频带利用率不高;SSB的功率利用率和频带利用率都较高。 9.模拟信号数字化传输的编码方式分为:波形编码:脉冲编码调制(PCM)、自适应差分脉冲编码调制(ADPCM)、增量调制(ΔM);参数编码:线性预测编码LP;混合编码:MPLPC和CELP 10.适合基带传输的常用码型是AMI和HDB3码,比较其特点:AMI码对应的基带信号是正负极性交替的脉冲序列,而0电位保持不变的规律,AMI的功率谱中不含有直流成分,高低频分量少,能量集中在频率为1/2码速处.AMI码的编译码电路简单,便于利用传号极性交替规律观察误码情况;HDB3码保持了AMI码的优点,同时使连“0”个数不超过3个。

时分复用通信系统设计

目录 第一章摘要 (1) 第二章总体设计原理 (2) 2.1 PCM编码原理 (2) 2.2 PCM原理框图 (3) 2.3 时分复用原理 (4) 第三章单元电路的设计 (6) 3.1信号源系统模块 (6) 3.2 PCM编码器模块 (7) 3.3帧同步模块 (9) 3.4位同步模块 (10) 3.5 PCM分接译码模块 (12) 3.6系统仿真模型 (14) 第四章总结与体会 (15)

第一章摘要 SystemView是具有强大功能基于信号的用于通信系统的动态仿真软件,可以满足从底层到高层不同层次的设计、分析使用。SystemView具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库和专业库。 时分复用(TDM:Time Division Multiplexing)的特点是,对任意特定的通话呼叫,为其分配一个固定速率的信道资源,且在整个通话区间专用。TDM把若干个不同通道(channel)的数据按照固定位置分配时隙(TimeSlot:8Bit数据)合在一定速率的通路上,这个通路称为一个基群。时分复用是建立在抽样定理基础上的。抽样定理使连续(模拟)的基带信号有可能被在时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据短时间时,在抽样脉冲之间就留有时间空隙,利用这个时间空隙便可以传输其他信号的抽样值。因此,这就有可能沿一条信道同时传送若干个基带信号。 当采用单片集成PCM 编解码器时,其时分复用方式是先将各路信号分别抽样、编码、再经时分复用分配器合路后送入信道,接收端先分路,然后各路分别解码和重建信号。PCM的32路标准的意思是整个系统共分为32个路时隙,其中30 个路时隙分别用来传送30 路话音信号,一个路时隙用来传送帧同步码,另一个路时隙用来传送信令码,即一个PCM30/32 系统。

频分复用

目录 摘要............................................................................................................................... I Abstract .......................................................................................................................... II 1设计任务及要求..................................................................................................... - 1 - 1.1设计任务:.................................................................................................. - 1 - 1.2设计要求:.................................................................................................. - 1 - 2设计原理................................................................................................................. - 2 - 2.1频分复用原理.............................................................................................. - 2 - 2.2语音信号采样.............................................................................................. - 3 - 2.3语音信号的调制.......................................................................................... - 4 - 2.4加噪仿真信道传输...................................................................................... - 6 - 2.4系统滤波器的设计...................................................................................... - 7 - 3 MATLAB程序设计流程........................................................................................... - 8 - 4仿真结果................................................................................................................. - 9 - 4.1语音信号的时域和频域仿真...................................................................... - 9 - 4.2复用信号的频谱仿真................................................................................ - 10 - 4.3传输信号的仿真........................................................................................ - 11 - 4.4 带通滤波器设计....................................................................................... - 11 - 4.5解调信号的频谱仿真................................................................................ - 13 - 4.6低通滤波器设计........................................................................................ - 13 - 4.7恢复信号的时域与频域仿真.................................................................... - 13 - 5小结体会............................................................................................................... - 16 - 6附录....................................................................................................................... - 17 - 7参考文献............................................................................................................... - 22 -

