地铁车辆用永磁直驱同步牵引电动机冷却结构设计

地铁车辆用永磁直驱同步牵引电动机冷却结构设计
地铁车辆用永磁直驱同步牵引电动机冷却结构设计

地铁车辆用永磁直驱同步牵引电动机冷却结构设计

发表时间:2018-12-19T16:00:50.937Z 来源:《基层建设》2018年第32期作者:蔡卫国

[导读] 摘要:地铁系统具有客运量大、站间距离短、行车密度大等特点,同时对车载设备的体积和重量也有严格要求,因此,地铁车辆牵引系统需具备转矩密度高、过载能力强、可靠性高及转矩输出平稳等特点。

中车永济电机有限公司山西省永济市 044102

摘要:地铁系统具有客运量大、站间距离短、行车密度大等特点,同时对车载设备的体积和重量也有严格要求,因此,地铁车辆牵引系统需具备转矩密度高、过载能力强、可靠性高及转矩输出平稳等特点。同时绿色城市轨道交通的建设对车辆节能降耗提出了更高的要求,需要牵引系统具有高效节能的特点。因此,研究并开发出高性能的牵引系统,对提高我国城市轨道交通牵引系统技术水平和建设绿色城市轨道交通意义重大

关键词:地铁车辆;永磁直驱同步牵引电动机;冷却设计;分析

引言:永磁同步电机是由永磁体励磁产生同步旋转磁场的同步电机,永磁体作为转子产生旋转磁场,三相定子绕组在旋转磁场作用下通过电枢反应,感应三相对称电流。此时转子动能转化为电能,永磁同步电机作发电机(generator)用;此外,当定子侧通入三相对称电流,由于三相定子在空间位置上相差120,所以三相定子电流在空间中产生旋转磁场,转子旋转磁场中受到电磁力作用运动,此时电能转化为动能,永磁同步电机作电动机(motor)用。

1.地铁车辆用永磁同步牵引电动机

地铁系统具有客运量大、站间距离短、行车密度大等特点,因此,地铁车辆牵引系统须具备以下特点:一是转矩输出能力强,满足车辆的加速度和减速度要求,整个速度范围内转矩响应快,满足加速度的同时满足列车旅行速度的要求;二是全速度范围内保持高效率,为建设绿色城市轨道交通提供保证;三是牵引系统质量轻、体积小、结构坚固、维护少,降低牵引系统寿命周期成本。地铁车辆用永磁同步牵引电动机须满足地铁车辆的牵引/制动特性。

2.永磁同步电机工作方式

2.1直流发电机供电的励磁方式

这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。

2.2交流励磁机供电的励磁方式

现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁测量装置机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100——200Hz的中频发电机,而交流副励磁机则采用400——500Hz的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。

2.3无励磁机的励磁方式

在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结构简单,设备少,投资省和维护工作量少等优点。自复励磁方式除设有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。

3.冷却结构方案

永磁直驱电机体积受限于电机与轨面安全间距,为了实现永磁直驱电机高转矩输出需求,电机定子冲片外径最大化,冷却水道优先布置在机壳四角位置,以最大化有效利用空间。对四角布置的水路结构形式,采用轴向往返式循环水路结构,冷却水沿着外壳轴向长度方向往返迂回,通过外壳端部连通水路实现四角往返迂回水路的连通,使外壳四角冷却水路形成整体的密闭循环结构。该水路结构形式加工工艺简单,散热均匀,在电机轴向长度方向上不会形成温度梯度,但水路往返迂回形成很多转弯和折角,使流阻增大,造成较大的压头损失;

一是冷却结构方案一:外売四角位置水路分2层布置。冷却水通过外壳端部连通水路在四角布置的2层水路间往返迂回流动;该方案水路与外壳圆周占比比例最大可达45%,四角的内层与外层水道串联,可以形成一定的温度梯度,有利于提高散热效果;同时内层与外层水路可以设置加强筋,使两层水路与外壳的内壁形成一个整体,提高了外壳机械强度。

二是冷却结构二:四角位置水路按左右两边布置。冷却水通过外壳端部连通水路在四角布置的2条左右平行水路间往返迂回流动;该方案水路在四角位置左右分布,单个水路截面积明显增大,而且水路与外壳圆周占比比例最大可达38%,散热效果相对较好。但是左右2条水路截面相差较大,极易导致水路流速差异大。

