常用参比电极的电势与温度系数

常用参比电极的电势与温度系数

常用参比电极的电势与温度系数

* 25℃;相对于标准氢电极(NCE)

名称 体系

E/V*(dE/dT)/mV ·K

-1

氢电极 饱和甘汞电极 标准甘汞电极 甘汞电极 银-氯化银电极 氧化汞电极 硫酸亚汞电极 硫酸铜电极

Pt,H 2|H +(a H +=1)

Hg,Hg 2Cl 2|饱和KCl

Hg,Hg 2Cl 2|1mol ·

L -1KCl

Hg,Hg 2Cl 2|0.1mol ·L -1KCl

Ag,AgCl|0.1mol ·L -1KCl

Hg,HgO|0.1mol ·L -1KOH

Hg,Hg 2SO 4|1mol ·

L -1H

2SO 4

Cu|饱和CuSO

4

0.0000

0.2415

0.2800

0.3337 0.290 0.165 0.6758

0.316

-0.761 -0.275 -0.875 -0.3

-0.7

页码,1/1

常用参比电极的电势与温度系数2007-1-18

file://F:\GPH\downfrom network\常用参比电极的电势与温度系数.htm

标准电极电势表

标准电极电势表 标准电极电势可以用来计算化学电池或原电池的电化学势或电极电势。本表中所给出的电极电势以标准氢电极为参比电极,溶液中离子有效浓度为1mol/L ,气体分压为100kPa ,温度为298K ,所有离子的数据都在水溶液中测得。[1][2][3][4][5][6][7][8][9]单击每栏上方的符号可将数据按元素符号或标准电极电势值排序。 注:(s ) – 固体;(l ) – 液体;(g ) – 气体;(aq ) – 水溶液;(Hg ) – 汞齐。 半反应 E° (V)[注 1] 来源 Ba + + e ? Ba(s ) ?4.38 [10][1][3] Sr + + e ? Sr(s ) ?4.10 [11][1][3] Ca + + e ? Ca(s ) ?3.8 [11][1][3] Pr 3+ + e ? Pr 2+ ?3.1 [11] ?N 2(g ) + H + + e ? HN 3(aq ) ?3.09 [6] Li + + e ? Li(s ) ?3.0401 [5] N 2(g ) + 4?H 2O + 2?e ? 2?NH 2OH (aq ) + 2?OH ? ?3.04 [6] Cs + + e ? Cs(s ) ?3.026 [5] Ca(OH) 2(s ) + 2?e ? Ca(s ) + 2 OH ? ?3.02 [11] Rb + + e ? Rb(s ) ?2.98 [4] K + + e ? K(s ) ?2.931 [5]

半反应E° (V)[注 1]来源Mg+ + e? Mg(s) ?2.93 [10] Ba2+ + 2?e? Ba(s) ?2.912 [5] ? La(s) + 3OH??2.90 [5] La(OH) Fr+ + e? Fr(s) ?2.9 [11] Sr2+ + 2?e? Sr(s) ?2.899 [5] ? Sr(s) + 2?OH??2.88 [11] Sr(OH) Ca2+ + 2?e? Ca(s) ?2.868 [5] Eu2+ + 2?e? Eu(s) ?2.812 [5] Ra2+ + 2?e? Ra(s) ?2.8 [5] Yb2+ + 2?e? Yb(s) ?2.76 [11][1] Na+ + e? Na(s) ?2.71 [5][9] Sm2+ + 2?e? Sm(s) ?2.68 [11][1] No2+ + 2?e? No(s) ?2.50 [11] ?Hf(s) + 4?OH??2.50 [11] HfO(OH)

电极电势变化对电极反应速率的影响

电极电势变化对电极反应速率的影响 电极上电势变化是怎样影响反应速率的?布特勒尔(Butler)和伏尔默(Volmer)假 设得电子或失电子的步骤均为基元步骤,并应用化学动力学中的过渡态理论导出了电极过程动力学的基本方程-"布特勒尔-伏尔默方程"-以说明这一问题。布特勒尔-伏尔默提出的模型简单,能说明一些实验规律,为一重要关系式。但分析问 题时仅从能量观点出发,没有虑及可能存在的过程细节,故有一定的局限性。 在化学动力学中,反应速率r与反应速度常数k以及反应级数n之间有如下关系: 对于以下电极基元反应,在不考虑电子的作用时,反应为一级的: 由活化络合物理论可知,反应速率常数取决于反应物通过势垒的频率以及反应的活化焓(),即 而电极反应速率r与电流密度i之间满足下式: 将上式联系起来: 在一定温度下为一常数。式(11-72)表述了电极反应在无外加电场影响(即电极表面不带电荷)时的反应速率(以电流密度表示)。在这种条件下进行的反应为纯化学反应,而非电极反应,其速率常数以k区别之。 事实上,电极上同时进行着还原反应和氧化反应:

若以分别表示还原电流密度和氧化电流密度,而c1和c2分别表示氧化态物质和还原物质浓度,其对应的常数分别为k0,1和k0,2,则: 在加上外加电压条件下,例如,在阴极加上一电势φi(φi为负值),则额外能量为,这一能量中,将有一部分用于加速还原反应而另一部分用于减慢氧化反应的进行。设作用于还原部分为a,而作用于氧化反应为(1-a),a称为对称因子(Symmetry factor)。由动力学观点,这相当于使还原反应的活化焓由变为,因为φi为负电势,实质上相当于使其势垒降低,反应加速。而氧化反应的活化焓则由变为,相当于使其势垒提高,反应减慢(参考图)。而还原电流密度和氧化电流密度分别可表示为:

电场强度和电势

电场强度和电势 编稿:董炳伦审稿:李井军责编:郭金娟 目标认知 学习目标 1.理解静电场的存在,静电场的性质和研究静电场的方法。 2.理解场强的定义及它所描写的电场力的性质,并能结合电场线认识一些具体静电场的分布;能够熟练地运用电场强度计算电场力。 3.理解并能熟练地运用点电荷的场强和场强的叠加原理,弄清正、负两种电荷所产生电场的异同,以此为根据认识电荷系统激发的场。 4.类比重力场理解电场力的功、电势能的变化、电势能的确定方法、电势的定义以及电势差的意义;理解电势对静电场能的性质的描写和电势的叠加原理。 5.明确场强和电势的区别与联系以及对应的电场线和等势面之间的区别和联系。 学习重点 1.用场强和电势以及电场线和等势面描写认识静电场分布。 2.熟练地进行电场力、电场力功的计算。 3.学会认识静电场的描写静电场的方法、手段。 学习难点 1.电势这一概念建立过程的逻辑关系以及正、负两种电荷所导致的具体问题复杂性。 2.用场强和电势以及它们的叠加原理认识电荷系统的静电场等。 知识要点梳理 知识点一:电场强度和电场线 要点诠释: 1.静电场及其特点 (1)电荷间的相互作用力是靠周围的电场产生的。 (2)电场是一种特殊物质,并非分子、原子组成,但客观存在。 (3)电场的基本性质是:对放入其中的电荷(不管是静止的还是运动的)有力的作用,电场具有能量。 2.静电场的性质 (1)电场强度的物理意义是描述电场的力性质的物理量,数值上等于单位电荷量的电荷在电场中受到的电场力,单位是N / C。 (2)电场力的二个性质:

①矢量性:场强是矢量,其大小按定义式计算即可,其方向规定为正电荷在该点的受力方向。 ②唯一性:电场中某一点处的电场强度E的大小和方向是唯一的,其大小和方向取决于场源电荷及空间位置。 电场中某点的电场强度E是唯一的,是由电场本身的特性(形成电场的电荷及空间位置) 决定的,虽然,但场强E绝不是试探电荷所受的电场力,也不是单位正试探电荷所受的电场力,因为电场强度不是电场力,电场中某点的电场强度,既与试探电荷的电荷量q 无关,也与试探电荷的有无无关。因为即使无试探电荷存在,该点的电场强度依然是原有的值。 3.总电荷的电场强度 大小:,Q为场源点电荷,r为考察点与场源电荷的距离。 方向:正点电荷的场中某点的场强方向是沿着场源电荷Q与该点连线背离场源电荷;负的场源电荷在某点产生的场强方向则是指向场源电荷。 4.场强叠加原理 若在某一空间中有多个电荷,则空间中某点的场强等于所有电荷在该点产生的电场强度的矢量和。 说明: (1)点电荷的场强和场强的叠加原理是计算任何电荷系统产生场的理论基础,尽管对复杂的电荷系统计算是不易做到的。 (2)场强的叠加原理必须注意到它的矢量叠加的特点,必须用平行四边形法则计算。 5.关于电场线以及对它的理解 (1)电场线的意义及规定 电场线是形象地描述电场而引入的假想曲线,规定电场线上每点的场强方向沿该点的切线方向,也就是正电荷在该点受电场力产生的加速度的方向(负电荷受力方向相反)。 (2)电场线的疏密和场强的关系的常见情况 按照电场线的画法的规定,场强大的地方电场线密,场强小的地方电场线疏。在图中,E A>E B。 但若只给一条直电场线,如图所示,A、B两点的场强大小无法由疏密程度来确定,对

常用金属的电极电位

标准电极电位是以标准氢原子作为参比电极,即氢的标准电极电位值定为0,与氢标准电极比较,电位较高的为正,电位较低者为负。如氢的标准电极电位H2←→H+ 为 一般标准电极电位以298K(即25摄氏度) 常见金属的标准电极电位: 石墨的标准电极电位为 + V 一价金Au+ +e = Au原子价标准电极电位为 + 1.692 V 三价金Au3+ + 3e=Au原子价标准电极电位为 + 1.498 V 钯Pd2+2e=Pd的标准电极电位为 + 0.830 V 三价铑 Rh3+ + 3e=Rh 的标准电极电位为 + 0.800 V 银 Ag+ +e=Ag的标准电极电位为 + 0.799 V 钌Rh3+ + 3e = Rh的标准电极电位为 + 0.790 V 汞 Hg2/2+ + 2e 的标准电极电位为 + 0. 789 V 铜 Cu2+ + 2e 的标准电极电位为 + V 氯化银的标准电极电位为 + 0. 222 V 氢2H+ + 2e = H2的标准电极电位为V

铁Fe3++3e=Fe的标准电极电位为- V 铅 Pb2+ + 2e=Pb 的标准电极电位为- V 锡 Sn2+ + 2e=Sn 的标准电极电位为- V 钼 Mo3+ + 3e=Mo 的标准电极电位为- V 镍 Ni2+ + 2e=Ni 的标准电极电位为- V 钴 Co2+ + 2e=Co 的标准电极电位为- V 铟 In3+ + 3e=In 的标准电极电位为- V 镉 Cd2+ + 2e 的标准电极电位为- V 铁 Fe2+ + 2e=Fe的标准电极电位为- V 镍硼Ni-B镀层的自腐蚀电位为,比Ni-B-PTFE的自腐蚀电位要高,而Ni-B-PTFE复合镀层的自腐蚀电位为左右 铬 Cr3+ + 3e = Cr 的标准电极电位为-0. 74 V 锌Zn2+ + 2e 的标准电极电位为-0. 763 V 钨 W 的标准电极电位为- 1. 05 V 锰 Mn2+ + 2e 的标准电极电位为- V 钛 Ti2+ + 2e 的标准电极电位为- V 铝 Al3+ + 3e 的标准电极电位为- V 镁 Mg2+ + 2e 的标准电极电位为- V 钕 Nd 是一种活性极强的金属,标准平衡电位为- V 1氢 H 3锂Li 4铍Be 5硼 B 6碳 C