频分复用论文

武汉工程大学(硕、博士)研究生试卷本 考试课程名称信号分析与处理 考试 考查 学科专业检测技术及自动化装置 学号 201104025 姓名金璐

信号的频分复用 1 设计任务 根据频分复用的通信原理,运用Matlab软件采集两路以上的语音信号,选择合适的高频载波进行调制,得到复用信号。然后设计必要的带通滤波器、低通滤波器,从复用信号中恢复所采集的语音信号。整个过程运用Matlab进行仿真,并对各个信号进行时域和频域分析。 2 设计要求 (1)使用Matlab软件画出采样后语音信号的时域波形和频谱图。 (2)选择合适的高频载波,对采样信号进行调制。 (3)使用Matlab软件画出复用信号的频谱图。 (4)设计合适的带通滤波器,并画出带通滤波器的频率响应。 (5)对滤波后的信号进行解调,画出解调后各路信号的频谱图。 (6)设计低通滤波器,画出低通滤波器的频率响应。恢复信号的时域波形和频谱图。3设计过程 在本次设计过程中,我们通过输入3段语音信号,并且进行时域和频域的分析,再将3路信号分别乘以一个载波信号进行调制进行混频,再将其经过理想信道合成,合成得到叠加后的信号,再将合成信号进行频谱分析,再将合成信号通过切比雪夫2型带通滤波器进行滤波,得到3路带有语音信号的载波信号,每一个载波信号解调后得到原始的低频声音信号和高频载波与声音信号混频的信号,将3路语音信号频谱搬移还原,再经过低通滤波滤掉高频成分得到与原始语音信号几乎一样的信号,将恢复后的3路信号进行时域和频域分析,与原始输入的3路语音信号的时域谱和频域谱进行比较,得到它们的外围轮廓基本相同。 4理论设计 4.1频分复用通信系统模型建立 选择三个不同频段的信号对其进行频谱分析,根据信号的频谱特征设计三个不同的数字滤波器,将三路信号合成一路信号,分析合成信号的时域和频域特点,然后将合成信号分别通过设计好的三个数字滤波器,分离出原来的三路信号,分析得到的三路信号的时域波形和频谱,与原始信号进行比较,说明频分复用的特点。 频分复用的关键技术是频谱搬移技术,该技术是用混频来实现的。混频的原理,如图(1)所示。 图 1 混频原理 混频过程的时域表示式为:

传输专题设计(频分复用)

电子科技大学通信学院97 《综合课程设计实验报告》 传输专题设计(频分复用) 一、设计名称 传输专题设计(频分复用) 二、设计目的 通过本次课程设计,掌握频分复用的原理,学习简单复用系统的设计方法,并学习对通信系统中的典型部件电路进行方案设计、分析制作与调试。 三、设计原理 数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信

号,这就是多路复用技术。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision Multiplexing)是两种最常用的多路复用技术。 在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽宽得多。如果一个信道只传送一路信号是非常浪费的,为了能够充分利用信道的带宽,就可以采用频分复用的方法。在频分复用系统中,信道的可用频带被分成若干个互不交叠的频段,每路信号用其中一个频段传输,因而可以用滤波器将它们分别滤出来,然后分别解调接收。 按频率分割信号的方法叫频分复用,按时间分割信号的方法叫时分复用。 在频分复用中,信道的可用频带被分割成若干互不交叠的频段,每路信号占据其中一个频段,因而可以用适当的滤波器把它们分割开来,分别解调接收。 多路复用原理框图如图一: 图一:多路复用原理框图 四、设计指标 设计一个频分复用调制系统,将12路语音信号调制到电缆上进行传输,其传输技术指标如下: (一)语音信号频带:300Hz~3400Hz。 (二)电缆传输频带:60KHz~156KHz。 (三)传输中满载条件下信号功率不低于总功率的90%。 (四)电缆传输端阻抗600Ω,电缆上信号总功率(传输频带内的最大功率) 不大于1mW。 (五)语音通信接口采用4线制全双工。 (六)音频端接口阻抗600Ω,标称输入输出功率为0.1mW。 (七)滤波器指标:规一化过渡带1%,特征阻抗600Ω,通带衰耗1dB, 阻带衰耗40dB(功率衰耗),截止频率(设计者定)。 (八)系统电源:直流24V单电源。 五、设计思路和过程 (一)频分复用的优点: 信道复用率高,分路方便,因此,频分多路复用是目前模拟通信中常采用的一种复用方式,特别是在有线和微波通信系统中应用十分广泛。 (二)频分复用中的主要问题: 串扰,即各路信号之间的相互干扰。