三是冷却结构三:在四角水路设置2个直径45 mm的圆形水道。冷却水通过外壳端部连通水路在四角布置的2条左右平行水路间往返迂回流动;该方案最大特点是结构简单,工艺实施难度小,且圆型水道可使冷却水流速均匀,减小直管阻力和局部阻力。

4.温度场分析

为进一步评估冷却结构方案三的散热效果,对其进行温度场仿真计算。考虑到电机结构沿周向对称,选取电机的1/4周向截面建立三维温度场物理模型机温度场三维模型各部分均为拉伸体,结构较为规则,网格剖分质量较高。入口水流速为0.27 m/s(流速根据流量设置),水温与环境温度一致,为25℃;出水口静压设为101325 Pa;入水口湍流强度为5%,水力直径为45mm。。根据永磁直驱电机的各部分损耗值进行热源加载。由于永磁转子发热较少,因此忽略转子部分产生的损耗。在进行热计算时,在永磁体与转子铁心上适当加载体热源。电

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

牵引电机

牵引电机 一.牵引电动机的组成 牵引电动机主要由定子和转子两部分组成。 定子又包括定子铁芯、定子绕组和机座。定子铁芯由硅钢片叠成,用于放置定子绕组,构成电动机的磁路;定子绕组由铜线绕制而成,构成电动机的电路;机座一般由铸铁或铸钢制成,是电动机的支架。 转子又包括铁芯和转轴。转子铁芯和定子铁芯相似,也由硅钢片叠成,作为电动机的中磁路的一部分。铁芯上开有槽,用于放置或浇注绕组,它安装在转轴上。工作时随转轴一起转动。绕组分为笼型和绕线型两种。笼型转子绕组由铸铝导条或铜条组成,端部用短路环短接。绕线型转子绕组和定子绕组相似。转轴由中碳钢制成,两端由轴承支撑,用来输出转矩。 为了保证牵引电动机的正常运转,在定子和转子之间存在气隙,气隙的大小对电动机的性能影响极大。气隙大,则磁阻大,由电源提供的励磁电流大,使电动机运行的功率因数低;但气隙过小,将使装配困难,容易造成运行中定子和转子铁芯相碰。

二.牵引电机的作用 铁路干线电力机车、工矿电力机车、电力传动内燃机车和各种电动车辆(如蓄电池车、城市电车、地下铁道电动车辆)上用于牵引的电机。

由于机车既要求有大的牵引力,又要求能高速运行,因此加到电动机上的电压与电流变动幅度较大,故要求电动机能适应较大的调压比,并有一定深度的磁场削弱能力。 牵引电动机在露天工作,环境恶劣,经常受到风沙、雨雪的侵袭,运用地区海拔高度、环境温度的差别很大,空气中的湿度、盐分(海滨区热季)和含尘量也不相同,这些都能使电动机绝缘变差。因此,牵引电动机的绝缘材料和绝缘结构应具有较好的防尘、防潮能力。 由于牵引电动机在运行中经常启动、制动、过载和磁场削弱,且机车运行时电动机受到冲击和振动都比普通电动机严重,因此,无论是电磁原因或是机械原因都会造成牵引电动机换向困难,换向器上经常产生火花甚至会形成环火。尤其要指出的是,在脉动电压下工作的牵引电动机,其换向和发热更为困难,因此对脉流牵引电动机的结构选择还要考虑这方面的特殊问题。运行中的冲击和振动除造成换向恶化外,还易使电动机的零部件损坏,因此要求牵引电动机的零部件必须具有较高的机械强度。 牵引电动机安装空间尺寸受到限制。由于牵引电动机是悬挂在机车转向架上,电机结构必须考虑传动和悬挂两方面的问题,它的径向尺寸受轮对直径的限制,轴向尺寸受轨距的限制,还受到轮对中心线与机车走行部分其他构件之间