电化学三电极工作体系

电化学测量三电极系统:工作电极,辅助电极(对电极),参比电极。参比电极的作用是在测量过程中提供一个稳定的电极电位,对于一个三电极的测试系统,之所以要有一个参比电极,是因为有些时候工作电极和辅助电极(对电极)的电极电位在测试过程中都会发生变化的,为了确切的知道其中某一个电极的电位(通常我们关心的是工作电极的电极电位),我们就必须有一个在测试过程中电极电位恒定的电极作为参比来进行测量。如果可以确定辅助电极的电极电位在测试过程中是不发生变化或者变化可以忽略不计时,我们就不必使用参比电极。这就是所谓的双电极测试系统。辅助电极的作用是在整个测试中形成一个可以让电流通过的回路,只有一个电极外电路上是不可能有稳定的电流通过的。这就好比电路里面必须要有火线和零线一样。因此辅助电极对于电化学测试是必须的,而参比电极则可以根据具体情况进行选择,并不是一定要有的。 参比电极(Reference electrode): 参比电极具有已知恒定的电位,为研究对象提供一个电位标准。测量时,参比电极上通过的电流极小,不致引起参比电极的极化。经常使用的参比电极主要有以下三种: A.标准氢电极(NHE):常以在标准状态下,氢离子和氢气的活度为1时的电位即E?为电极电位的基准,其值为0. B.甘汞电极(Calomel electrode):甘汞电极是实验室最常用的参比电极之一,它的电极反应是:Hg2Cl2 + 2e = 2Hg + 2Cl-,可见其电位与氯离子的浓度有关。当溶液中的KCl达到饱和时,叫做饱和甘汞电极(SCE),标准电极电位为0.2412 V;KCl浓度为1 时的电极电位为0.2801 V;KCl浓度为0.1 M时的电极电位为0.3337 V. C.银氯化银电极(Ag/AgCl):银氯化银电极也是实验室最常用的参比电极之一,其电极反应为:AgCl + e = Ag + Cl-,其电位也受Cl-浓度的影响。KCl饱和时的电极电位为0.199 V. 银—氯化银电极:银—氯化银电极具有非常良好的电极电位重演性、稳定性,由于它是固体电极,故使用方便,应用很广。甚至有取代甘汞电极的趋势,这是由于汞有毒性,此外,甘汞电极的温度变化所引起的电极电位变化的滞后现象较大,而氯化银电极的高温稳定性较好。它是一种常用的参比电极。AgCl在水中的溶解度约为10-5(25 ℃),是很小的。但是如果在KCl溶液中,由于AgCl和Cl-能生成络合离子,使其AgCl的溶解度显著增加。在1 M KCl 溶液中,AgCl的溶解度为1.4×10-2 g/L,而在饱和KCl溶液中则高达10 g/L。因此为保持电极电位的稳定,所用KCl溶液需要预先用AgCl饱和。特别是在饱和KCl溶液中更应注意。此外,如果把饱和KCl溶液的Ag/AgCl电极插在稀溶液中,在液接界处KCl溶液被稀释,这是部分原先溶解的Ag离子将会分解,而析出Ag沉淀。这些Ag沉淀容易堵塞参比电极管的多孔性封口。由于上述缺点,通常不采用饱和KCl溶液作为Ag/AgCl电极的电解液。

实验五氧化还原反应与电极电势(精)

实验五氧化还原反应与电极电势 一、实验目的 1、掌握电极电势对氧化还原反应的影响。 2、定性观察浓度、酸度对电极电势的影响。 3、定性观察浓度、酸度、温度、催化剂对氧化还原反应的方向、产物、速度的影响。 4、通过实验了解原电池的装置。 二、实验原理 氧化剂和还原剂的氧化、还原能力强弱,可根据她们的电极电势的相对大小来衡量。电极电势的值越大,则氧化态的氧化能力越强,其氧化态物质是较强氧化剂。电极电势的值越小,则还原态的还原能力越强,其还原态物质是较强还原剂。只有较强的氧化剂才能和较强还原剂反应。即φ氧化剂-φ还原剂﹥0时,氧化还原反应可以正方向进行。故根据电极电势可以判断氧化还原反应的方向。 利用氧化还原反应而产生电流的装置,称原电池。原电池的电动势等于正、负两极的电极电势之差:E = φ正-φ负。根据能斯特方程: 其中[氧化型]/[还原型]表示氧化态一边各物质浓度幂次方的乘积与还原态一边各物质浓度幂次方乘积之比。所以氧化型或还原型的浓度、酸度改变时,则电极电势φ值必定发生改变,从而引起电动势E将发生改变。准确测定电动势是用对消法在电位计上进行的。本实验只是为了定性进行比较,所以采用伏特计。浓度及酸度对电极电势的影响,可能导致氧化还原反应方向的改变,也可以影响氧化还原反应的产物。 三、仪器和药品 仪器:试管,烧杯,伏特计,表面皿,U形管 药品:2 mol·L-1 HCl,浓HNO3, 1mol·L-1 HNO3,3mol·L-1HAc,1mol·L-1 H2SO4,3mol·L-1 H2SO4,0.1mol·L-1 H2C2O4,浓NH3·H2O(2mol·L-1),6mol·L- 1NaOH,40%NaOH。 1mol·L-1 ZnSO4,1mol·L-1 CuSO4,0.1mol·L-1KI,0.1mol·L-