频分两路复用系统设计

目录 一、设计原理 (2) 2.1 频分复用的概述 (2) 2.2 频分复用原理 (2) 2.3频分复用的的特点与优点: (5) 二、设计流程图 (6) 三、单元电路设计 (7) 1、调制电路 (7) 2、解调电路 (7) 3、加法器电路 (8) 4、滤波电路 (9) 5、电源电路 (10) 四、System View仿真及仿真原理结果分析 (11) 五、总结及实习心得 (15) 总原理图 (16) 参考文献: (17)

一、设计原理 2.1 频分复用的概述 频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。 频分复用是利用各路信号在频率域不相互重叠来区分的。若相邻信号之间产生相互干扰,将会使输出信号产生失真。为了防止相邻信号之间产生相互干扰,应合理选择载波频率fc1, fc2, …, fcn,并使各路已调信号频谱之间留有一定的保护间隔。若基带信号是模拟信号,则调制方式可以是DSB、 AM、SSB、VSB或FM等,其中SSB方式频带利用率最高。若基带信号是数字信号,则调制方式可以是ASK、FSK、PSK 等各种数字调制。 2.2 频分复用原理 在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽宽得多。如果一个信道只传送一路信号是非常浪费的,

频分复用

摘要 《信号与系统》课程是一门理论和技术发展十分迅速、应用非常广泛的前沿性学科,它的理论性和实践性都很强。复用是一种将若干个彼此独立的信号,合并为一个可在同一信道上同时传输的复合信号的方法。可以把它们的频谱调制到不同的频段,合并在一起而不致相互影响,并能在接收端彼此分离开来。按频率区分信号的方法叫频分复用。我们在生活中接触到得大部分都是模拟信号,而计算机只能对数字信号进行处理。我们可以通过FFT变换,通过对模拟信号采样,使其变成数字信号,本设计就是通过FFT来实现的。Matlab语言是一种广泛应用于工程计算及数值分析领域的新型高级语言,Matlab功能强大、简单易学、编程效率高。它的工具箱里有很多函数可以方便的对信号进行分析与处理。本设计是用FFT实现对三个同频带信号的频分复用,就是通过Matlab语言来实现的。本设计报告分析了数字信号处理课程设计的过程。用Matlab进行数字信号处理课程设计的思路,并阐述了课程设计的具体方法、步骤和内容。 关键词:数字信号处理;滤波器设计;MATLAB;频谱分析 1 设计任务目的及要求 1.1设计目的 巩固已经学过的知识,加深对知识的理解和应用,加强学科间的横向联系,学会应用MATLAB对实际问题进行仿真,并设计MUI界面。 1.2设计要求 一、课程设计的内容 选择三个不同频段的信号对其进行频谱分析,根据信号的频谱特征设计三个不同的数字

滤波器,将三路信号合成一路信号,分析合成信号的时域和频域特点,然后将合成信号 分别通过设计好的三个数字滤波器,分离出原来的三路信号,分析得到的三路信号的时 域波形和频谱,与原始信号进行比较,说明频分复用的特点。 二、课程设计的要求与数据 (1)熟悉离散信号和系统的时域特性。 (2)掌握数字信号处理的基本概念,基本理论和基本方法。 (3)掌握序列傅里叶变换的计算机实现方法,利用序列傅里叶变换对离散间可以分别调整。 (4)学会MATLAB的使用,掌握MATLAB的程序设计方法。 (5)掌握MATLAB设计FIR和IIR数字滤波器的方法。 (6)掌握GUI界面的设计方法 三、课程设计应完成的工作 (1)利用MATLAB语言产生三个不同频段的信号。 (2)对产生的三个信号进行FFT变换。 (3)将三路信号叠加为一路信号。 (4)根据三路信号的频谱特点得到性能指标,由性能指标设计三个滤波器。 (5)用设计的滤波器对信号进行滤波,并对其频谱图进行分析。 (6)分析得到信号的频谱,并画出滤波后信号的时域波形和频谱。 2 原理与模块介绍 2.1 快速傅里叶变换FFT原理 快速傅立叶变换(FFT)算法 长度为N的序列的离散傅立叶变换为:

FDMA通信系统设计

移动通信中频分复用技术的分析和研究频分多路复用系统的信道复用率高,分路方便,因此目前模拟通信中常采用这种复用方式,特别是在有线和微波通信系统中应用广泛。 一、原理研究和分析 1、频分复用的原理 复用是指将若干个彼此独立的信号合并成可在同一信道上传输的复合信号的方法,常见的信号复用采用按频率区分与按时间区分的方式,前者称为频分复用,后者称为时分复用。 通常在通信系统中,信道所提供的带宽往往比传输一路信号所需要的带宽宽得多,这样就可以将信道的带宽分割成不同的频段,每频段传输一路信号,这就是频分复用(frequency division multiple access)(FDMA)。为此,在发送端首先要对各路信号进行调制将其频谱函数搬移到相应的频段内,使之互不重叠。再送入信道一并传输。在接收端则采用不同通带的带通滤波器将各路信号分隔,然后再分别解调,恢复各路信号。调制的方式可以任意选择,但常用的是单边带调制。因为每一路信号占据的频段小,最节省频带,在同一信道中传送的路数可以增加。 图1 频分复用系统的示意图 图1给出了频分复用系统的示意图。如图所示,其中f1(t),f2(t),…,fn(t)为n路低频信号,通过调制器形成各路处于不同频段上的边带信号。频分复用的理论基础仍然是调制和解调。通常为防止邻路信号的相互干扰,相邻两路间还要留有防护频带,因此各路载频之间的间隔应为每路信号的频带与保护频带之和。以语音信号为例,其频谱一般在0.3~3.4kHz范围内,防护频带标准为900Hz,则每路信号占据频带为4.3kHz,以此来选择相应的各路载频频

率,在接收端则用带通滤波器将各路信号分离再经同步检波即可恢复各路信号,为减少载波频率的类型,有时也用二次调制。 频分复用技术除传统意义上的频分复用(FDMA)外,还有一种是正交频分复用(OFDM)。 (1)传统的频分复用 传统的频分复用典型的应用莫过于广电HFC网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个频道(8 MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。 (2)正交频分复用 OFDM(Orthogonal Frequency Division Multiplexing)实际是一种多载波数字调制技术。OFDM全部载波频率有相等的频率间隔,它们是一个基本振荡频率的整数倍,正交指各个载波的信号频谱是正交的。 OFDM系统比FDMA系统要求的带宽要小得多。由于OFDM使用无干扰正交载波技术,单个载波间无需保护频带,这样使得可用频谱的使用效率更高。另外,OFDM技术可动态分配在子信道中的数据,为获得最大的数据吞吐量,多载波调制器可以智能地分配更多的数据到噪声小的子信道上。目前OFDM技术已被广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环线(ADSL)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)和第4代(4G)移动通信系统等。 频分复用系统最大的优点是信道复用率高,允许的复用路数较多,同时分路也很方便,是模拟通信中主要的一种复用方式,在有线和微波通信中应用十分广泛。频分复用的缺点是设备生产较为复杂,同时因滤波性能不够理想,及信道内存在的非线性容易产生路间干扰。 2、FDMA通信系统的原理 FDMA通信系统模型如图8-2所示。WDMA和FDMA基本上都基于相同原理,所不同的是,WDMA 应用于光纤信道上的数字化光波传输过程,而FDMA应用于模拟传输,诸如双绞线话路传输、电缆接入、峰窝、无线电以及 TV 通信等。一直以来, TDMA 、CDMA 也是结合 FDMA 共同作用的。

频分复用、时分复用系统MATLAB仿真

上海大学2013~2014学年冬季学期 “通信原理”课程项目报告 课程名称:《通信原理》课程编号:07275086 项目名称和内容:搭建一个在高斯信道中传输的时分(或频分或码分)复用频带传输系统,并测试其性能。(码速率、调制方式、时分复用路数、信号功率和噪声功率自定)。 要求: 1、搭建包括发送、信道、接收在内的完整系统。 2、系统性能用表格或曲线表达。 3、鼓励利用硬件完成。 4、撰写项目报告(含摘要、概述、内容、测试结果与分析、结论与感想)。 5、使用教学专用实验平台上交项目报告。 成绩: 任课教师: 评阅日期: 频分复用、时分复用系统MATLAB仿真 摘要:本文应用所学的通信原理的知识,在MATLAB上搭建了频分复用和时分复用这两个系统进行仿真实验,以期起到巩固知识点、加深原理理解、增强实践能力的效果。 1.频分复用 频分复用原理