抽水蓄能发电电动机冷却方式研究

抽水蓄能发电电动机冷却方式研究 发表时间:2017-11-16T20:13:11.903Z 来源:《电力设备》2017年第20期作者:钱敏[导读] 摘要:随着电网容量的不断增大和用电需求的多样化,电网对安全性、稳定性、经济性和调节能力有了更高的要求,从电力系统的电力电量平衡和提高电网稳定性考虑,抽水蓄能发电电动机在现代电力系统中占有相当重要的位置。 (江苏国信溧阳抽水蓄能发电有限公司江苏 213300)摘要:随着电网容量的不断增大和用电需求的多样化,电网对安全性、稳定性、经济性和调节能力有了更高的要求,从电力系统的电力电量平衡和提高电网稳定性考虑,抽水蓄能发电电动机在现代电力系统中占有相当重要的位置。我国抽水蓄能发电电动机已逐渐从依赖进口,走上自主研发的道路,关键技术的创新正是大批将要兴建的抽水蓄能电站所用机组开发的基础。 关键词:发电电动机;通风系统;冷却方式引言 抽水蓄能发电电动机的每极容量、转速等参数一般高于常规电机,相对地,通风系统的设计难度也很大。冷却方式是决定发电电动机参数及结构的重要因素,采用模拟试验与计算分析相结合的方法研究不同的冷却方式能够达到的冷却效果,不仅可以掌握电机内流场现象的特点,而且能够预期电机各发热部件的温度分布。 1模拟试验方法 在通风冷却系统内具有流体流动相似特点的通风模拟试验能够反映电机整体流场现象的特点,本文分别对旋转挡风板结构、固定挡风板结构及带风扇的固定挡风板结构进行了通风模拟试验研究。掌握了不同冷却方式下的风量及上、下风道风量分配,检验是否存在空气流动漩涡和死区等流场现象,从而论证了三种冷却方式的优缺点。 试验的理论依据是相似法则,利用量纲分析的方法决定相似准则并正确处理试验数据。量纲分析的目的之一就是找出影响过程的各独立物理量正确地组合成无量纲数的方法。 电机通风系统包括旋转的压力元件和各种形状的风阻元件,但它有以下几个方面的流动特性:(1)风路全是由短的风道组成,截面多变化,因此局部阻力为主,沿程阻力很小只占10%左右; (2)全部压头由转子产生,压头正比于转子周速平方; (3)电机中转动部件中的气流产生很大的搅动作用,在风道中造成很高紊流度,深圳发电电动机的雷诺数约为4.29×107,处于充分紊流状态; (4)由于封闭循环系统中空气周而复始,没有外来气流影响,边界条件可以自动建立。 根据相似法则,深圳发电电动机通风模型以几何相似为基础,尺寸比例选用1∶2.5,使得模型具有适中的尺寸,安装方便,满足试验测量要求。 2冷却方式研究 通风系统的设计不仅要冷却各发热部件,使其温升低于要求的温升限值,更要控制温度的不均匀度,以避免定子铁心的翘曲、绝缘脱壳等问题。在通风系统的设计中,由通风系统各部分尺寸的选择来决定风量的大小,通过结构的优化来改善流道的条件以降低流道的压力损失,对于通风系统局部挡板、密封结构的设计可以避免流体产生风堵、死区、涡流等现象,因此,通风系统的设计是提供高效冷却条件,较小通风损耗的基础。本文涉及的深圳抽水蓄能发电电动机应用通风模型试验对固定挡风板和旋转挡风板的结构进行了试验论证,为深圳发电电动机通风冷却系统的选择提供了依据。另外,还进行了带离心式风扇的固定挡风板结构的试验,考核风量的增加及在阳江、敦化等发电电动机上应用的可能性。固定挡风板结构的通风模型示意见图1;旋转挡风板结构的通风模型示意见图2;带风扇固定挡风板结构的通风模型示意见图3。

电动机水冷却结构设计

煤矿井下用隔爆型三相异步电动机水冷却结构设计 姜瑞杰 2008级机电一体化专业 摘要对煤矿井下用隔爆型三相异步电动机水冷却系统及结构的设计进行探讨。围绕电动机温度场分析、热平衡计算、冷却系统水流参数计算、冷却水箱结构设计几个方面,并结合实践阐述了相关设计理论和设计方法。 关键词煤矿井下用隔爆型三相异步电动机:水冷却系统;水冷式结构 0 引言 煤矿井下设备采用的隔爆型三相异步电动机其冷却系统常采用水冷式结构(通常为ICW37)。这是基于煤矿井下特殊的环境条件和煤矿设备特殊的运行状况决定的。煤矿井下水冷式电动机具有以下特点: (1)煤矿井下作业场狭窄,设备留给时机的安装空间较小,环境空气流动性差。电动机采用风(空气)冷却结构,效果受到很大影响。尤其是在采掘面,当煤块、粉尘等堆积物阻塞电动机外部的通风散热通道时,电动机通风散热状况将更加恶劣。而采用水冷静却结构,则避免了这个缺点。煤矿井下一般不缺压力源,水的导热系数远远大于空气。只要时机的水冷静系统流道结构设计合理,其冷却效果和可靠性优于风冷静式电动机。