第二节 电极电势

2-1 第二节 电极电势 知识要点 一、电极电势和电池电动势 1. 电极电势 (金属-金属离子电极) 在铜锌原电池中,为什么电子从Zn 原子转移给Cu 2+ 离子而不是从Cu 原子转移给Zn 2+ 离子? 这与金属在溶液中的情况有关,一方面金属M 表面构成晶格的金属离子和极性大的水分子互相吸引,有一种使金属棒上留下电子而自身以水合离子M n + (aq)的形式进入溶液的倾向,金属越活泼,溶液 越稀,这种倾向越大,另一方面,盐溶液中的M n + (aq) 离子又有一种从金属M 表面获得电子而沉积在金属表面上的倾向,金属越不活泼,溶液越浓,这种倾向越大.这两种对立着的倾向在某种条件下达到暂时的平衡: M n + (aq)+ne - M 在某一给定浓度的溶液中,若失去电子的倾向大于获得电子的倾向,到达平衡时的最后结果将是金属离子M n + 进入溶液,使金属棒 上带负电,靠近金属棒附近的溶液带正电,如右图所示,这时在金属和 盐溶液之间产生电位差,这种产生在金属定于温度. 在铜锌原电池中,Zn 片与Cu 片分别插在它们各自的盐溶液中,构成Zn 2+ /Zn 电极与Cu 2+ /Cu 电 极.实验告诉我们,如将两电极连以导线,电子流将由锌电极流向铜电极,这说明Zn 片上留下的电子要比Cu 片上多,也就是Zn 2+ /Zn 电极的上述平衡比 Cu 2+/Cu 电极的平衡更偏于右方,或Zn 2+ /Zn 电对与Cu 2+ /Cu 电对两者具有不同的电极电势,Zn 2+ /Zn 电对的电极电势比Cu 2+ /Cu 电对要负一些.由于两极电势不同,连以导线,电子流(或电流)得以通过. 2. 原电池的电动势 电极电势 φ表示电极中极板与溶液之间的电势差.当用盐桥将两个电极的溶液连通时,若认为两溶液之间等电势,则两极板之间的电势差即两电极的电极电势之差,就是电池的电动势.用 E 表示电动势,则有E =φ+ -φ- 若两电极的各物质均处于标准状态,则其电动势为电池的标准电动势,E ○— =φ ○— (+) -φ ○— (-) 电池中电极电势 φ大的电极为正极,故电池的电动势 E 的值为正.有时计算的结果 E 为负值,这说明计算之前对于正负极的判断有误.E > 0 是氧化还原反应可以自发进行的判据. 3. 标准氢电极 (气体 - 离子电极) 电极电势的绝对值无法测量,只能选定某种电极作为标准,其他电极与之比较,求得电极电势的相对值,通常选定的是标准氢电极. 标准氢电极是这样构成的:将镀有铂黑的铂片置于H +浓度(严格的说应为活度a )为 1.0mol·kg -1 的硫酸溶液(近似为 1.0mol·dm - 3)中,如右图.然后不断地通入压力为1.013×105Pa 的纯H 2,使铂黑吸附H 2达到饱和,形成一个氢电极.在这个电极的周围发生了如下的平衡: 2H + +2e - H 2 氢电极属于气体 -离子电极.标准氢电极作为负极时,可以表示为 Pt | H 2(1.013×105Pa) | H +(1mol·dm - 3) 这时产生在标准氢电极和硫酸溶液之间的电势,叫做氢的标准电极电势,将它作为电极电势的相对标准,令其为零.在任何温度下都规定标准氢电极的电极电势为零(实际上电极电势同温度有关).所以很难制得上述那种标准氢电极,它只是一种理想电极. 用标准氢电极与其他各种标准状态下的电极组成原电池,测得这些电池的电动势,从而计算各种电极的标准电极电势,通常测定时的温度为298K.所谓标准状态是指组成电极的离子其浓度为1mol·dm - 3(对于氧化还原电极来讲,为氧化型离 子和还原型离子浓度比为1),气体的分压为1.013×105Pa,液体或固体都是纯净物质.标准电极电势用符号φ○— 表示. 例如:标准氢电极与标准铜电极组成的电池,用电池符号表示为 (-)Pt | H 2(p ○— ) | H +(1mol·dm - 3)‖Cu 2+(1mol·dm - 3) | Cu(+) 在298K,用电位计测得该电池的电动势E ○— = 0.34V E ○— =φ○— (+) -φ○— (-),得φ○— (+) = E ○— +φ○— (-), 故φ○— ( Cu 2+/Cu)= E ○— +φ○— (H +/H 2)

参比电极使用维护方法综述

参比电极使用维护综述 参比电极是决定指示电极电位的重要因素, 作为一个理想的参比电极应具备 以下条件:①能迅速建立热力学平衡电位,这就要求电极反应是可逆的。②电极 电位是稳定的,能允许仪器进行测量。常用的参比电极有甘汞电极和银 -氯化银 电极。 参比电极的使用及维护 1?使用时应拔去加液口橡皮塞,以使盐桥溶液借重力作用维持一定流速渗漏 于与待测溶液通路。玻璃加液口和橡皮塞应该经常插洗保存。 2. 测量时,参比电极盐桥液面应高于待测界面(2~3)cm ,以防止待测液向甘 汞电极内扩散,如待测液中含有氯化物、硫化物、络合剂、银盐和过氯酸盐等向 内扩散,都将影响参比电极的电位。 3. 参比电极的溶液中应防止气泡产生,以免测量回路断路。 4. 参比电极的电解液要经常加入,及时补充,其浓度要按照说明书的要求配 制,如是饱和氯化钾溶液作盐桥时要维持有过量氯化钾晶体, 氯化 钾晶体的饱和溶液的瓶放入温水待氯化钾溶解后再补入, 化钾即会 析出。 5. 甘汞电极的电极电位有较大的负温度系数和热滞后性, 止 甘汞电极温度大幅度波动。克服这种缺点办法,通常在甘汞电极下 部加一伸长 的盐桥管,而使电极处于室温下,而盐桥溶液的温度与待测溶液相同。 精确测量 时将甘汞电极置于恒温槽内操作时只要把盛有 冷却后在电极内氯 在测量时要尽量防

6?参比电极的液接部毛孔经常会被堵塞,电极阻抗增高,往往引起指示值波动。在这种情况下,应不时括去积垢或更换电极。只有在液接部不被沾污和保持流畅的情况下,才能保持其正确测量。 7?甘汞电极使用温度不宜超过70 C,如果测定场合水温超过70 C,应使用银-氯化银电极。 8?关于银-氯化银电极有一点值得一提,即银-氯化银电极对光敏感,而许多使用它作内参比的玻璃电极具有透明杆子,如果标定时,它们是暴露在日光下的,然后浸入溶液测量时,离开日光照射,这样会造成几mV电位的漂移。如果在电极杆上,套上一个黑色的聚乙稀管,这个问题即可解决。 9?固体参比电极,在电极前端帽子中应盛有KCL溶液,不可使其干涸,使用前应将电极竖直放置在盛有KCL溶液容器中数小时。 参比电极的检查方法 1、内阻检查方法:参比电极的内阻一般小于10K Q,检查时可采用实验室电导率 仪,电导率仪的插座一端接参比电极,另一端接一根金属丝,把参比电极与金属丝同时浸入溶液中,其内阻应小于10K Q.如内阻很大说明液接界部分堵塞,电极需要处理。 2、电极电位检查:使用一支好的参比电极,与被怀疑性能不良的参比电极接入pH 计输入端,二支电极同时浸入KCL溶液(或pH=4。00缓冲液),假如二支电极型号相同,其电位差应小于3mv或电位变化小于1mv。如果电位差大于3mv或电位变化大于 1mv,电极应该更换或再生