频分复用(FDM)是信道复用按频率区分信号,即将信号资源划分为多个子频带,每个子频带占用不同的频率。然后把需要在同一信道上同时传输的多个信号的频谱调制到不同的频带上,合并在一起不会相互影响,并且能再接收端彼此分离开。 频分复用的关键技术是频谱搬移技术,该技术是用混频来实现的。混频的原理,如图所示。 图基带语音信号的频谱搬移 图双边带频谱结构 从图可以看出上、下边带所包含的信息相同,所以恢复原始数据信息只要上边带和下边带的其中之一即可。我们这里选择上边带。 频分复用系统仿真模型建立

图频分复用系统 如上图所示,我们为该系统做了GUI界面,各个阶段的波形与频谱可以很清楚地看到。该系统模拟了电话的传输,我们可以录入三段时间自定义的音频,然后这三段音频分别调制到4K、8K、12K频率上,通过带通滤波器发送至信道。我们这里用添加高斯白噪声的方法来模拟信道特性,信噪比可自定义。在接收端,先经过一个带通滤波器滤去噪声,然后相干解调,最后由低通滤波输出。 图音频原始频谱图音频接收频谱 2.时分复用

OFDM正交频分复用技术

正交频分复用技术及其应用 摘要:简述了正交频分复用技术的发展及特点,论述了其 原理及实现方法,构建了OFDM系统的实现框图,并进行了计算机仿真。最后介绍了几种典型应用。 关键词:正交频分复用(OFDM)多载波调制 随着通信需求的不断增长,宽带化已成为当今通信技术领域的主要发展方向之一,而网络的迅速增长使人们对无线通信提出了更高的要求。为有效解决无线信道中多径衰落和加性噪声等问题,同时降低系统成本,人们采用了正交频分复用(OFDM)技术。OFDM是一种多载波并行传输系统,通过延长传输符号的周期,增强其抵抗回波的能力。与传统的均衡器比较,它最大的特点在于结构简单,可大大降低成本,且在实际应用中非常灵活,对高速数字通信量一种非常有潜力的技术。 1 正交频分复用(OFDM)技术的发展 OFDM的概念于20世纪50~60年代提出,1970年OFDM的专利被发表[1],其基本思想通过采用允许子信道频谱重叠,但相互间又不影响的频分复用(FDM)方法来并行传送数据。OFDM早期的应用有AN/GSC_10(KATHRYN)高频可变速率数传调制解调器等[1]。 在早期的OFDM系统中,发信机和相关接收机所需的副载波阵列是由正弦信号发生器产生的,系统复杂且昂贵。1971年Weinstein和Ebert提出了使用离散傅立叶变换实现OFDM系统中的全部调制和解调功能[3]的建议,简化了振荡器阵列以及相关接收机中本地载波之间严格同步的问题,为实现OFDM的全数字化方案作了理论上的准备。 80年代以后,OFDM的调制技术再一次成为研究热点。例如在有线信道的研究中,Hirosaki于1981年用DFT 完成的OFDM调制技术,试验成功了16QAM多路并行传送19.2kbit/s的电话线MODEM[4]。 1984年,Cimini提出了一种适于无线信道传送数据的OFDM方案[5]。其特点是调制波的码型是方波,并在码元间插入了保护间隙,该方案可以避免多径传播引起的码间串扰。 进入90年代以后,OFDM的应用又涉及到了利用移动调频(FM)和单边带(SSB)信道进行高速数据通信、陆地移动通信、高速数字用户环路(HDSL)、非对称数字用户环路(ADSL)、超高速数字用户环路(VHDSL)、数字声广播(DAB)及高清晰度数字电视(HDTV)和陆地广播等各种通信系统。