(2)煤矿井用电动机因受设备安装要求限制,往往要求有较小的外形体积和简单的外形结构。水冷式电动机结构上没有风扇、风罩、散热片等零件,并且水道布置在封闭的壳体之内,因此其外形简约,体积小于相同功率的风冷式电动机。 (3)煤矿井下采掘、运输等设备,因其特殊的工作条件,往往负荷波动很大,所用电动机超负荷运行状况进有发生,造成电动机温升增高。另外在设计这些设备使用的电动机时,考虑到其外形体积和功率大小两方面要求,往往采用减小电动机定、转子铁心外径,加长定、转子铁心长度的设计方案。由典型的时机温升设计理论可知,铁心较长的时机其热负荷往往偏高,温升计算误差也较大,这两方面的原因致使电动机的温升处于不可靠状态。尽管采用提高电动机绝缘等级的方法进行弥补,但电动机使用寿命也将大打折扣。而水冷式结构的电动机具有较好的冷却效果,可弥补电动机温升设计误差及超负荷运行带来的缺点。 (4)水冷式电动机无风扇、风罩等零件,因此不会产生风摩损耗和噪声,并且冷却水箱还具有吸振减振效果,这些又形成了电动机效率较高、噪声低、振动小的优点。 从以上分析可以看出水冷却系统在煤矿井下用电动机上的重要作用,因此对其系统和结构的设计研究必要。目前国内许多电机厂家都积累了各自在此方面的宝贵经验,亟待进行理论性的整理和提高。本文试对此问题展开初步探讨。

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

动车组与牵引电机

动车组与牵引电机 曹连芃 1. 动车组 动车组就是由动车和拖车组成或全部由若干动车固定连挂在一起组成的车组,主要用于高速铁路旅客运输。目前动车组多数都采用电力驱动,由外部接触网供电。 高铁指的是高速铁路,在高速铁路上跑的依然是动车组,是高速动车组。 在动车组中具有动力(有牵引电机)的车称为动车,没有动力的车称为拖车。 动力集中型列车将动力装置集中安装在列车的一端或两端的动力车(车头、机车)上,车头的车轮是由电机驱动的动力轮,动力车只作牵引不载客。拖车的车轮无电机驱动,只载客不牵引,图1中上图是动力集中型列车。 图1—动力集中型牵引列车与动力分散型牵引列车 动力分散型列车的动力轮分散在多节车辆,无专用的牵引车,列车的全部车辆都可以载客。目前高速动车组基本都是动力分散型列车。 在我国动车组主要型号为CRH1、CRH2、CRH3、CRH5、CRH380,每种型号又细分为多种型号。CRH系列统称为“和谐号”。 2. 牵引电机 牵引电机是直接带动车轮旋转的电机,由于串励式直流电动机有很好的拖动特性,速度控制也方便,长期来电力机车都是采用直流电机牵引。但直流电机的电刷与换向器磨损是致命的缺点,维护保养频繁又麻烦。自从有了大功率电力电子器件,各类变流器、逆变器得到普及应用,电力机车开始采用三相交流电机,相比直流电动机交流电动机没有电刷与换向器,没有直接磨损部件,故障率与维护大大减少;由于换向器限制了电压与电流,直流电机无法做到特大

功率,而交流电机可以做到很大的功率;交流电机单位重量功率比直流电机高出2倍以上,造价也低很多,所以目前动车组牵引电机均采用三相交流电机。交流电机主要是三相异步电机与三相永磁同步电机两种。 2.1. 交流异步牵引电机 下面介绍一种交流异步牵引电机的基本结构: 图2是定子铁芯与转子铁芯,铁芯由导磁良好的硅钢片叠成,内圆周有36个嵌线槽,用来嵌装三相绕组。 图2—定子铁芯与转子铁芯 定子绕组采用三相4极36槽双层叠绕组,图3是嵌有绕组的铁芯。 图3--嵌有绕组的定子铁芯