参比电极

Ag/Ag2SO4用于铅酸蓄电池 Cd电极常用于电池制造中以控制正负极板质量,Hg/Hg2SO4常用于实验室的准确测量中[1]。它的缺点是价高、易碎和易造成环境污染。 Ag2SO4电极在文献中报道极少,几乎没有关于Ag2SO4参比电极的介绍。至今此电极尚未有作为铅酸电池中参比电极应用的报道。其主要原因可能是Ag2SO4的溶解度太高所致,Ag+离子可能会污染铅酸电池的电解质溶液。Ag2SO4在硫酸溶液中的溶解度为0.03mol/1000gH2O[2]。但是现在已经有合适的隔膜材料,可阻挡扩散污染。 Pb/PbSO4电极对Ag/Ag2SO4参比电极的电极电位: 此反应 在标准情况下(25℃、1bar)Pb/PbSO4与Ag/Ag2SO4参比电极之间的电位差为 ,E0与硫酸浓度无关。 已知Ag/Ag2SO4参比电极比Hg/Hg2SO4参比电极(同溶液)要正0.0384V,此值也与硫酸浓度无关。 PbO2/PbSO4电极对Ag/Ag2SO4参比电极的电极电位: △G0=-199.42kJ E0=1.0334V 式中a s为硫酸活度,a w为水的活度。 例如,在5mol硫酸中,PbO2/PbSO4对于同液Ag/Ag2SO4的电极电位,计算为1.0881V,如酸浓度为1mol,计算为0.9173V(硫酸平均活度系数用)

内径为3mm的薄壁尼龙管,(可用聚丙烯管代替),低部紧塞AGM,此要AGM塞长15mm,其上放上Ag、Ag2SO4、少量SiO2成胶剂和少量AR级的硫酸溶液。加入的酸量刚好把Ag2O全部转化为Ag2SO4。 此活性混合物在尼龙管中干燥(中间插银丝),将银丝与上部接头焊好,用环氧树脂封固。使用前,AGM塞和活性混合物用含合适浓度的硫酸浸泡100h以上(15mm长的AGM 需要100h来平衡酸浓度),也可将需要的酸量加入活性物上部(用针管注入),参比电极中吸收的硫酸约200mg(35%的硫酸)。 用此电极在铅酸电池中Ag2SO4会少量扩散进入电池,按fick定律估算,总量小于1mg/年。 此电极牢固,防撞击,电位重现性在1~2mV内。 用法:可在电池盖上钻一小孔放入酸中,或VRLA电池的AGM上,参比电极尖端位置对电位稍有影响。 硫酸银电极 Ag2SO4+2e=2Ag+ SO42- E Ag2SO4= E Ag2SO40-0.0591/2loga SO42- =0.653 有严格定义的电极电位,易于制备做成各种式样的电极,电位的可重现性达±1mV,电极的结构牢固,可以防震,且无毒性物质,在高温时稳定。 对于同样的硫酸溶液中的铅蓄电池负极(Pb/PbSO4电极)对Ag/Ag2SO4参比电极的电极电位为-1.009V(25℃),它与硫酸的浓度无关,已由实验证实。PbO2/PbSO4正极对Ag/Ag2SO4参比电极的电位,符合下列的关系式((25℃)。 式中a s为硫酸活度,a w为水的活度。此式也可由实验

几种典型电场线分布示意图及场强电势特点

匀强电场 等量异种点电荷的电场 等量同种点电荷的电场 - - - - 点电荷与带电平+ 孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表重点 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立 的 正点 电荷 电场 线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立的 负点电荷 电场线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。

电势 离场源电荷越远,电势越高;与场源电荷等距的各点 组成的球面是等势面,每点的电势为负。 等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 等量同种负点电荷电场 线 大部分是曲线,起于无穷远,终止于负电荷;有两条 电场线是直线。 电势每点电势为负值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都是背离中点;由连线的一端 到另一端,先减小再增大。 电 势 由连线的一端到另一端先升高再降低,中点电势最 高不为零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都沿着中垂线指向中点;由中 点至无穷远处,先增大再减小至零,必有一个位置 场强最大。 电 势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量 同种 电场大部分是曲线,起于正电荷,终止于无穷远;有两条

标准电极电势表(全)

在酸性溶液中(298K) 电对方程式E/V Li(I)-(0)Li++e-=Li-Cs(I)-(0)Cs++e-=Cs-Rb(I)-(0)Rb++e-=Rb- K(I)-(0)K++e-=K-Ba(II)-(0)Ba2++2e-=Ba-Sr(II)-(0)Sr2++2e-=Sr-Ca(II)-(0)Ca2++2e-=Ca-Na(I)-(0)Na++e-=Na-La(III)-(0)La3++3e-=La-Mg(II)-(0)Mg2++2e-=Mg-Ce(III)-(0)Ce3++3e-=Ce- H(0)-(-I)H2(g)+2e-=2H--Al(III)-(0)AlF63-+3e-=Al+6F--Th(IV)-(0)Th4++4e-=Th-Be(II)-(0)Be2++2e-=Be- U(III)-(0)U3++3e-=U-Hf(IV)-(0)HfO2++2H++4e-=Hf+H2O-Al(III)-(0)Al3++3e-=Al-Ti(II)-(0)Ti2++2e-=Ti-Zr(IV)-(0)ZrO2+4H++4e-=Zr+2H2O-Si(IV)-(0)[SiF6]2-+4e-=Si+6F--Mn(II)-(0)Mn2++2e-=Mn-Cr(II)-(0)Cr2++2e-=Cr-Ti(III)-(II)Ti3++e-=Ti2+- B(III)-(0)H3BO3+3H++3e-=B+3H2O-*Ti(IV)-(0)TiO2+4H++4e-=Ti+2H2O-Te(0)-(-II)Te+2H++2e-=H2Te-Zn(II)-(0)Zn2++2e-=Zn-Ta(V)-(0)Ta2O5+10H++10e-=2Ta+5H2O-Cr(III)-(0)Cr3++3e-=Cr-Nb(V)-(0)Nb2O5+l0H++10e-=2Nb+5H2O-As(0)-(-III)As+3H++3e-=AsH3- U(IV)-(III)U4++e-=U3+-Ga(III)-(0)Ga3++3e-=Ga-