频分复用系统

第1章传输设计(频分复用) 1.1频分复用设计原理 若干路信息在同一信道中传输称为多路复用。由于在一个信道传输多路信号而互不干扰,因此可提高信道的利用率。按复用方式的不同可分为:频分复用(FDM)和时分复用(TDM)两类。 频分复用是按频率分割多路信号的方法,即将信道的可用频带分成若干互不交叠的频段,每路信号占据其中的一个频段。在接收端用适当的滤波器将多路信号分开,分别进行解调和终端处理。时分复用是按时间分割多路信号的方法,即将信道的可用时间分成若干顺序排列的时隙,每路信号占据其中一个时隙。在接收端用时序电路将多路信号分开,分别进行解调和终端处理。频分复用原理框图如图1所示。图中给从的是一个12路调制、解调系统框图。 图2-1 频分复用原理框图 1.2频分复用设计指标 设计一个频分复用调制系统,将12路语音信号调制到电缆上进行传输,其传输技术指标如下: 1. 语音信号频带:300Hz~3400Hz。 2. 电缆传输频带:60KHz~156KHz。

3.传输中满载条件下信号功率不低于总功率的90%。 4.电缆传输端阻抗600Ω,电缆上信号总功率(传输频带内的最大功率)不大于1mW。 语音通信接口采用4线制全双工。 音频端接口阻抗600Ω,标称输入输出功率为0.1mW。 滤波器指标:规一化过渡带1%,特征阻抗600Ω,通带衰耗1dB,阻带衰耗40dB(功率衰耗),截止频率(设计者定)。 系统电源:直流24V单电源。 1.3频分复用原理 在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽宽得多。如果一个信道只传送一路信号是非常浪费的,为了能够充分利用信道的带宽,就可以采用频分复用的方法。在频分复用系统中,信道的可用频带被分成若干个互不交叠的频段,每路信号用其中一个频段传输。系统原理如图2所示。以线性调制信号的频分复用为例。在图2-2中设有n路基带信号, 图2-2频分复用系统组成方框图 为了限制已调信号的带宽,各路信号首先由低通滤波器进行限带,限带后的信号分别对不同频率的载波进行线性调制,形成频率不同的已调信号。为了避免已调信号的频谱交叠,各路已调信号由带通滤波器进行限带,相加形成频分复用信号

时分复用和频分复用

时分复用频分复用 简介 数据通信系统或计算机网络系统中, 传输媒体的带宽或容量往往超过传输单一信号的需求, 为了有效地利用通信线路, 希望一个信道同时传输多路信号, 这就是所谓的多路复用技术(MultiplexiI1g) 。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输, 在远距离传输时可大大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing) 和时分多路复用TDM (Time Di-vision MultiplexiIIg) 是两 种最常用的多路复用技术。 举个例最简单的例子: 从A地到B地 坐公交 2 块。打车要20 块为什么坐公交便宜呢这里所讲的就是“多路复用” 的原理。 频分复用 (FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。在频分复用系统中,发送端的各路信号m1(t) ,m2(t) ,,,mn(t) 经各自的低通滤波器分别对各路载波f1(t) ,f2(t) ,, ,fn(t) 进行调制, 再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t) ,f2(t) ,, ,fn(t) 相乘,实现相干解调, 便可恢复各路信号, 实现频分多路通信。为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。根据国际电报电话咨询委员会(CCITT) 建议, 基础群分为前群、基 群、超群和主群。①前群,又称3路群。它由3个话路经变频后组成。各 话路变频的载频分别为12,16,20千赫。取上边带,得到频谱为12?24 千赫的前群信号。②基群,又称12路群。它由4个前群经变频后组成。各 前群变频的载频分别为84,96,108,120 千赫。取下边带,得到频谱为60 ?108千赫的基群信号。基群也可由12个话路经一次变频后组成。③超群, 又称60 路群。它由 5 个基群经变频后组成。各基群变频的载频分别为420,468,516,564,612 千赫。取下边带, 得到频谱为312?552 千赫的超群信号。④主群,又称300路群。它由5个超群经变频后组成。各超群变频的载频分别为 1364,1612,1860 ,2108,2356 千赫。取下边带, 得到频谱为812?2044 千赫的主群信号。 3 个主群可组成900 路的超主群。 4 个超主群可组成3600 路的巨群。频分复用的优点是信道复用率高,允许复用路数多,分路也很方便。因此,频分复用已成为现代模拟通信中最主要的一种复用方式,在模拟式遥测、有线通信、微波接力

相关文档
最新文档