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

地铁车辆电气牵引及控制系统分析

地铁车辆电气牵引及控制系统分析 摘要:目前,我国地铁行业发展十分迅速,地铁运输系统是城市发展规划的重 要基础工程,是保证城市交通运输体系顺利运行的重要组成部分。电气牵引系统 作为地铁列车的电力供给方式,其和其所搭载的控制系统对列车顺利运行起到了 至关重要的作用。本文,重点对地铁电气牵引系统和其搭载的控制系统进行分析。 关键词:电气牵引;牵引电机;逆变器;制动设备 引言 电气牵引系统是地铁正常运行的保障,其主要负责地铁运行期间所需的电能。随着城市轨道交通的迅速发展,地铁车辆检修工作变得越发重要,而电气牵引与 控制系统作为地铁运行的重要依靠,其能确保地铁安全稳定运行。因此,加强对 车辆的检修尤为关键。 1地铁车辆电气牵引系统的结构特点 地铁车辆中的牵引系统主要是由受电弓、牵引电动机、高压箱、牵引逆变器、制动电阻和避雷器等部分组成的。其中高压箱是由主隔离开关、相应的充电设备 和断高速路器等部分组成,但是在地铁车辆中,大部分都是由两台受电弓组成, 从而防止由于其中一台在遇到故障问题后导致辅助逆变器和牵引逆变器停止运行 等问题。这几个受电弓由于可以向动力单元分别输送动力产生所必须的高压电源,因此假如其中一台受电弓发生故障问题,而另一个受电弓可以依然促进辅助逆变 器和逆变器的正常运行。在牵引系统同时还设置有牵引逆变器,将支撑电容输入 进逆变器中可以促进点电压输入的稳定性,同时还能发挥出能量缓冲的效果。地 铁车辆中的牵引系统是由各种电路和设备组成的,而系统的顺利运行也需要以相 关电路设备为支撑,在大部分设备之中,车辆停车和减速等行动都离不开制动装 置的支持,因此制动装置能够有效保障地铁的安全运行。目前我国城市中的地铁 车辆都是通过电阻制动、再生制动以及机械制动等形式来进行运行的,而机械制 动主要是通过空气的不断压缩来实现制动效果的,而电阻制动以及再生制动都是 通过轨道电磁制动和铁路电磁铁来实现的,再生制动当中,利用地铁的制动牵引 能够将动能顺利转化成电能,随后再生制动能量能够返回到电网当中,从而将制 动电能在提供给其它车辆。 2地铁车辆电气牵引及控制系统 2.1制动控制 众多设备中,制动设备是最重要的设备之一,地铁列车减速、加速、停车都 是通过制动装置完成的,制动装置高效的响应、运行是保证列车安全运行的重要 保障。在地铁列车牵引运行过程中,牵引力控制系统的作用至关重要,只有科学、合理的设计电气控制系统,才能有效的对地铁列车进行制动。目前我国城市地铁 列车使用的制动形式主要以机械制动、电阻制动和再生制动为主。所谓的机械制 动主要依靠压缩空气实现制动,而电阻制动则依赖轨道电磁制动,而再生制动可 以有效的将动能转化为电能进行能量循环使用。在列车的实际运行中,三种制动 方式和发挥出的功效差别较大,通常来说,在进行列车制动控制时,一般按照先 再生制动,随机电阻制动,最后进行机械制动的步骤顺序。但是在列车的实际运 行过程中,综合考虑制动效率和制动过程的能量损耗,在每个制动步骤中,一般 不会使用单独的制动方式,需要将多种制动方式耦合使用达到正向协同作用,提 高制动效果,减少制动过程中的能量损耗。根据地铁运行经验总结来看,地铁列 车设计的制动方式主要为电阻制动和再生制动,而机械制动方式主要起到辅助的