标准电极电势表

标准电极电势表 目录[隐藏] 电极电势的产生—双电层理论 定义 公式 电极电势内容 标准电极电势表 [编辑本段] 电极电势的产生—双电层理论 德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double lay er theory)解释电极电势的产生的原因。当金属放入溶液中时,一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面进入溶液。金属性质越活泼,这种趋势就越大;另一方面溶液中的金属离子,由于受到金属表面电子的吸引,而在金属表面沉积,溶液中金属离子的浓度越大,这种趋势也越大。在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electron double layer),双电层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。通常人们就把产生在金属和盐溶液之间的双电层间的电势差称为金属的电极电势(electrode potential),并以此描述电极得失电子能力的相对强弱。电极电势以符号E Mn+/ M表示, 单位为V(伏)。如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势以ECu2+/Cu 表示。 电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。 [编辑本段] 定义 标准电极电势是可逆电极在标准状态及平衡态时的电势,也就是标准态时的电极电势. 标准电极电势有很大的实用价值,可用来判断氧化剂与还原剂的相对强弱,判断氧化还原反应的进行方向,计算原电池的电动势、反应自由能、平衡常数,计算其他半反应的标准电极电势,等等。将半反应按电极电势由低到高排序,可以得到标准电极电势表,可十分简明地判断氧还反应的方向. [编辑本段] 公式

电位分析习题

淮阴师范学院 仪器分析课程电位分析习题 一、选择题(每题2分,共20题,40分) 1在直接电位法中的指示电极,其电位与被测离子的活度的关 系为( 4 ) (1) 无关(2) 成正比(3) 与其对数成正比(4) 符合能斯特公式 2玻璃膜钠离子选择电极对钾离子的电位选择性系数为0.002,这意味着电极对钠离子的敏感为钾离子的倍数是( 2 ) (1) 0.002 倍(2) 500 倍(3) 2000 倍(4) 5000 倍 3钾离子选择电极的选择性系数为6 pot Mg , K 10 8.1 2 - ? = + + K,当用该电极测浓度为1.0×10-5mol/L K+,浓度为 1.0×10-2mol/L Mg溶液时,由Mg引起的K+测定误差为( 3 ) (1) 0.00018% (2) 134% (3) 1.8% (4) 3.6% 4离子选择电极的电位选择性系数可用于( 2 ) (1) 估计电极的检测限(2) 估计共存离子的干扰程度 (3) 校正方法误差(4) 计算电极的响应斜率 5在电位滴定中,以?E/?V-V(?为电位,V为滴定剂体积)作图绘制滴定曲线, 滴定终点为:( ) (1) 曲线的最大斜率(最正值)点(2) 曲线的最小斜率(最负值)点 (3) 曲线的斜率为零时的点(4) ?E /?V 为零时的点 6氟化镧单晶膜氟离子选择电极的膜电位的产生是由于( 2 ) (1) 氟离子在晶体膜表面氧化而传递电子 (2) 氟离子进入晶体膜表面的晶格缺陷而形成双电层结构 (3) 氟离子穿透晶体膜而使膜内外氟离子产生浓度差而形成双电层结构 (4) 氟离子在晶体膜表面进行离子交换和扩散而形成双电层结构 7利用选择性系数可以估计干扰离子带来的误差, 若05 .0 pot j i, = K, 干扰离子的活度 为0.1mol/L, 被测离子的活度为0.2mol/L, 其百分误差为: ( 1 )

电极电势-答案

氧化还原与电极电势——答案 1.25℃时将铂丝插入Sn 4+和Sn 2+离子浓度分别为0.1mol/L 和0.01mol/L 的混合溶液中,电对的电极电势为( )。 A .)/(24++Sn Sn θ? B . 2/05916.0)/(24+++Sn Sn θ? C .05916.0)/(24+++Sn Sn θ? D .2/05916.0)/(24-++Sn Sn θ? 解答或答案:B 2.对于电池反应C u 2++Zn = C u +Zn 2+ 下列说法正确的是( )。 A .当[C u 2+] = [Zn 2+ ],反应达到平衡。 B .θ?(Cu 2+/Cu )= θ?(Zn 2+/Zn ), 反应达到平衡。 C .?(Cu 2+/Cu )= ?(Zn 2+/Zn ), 反应达到平衡。 D . 原电池的标准电动势等于零时,反应达到平衡。 解答或答案:C 3.今有原电池(-)Pt,H 2(ρ)H +(c)C u 2+ (c)C u(+) ,要增加原电池电动势,可以采取的措 施是( )。 A 增大H +离子浓度 B 增大 C u 2+ 离子浓度 C 降低H 2的分压 D 在正极中加入氨水 E 降低C u 2+ 离子浓度,增大H +离子浓度 解答或答案:B 4.已知下列反应; C uCl 2+SnCl 2 = C u +SnCl 4 FeCl 3+C u= FeCl 2+C uCl 2 在标准状态下按正反应方向进行。则有关氧化还原电对的标准电极电位的相对大小为( )。 A θ?(Fe 3+/Fe 2+)>θ?(Cu 2+/Cu )>θ?(Sn 4+/Sn 2+) B θ?(Cu 2+/Cu )>θ?(Fe 3+/Fe 2+)>θ?(Sn 4+/Sn 2+) C θ?(Sn 4+/Sn 2+)>θ?(Cu 2+/Cu )>θ?(Fe 3+/Fe 2+)