电机水冷系统设计与散热计算

螺旋形电机水冷系统设计与散热计算 孙利云 四川建筑职业技术学院四川德阳 618000 摘要:本文从传热基本理论出发,针对表面冷却中小型电机体积小,功率大,能量密度高的特点,给出了电机水冷螺旋型结构的详细计算过程,为电机冷却设计提供参考方案。 关键词:水冷,散热,螺旋型 1.引言 现代工业的发展对电机性能要求越来越高。电机热损耗问题制约着大容量电机设计发展。 根据冷却介质是否通过电机内部,电机冷却方式分为内部冷却和表面冷却[1]。中小型电机由于体积的限制,常采用表面冷却的方式。按冷却介质的不同,可以把电机分为分为空气冷却和液体(水或油)冷却。空气冷却,运行成本低,摩擦损耗大,散热效率低,常用在能量密度低,发热较低的电机结构中。水冷电机,运行成本高,摩擦损耗小,散热效率高,常用在能量密度高,发热量大的电机结构中。 水冷技术应用于电机散热具有很好的冷却效果。电机水冷结构设计的核心任务是电机散热计算,使得电机损耗生热与冷却介质带走的热量达到平衡,从而控制电机温升再允许范围内。此外,冷却介质流速是散热能力重要影响因素之一。冷却介质的流速与压头及流经管道阻力有关。压头由水循环系统的泵产生。流经管道阻力取决于冷却结构的具体形式。螺旋型结构是指水槽在壳体中成螺旋型分布以往的设计过程[2]是首先设计好水槽的机构尺寸,设定入水口温度、水槽温度、水流速度等参数,计算出水口温度,进而校核冷却系统的散热情况。这种方法,把设计的散热方案的散热功率作为计算结果,与实际需求的散热功率对比。设计方案的散热能力高于实际需要的散热能力,则视为方案可行;反之,方案失败。修改预先设计的水槽尺寸并重新计算直到满足散热条件。散热能力在设计之初是未知的,计算之后才能知道其散热能力。本文采用另一种方法,对散热结构进行设计。 2.水冷计算 2.1结构设计 电机的基本结构尺寸如图1所示,水套外径200mm,水套截面尺寸为宽24mm,高4mm , 图1 1.转子 2.定子 3.外壳 4.水套 电机的功率为7.5KW。经过电磁计算,电机总的损耗为 KW P137 .1 = 损 (1)设所有损耗都转化为热能,在电机稳定运行过程中,热能被水带走。因此实际需要的散热功率为 KW P P137 .1 = = 损 散 (2)冷却水相关参数见表1, 表1 水的相关物理参数 名称单位符号数值 流量 min L Q10

永磁同步电机的原理及结构

第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后 就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机的原理和结构

第一章永磁同步电机的原理及结构 永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在异步转矩、永磁发电制动转矩、由转子磁路不对称而引起的磁阻转矩和单轴转矩等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起动过程中,只有异步转矩是驱动性质的转矩,电动机就是以这转矩来得以加速的,其他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

电动车电机冷却水道计算

螺旋形电机水冷系统设计 庞瑞 上海联孚新能源科技集团有限公司 摘要:本文从传热基本理论出发,针对表面冷却中小型电机体积小,功率大,能量密度高的特点,给出了电机水冷螺旋型结构的详细计算过程,为电机冷却设计提供参考方案。 关键词:水冷,散热,螺旋型 1.引言 现代工业的发展对电机性能要求越来越高。电机热损耗问题制约着大容量电机设计发展。 根据冷却介质是否通过电机内部,电机冷却方式分为内部冷却和表面冷却[1]。中小型电机由于体积的限制,常采用表面冷却的方式。按冷却介质的不同,可以把电机分为分为空气冷却和液体(水或油)冷却。空气冷却,运行成本低,摩擦损耗大,散热效率低,常用在能量密度低,发热较低的电机结构中。水冷电机,运行成本高,摩擦损耗小,散热效率高,常用在能量密度高,发热量大的电机结构中。 水冷技术应用于电机散热具有很好的冷却效果。电机水冷结构设计的核心任务是电机散热计算,使得电机损耗生热与冷却介质带走的热量达到平衡,从而控制电机温升再允许范围内。此外,冷却介质流速是散热能力重要影响因素之一。冷却介质的流速与压头及流经管道阻力有关。压头由水循环系统的泵产生。流经管道阻力取决于冷却结构的具体形式。螺旋型结构是指水槽在壳体中成螺旋型分布以往的设计过程[2]是首先设计好水槽的机构尺寸,设定入水口温度、水槽温度、水流速度等参数,计算出水口温度,进而校核冷却系统的散热情况。这种方法,把设计的散热方案的散热功率作为计算结果,与实际需求的散热功率对比。设计方案的散热能力高于实际需要的散热能力,则视为方案可行;反之,方案失败。修改预先设计的水槽尺寸并重新计算直到满足散热条件。散热能力在设计之初是未知的,计算之后才能知道其散热能力。本文采用另一种方法,对散热结构进行设计。 2.水冷计算 2.1结构设计 电机的基本结构尺寸如图1所示,水套外径200mm,水套截面尺寸为宽24mm,高4mm, 图1 1.转子 2.定子 3.外壳 4.水套 电机的功率为7.5KW。经过电磁计算,电机总的损耗为 KW P137 .1 = 损 (1)设所有损耗都转化为热能,在电机稳定运行过程中,热能被水带走。因此实际需要的散热功率为 KW P P137 .1 = = 损 散 (2)冷却水相关参数见表1, 表1 水的相关物理参数 名称单位符号数值 流量 min L Q10 进口温℃ in t30