实验五--氧化还原反应与电极电势

实验五--氧化还原反应与电极电势

————————————————————————————————作者:————————————————————————————————日期:

实验五 氧化还原反应与电极电势 一、实验目的 1、掌握电极电势对氧化还原反应的影响。 2、定性观察浓度、酸度对电极电势的影响。 3、定性观察浓度、酸度、温度、催化剂对氧化还原反应的方向、产物、速度的影响。 4、通过实验了解原电池的装置。 二、实验原理 氧化剂和还原剂的氧化、还原能力强弱,可根据她们的电极电势的相对大小来衡量。电极电势的值越大,则氧化态的氧化能力越强,其氧化态物质是较强氧化剂。电极电势的值越小,则还原态的还原能力越强,其还原态物质是较强还原剂。只有较强的氧化剂才能和较强还原剂反应。即φ氧化剂-φ还原剂﹥0时,氧化还原反应可以正方向进行。故根据电极电势可以判断氧化还原反应的方向。 利用氧化还原反应而产生电流的装置,称原电池。原电池的电动势等于正、负两极的电极电势之差:E = φ正-φ负。根据能斯特方程: ] [][lg 0591.0还原型氧化型半?+=n θ?? 其中[氧化型]/[还原型]表示氧化态一边各物质浓度幂次方的乘积与还原态一边各物质浓度幂次方乘积之比。所以氧化型或还原型的浓度、酸度改变时,则电极电势φ值必定发生改变,从而引起电动势E 将发生改变。准确测定电动势是用对消法在电位计上进行的。本实验只是为了定性进行比较,所以采用伏特计。浓度及酸度对电极电势的影响,可能导致氧化还原反应方向的改变,也可以影响氧化还原反应的产物。 三、仪器和药品 仪器:试管,烧杯,伏特计,表面皿,U 形管 药品:2 mol·L -1 HCl ,浓HNO 3, 1mol·L -1 HNO 3,3mol·L -1HAc ,1mol·L -1 H 2SO 4,3mol·L -1 H 2SO 4,0.1mol·L -1 H 2C 2O 4,浓NH 3·H 2O (2mol·L -1),6mol·L -1NaOH ,40%NaOH 。 1mol·L -1 ZnSO 4,1mol·L -1 CuSO 4,0.1mol·L -1KI ,0.1mol·L -1AgNO 3,0.1mol·L -1KBr ,0.1mol·L -1FeCl 3,0.1mol·L -1Fe 2(SO 4)3,0.1mol·L -1FeSO 4,1mol·L -1FeSO 4, 0.4mol·L -1K 2Cr 2O 7, 0.001mol·L -1KMnO 4,0.1mol·L -1Na 2SO 3,0.1mol·L -1Na 3AsO 3, 0.1mol·L -1 MnSO 4, 0.1mol·L -1NH 4SCN , 0.01mol·L -1I 2水,Br 2水,CCl 4,固体NH 4F ,固

常用参比电极注意事项

银-氯化银电极(Ag-AgCl)的使用维护及注意事项 一、氯化银电极的介绍及主要用途 银-氯化银电极是由表面覆盖有氯化银的金属银浸入在含有氯离子溶液中构成的电极,氯化银电极可表示为Ag/AgCl/Cl-,电极反应为AgCl+e=Ag+Cl-。常用的内充溶液是KCL溶液,通常有0.1mol/LKCl,1mol/L KCl和饱和KCl三种类型。因离子析出的原因,为了保持内充溶液稳定,以饱和的KCL溶液使用zui为普遍。因氯化银电极电势稳定,重现性好,相比甘汞电极在升温的情况下更为稳定,因此在中性溶液的测试中,使用相当广泛。 二、主要技术数据 1、内阻:≤10KΩ 2、25°C时标准电位:+0.2224V 3、高仕睿联氯化银电极盐桥充装溶液:饱和KCL 4、液络部流速:≥1滴/10min 三、使用维护及注意事项 1、氯化银电极使用前请先拔去液接部位的胶皮套方可使用. 2、测量时盐桥溶液应充满盐桥,保证电极形成回路,盐桥内溶液高于被测样品溶液的液面,以免测试溶液反方向渗透而改变盐桥溶液的成份。 3、氯化银电极内盐桥溶液中不可含有较大气泡,以免阻断电子测量回路;若含有气泡时,可握紧电极轻甩几下,或竖起电极用手指轻弹,使气泡上浮。 4、不宜用于和氯化银电极有反应的介质的测量。因AgCl电极盐桥溶液为KCL溶液,对氯离子有规避的实验体系,不可使用该电极;并且氯化银电极应应用于中性溶液的测试中,在酸性体系或者碱性体系中很容易造成电极的损坏。如不可避免要使用甘汞电极测试,建议使用双接点银氯化银电极,以阻隔测试溶液对该电极核心部位的影响。 5、氯化银电极应经常清洗并更换盐桥溶液,对一般性的附着玷污应及时清洗。更换盐桥溶液时,可将玻璃管拔出,抽出原盐桥溶液,再将新溶液注入。 6、在拿去电极帽时,请勿将电极长时间(大于数分钟)暴露在空气中,否则玻璃管中的溶液将会渗漏并且挥发变干,这样有可能会影响电极性能。电极短期不用时,请将电极液络部浸入相对应浓度的KCL溶液中保存,如果长期不用请先更换新的盐桥溶液再密封避光保存。 7、氯化银电极使用温度:建议在室温条件下使用,温度≤60°C。 8、氯化银电极等参比电极皆不宜超声清洗。

最新最全最实用电极电势表

标准电极电势表 环境:摄氏25度,1标准大气压,离子浓度1摩尔/升,采用氢电极最全最实用电极电势表由xsm18倾情制作,转载请注明来源:https://www.360docs.net/doc/bf5111819.html,/xsm18/home

PbSO4(+2)/Pb PbSO4+2e-=Pb+SO42--0.3588 PbBr2(+2)/Pb PbBr2+2e-=Pb+2Br--0.284 Co2+/Co Co2++2e-=Co-0.28 H3PO4/H3PO3H3PO4+2H++2e-=H3PO3+H2O-0.276 PbCl2(+2)/Pb PbI2+2e-=Pb+2I--0.2675 Ni2+/Ni Ni2++2e-=Ni-0.257 CO2/HCOOH(甲酸)CO2(g)+2H++2e-=HCOOH(aq)-0.199 CuI(+1)/Cu CuI+e-=Cu+I-0.1852 AgI(+1)/Ag AgI+e-=Ag+I-0.15224 Sn2+/Sn Sn2++2e-=Sn-0.1375 Pb2+/Pb Pb2++2e-=Pb-0.1262 C4+/C2+CO2(g)+2H++2e-=CO+H2O-0.12 P/PH3P(白磷)+3H++3e-=PH3(g)-0.063气体(g) Hg2I2(+1)/Hg Hg2I2+2e-=2Hg+2I--0.0405 Fe3+/Fe Fe3++3e-=Fe-0.037 Ag2S(+1)/Ag Ag2S+2H++2e-=2Ag+H2S-0.0366 H+/H22H++2e-=H20.00 CuBr(+1)/Cu CuBr+e-=Cu+Br-0.033 AgBr(+1)/Ag AgBr+e-=Ag+Br-0.07133 Si/SiH4Si+4H++4e-=SiH40.102 C(石墨)/CH4C+4H++4e-=CH40.1316 CuCl(+1)/Cu CuCl+e-=Cu+Cl-0.137 Hg2Br2(+1)/Hg Hg2Br2+2e-=2Hg+2Br-0.13923 S/H2S(aq)S+2H++2e-=H2S(aq)0.142水溶液 Sn4+/Sn2+Sn4++2e-=Sn2+0.151 Cu2+/Cu+Cu2++e-=Cu+0.153 S6+/S4+SO42-+4H++2e-=H2SO3+H2O0.172 AgCl(+1)/Ag AgCl+e-=Ag+Cl-0.2223 As3+/As(亚砷酸)HAsO2(aq)+3H++3e-=As+2H2O0.2476HAsO2.H2O Hg2Cl2/Hg Hg2Cl2+2e-=2Hg+2Cl-0.268 Bi3+/Bi Bi3++3e-=Bi0.308 Cu2+/Cu Cu2++2e-=Cu0.337 AgIO3/Ag AgIO3+e-=Ag+IO3-0.354 S6+/S SO42-+8H++6e-=S+4H2O0.3572 Ag2CrO4/Ag Ag2CrO4+2e-=2Ag+CrO42-0.447铬酸银 S4+/S H2SO3+4H++4e-=S+3H2O0.449 Ag2C2O4/Ag Ag2C2O4+2e-=2Ag+C2O42-0.4647草酸银 Cu+/Cu Cu++e-=Cu0.521 I2/I-I2+2e-=2I-0.5355 AgBrO3/Ag AgBrO3+e-=Ag+BrO3-0.546 As5+/As3+H3AsO4(aq)+2H++2e-=HAsO2+2H2O0.56水溶液AgNO2/Ag AgNO2+e-=Ag+NO2-0.564 Te4+/Te TeO2+4H++4e-=Te+2H2O0.593

电位分析习题测验大学分析化学习题测验+课后答案

电位分析法习题 一、选择题 1.下列参量中,不属于电分析化学方法所测量的是( ) A 电动势 B 电流 C 电容 D 电量 2.下列方法中不属于电化学分析方法的是( ) A 电位分析法 B 伏安法 C 库仑分析法 D 电子能谱 3.区分原电池正极和负极的根据是( ) A 电极电位 B 电极材料 C 电极反应 D 离子浓度 4.区分电解池阴极和阳极的根据是( ) A 电极电位 B 电极材料 C 电极反应 D 离子浓度 5.下列不符合作为一个参比电极的条件的是( ) A 电位的稳定性 B 固体电极 C 重现性好 D 可逆性好 6.甘汞电极是常用参比电极,它的电极电位取决于( ) A 温度 B 氯离子的活度 C 主体溶液的浓度 D K+的浓度 7.下列哪项不是玻璃电极的组成部分?( ) A Ag-AgCl 电极 B 一定浓度的HCl 溶液 C 饱和KCl溶液 D 玻璃管 8.测定溶液pH值时,常用的指示电极是:( ) A 氢电极 B 铂电极 C 氢醌电极 D pH玻璃电极 9.玻璃电极在使用前,需在去离子水中浸泡24小时以上,其目的是:( ) A 清除不对称电位 B 清除液接电位 C 清洗电极 D 使不对称电位处于稳定 10.晶体膜离子选择电极的检出限取决于( ) A 响应离子在溶液中的迁移速度 B 膜物质在水中的溶解度 C 响应离子的活度系数 D 晶体膜的厚度 11.氟离子选择电极测定溶液中F-离子的含量时,主要的干扰离子是( ) A Cl- B Br- C OH- D NO3- 12.实验测定溶液pH值时,都是用标准缓冲溶液来校正电极,其目的是消除何种的影响。 A 不对称电位 B 液接电位 C 温度 D 不对称电位和液接电位 13.pH玻璃电极产生的不对称电位来源于( ) A内外玻璃膜表面特性不同 B 内外溶液中H+ 浓度不同 C 内外溶液的H+ 活度系数不同 D 内外参比电极不一样 14.用离子选择电极标准加入法进行定量分析时,对加入标准溶液的要求为( ) A体积要大,其浓度要高 B 体积要小,其浓度要低 C 体积要大,其浓度要低 D 体积要小,其浓度要高 15.离子选择电极的电位选择性系数可用于 ( ) A估计电极的检测限 B 估计共存离子的干扰程度 C 校正方法误差 D 计算电极的响应斜率 16.用氯化银晶体膜离子选择电极测定氯离子时,如以饱和甘汞电极作为参比电极,应选用的盐桥为:( )

相关文档
最新文档