地铁车牵引电机、A2型车MCM内部电抗器及招投标书范本

广州地铁A/A/B/B型车牵引电机、A型车MCM内部电抗器及A型车空调风机浸漆维修项目招标公告广州地铁集团有限公司就广州地铁A/A/B/B型车牵引电机、A型车MCM内部电抗器及A 型车空调风机浸漆维修项目,按《中华人民共和国招投标法》、《广东省实施〈中华人民共和国招标投标法〉办法》等有关法律法规,进行公开招标。具体事宜公布如下: 一、项目名称:广州地铁A/A/B/B型车牵引电机、A型车MCM内部电抗器及A型车空调风机浸漆维修项目 二、招标单位:广州地铁集团有限公司 联系人:杨先生联系电话:- 招标监督机构:广州地铁集团有限公司纪检监察部 投诉电话: - 三、项目地点:广州市 四、项目概况: 本项目主要对广州地铁A/A/B/B型车牵引电机、A型车MCM内部电抗器及A型车空调风机开展浸漆维修工作。 五、标段划分及各标段招标内容、规模和招标控制价: .本项目划分为个标段。 .招标内容、规模: 对广州地铁预计台A/A/B/B型车牵引电机、预计台A型车MCM内部电抗器以及预计台A 型车空调风机开展浸漆维修,维修数量为预计数量,具体维修数量以实际送修数量为准。 .委外维修合同期: A/A/B/B型车牵引电机:合同期预计为合同签订后__年; A型车MCM内部电抗器及A型车空调风机:合同期预计为合同签订后__年。 .项目招标控制价: . 元。 六、资金来源:经营资金。 七、发布招标公告时间: 从年月日至年月日时分。公告发布之日起开始接受投标报名及发售招标文件,并从发售招标文件结束之日起开始计算备标时间。 八、报名、购买招标文件时间、地点以及招标文件发售金额:

报名及购买招标文件开始日期:年月日(节假日除外) 报名及购买招标文件截止日期:年月日(节假日除外) 报名及购买招标文件时间:上午::-:,下午::-:。 报名地点:广州公共资源交易中心(广州市天河区天润路号) 招标文件发售金额元人民币/套,售后不退。 报名时须递交《广州建设工程投标报名申请表》(登陆广州公共资源交易中心网站https://www.360docs.net/doc/bf8478525.html,下载填写并加盖公章以及必须办理广州公共资源交易中心企业信息登记)。 如报名参加投标的申请人数量过少不足以形成充分竞争时,招标人在确认正式投标人之前,可以发出补充公告,适当延长报名时间。 .投标人应凭以下资料办理报名登记手续: ()法定代表人证明书原件、法定代表人授权委托证明书原件(非法定代表人参加时提供)、本人身份证复印件(须提供原件进行核对); ()《广州建设工程投标报名表》(一式份)(请投标申请人在广州公共资源交易中心网站自行下载该表); ()投标申请人报名提交资料一览表(一式份); .投标担保: 本项目投标担保万元,投标担保方式请参照招标文件要求,投标担保须在开标前完成缴纳。 九、递交投标文件时间与开标时间 .递交投标文件时间(投标文件提交截止时间当天):年月日,时分至时分。 .开标时间:年月日时分。 .投标截止时间与开标时间是否有变化,请密切留意招标答疑中的相关信息。 十、资格审查方式: 本项目采用资格后审方式。 十一、投标人合格条件: .投标人参加投标的意思表达清楚,投标人代表被授权有效。 .投标人必须是在中华人民共和国注册的独立法人。投标人持有有效的工商行政管理部门核发的法人营业执照或各级政府事业单位登记管理机关颁发的事业单位法人证书,按国家法律经营。单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加本项目投标。

同步电机转子结构

高强度永磁同步电机的转子结构 —北京明正维元电机技术有限公司专利 本实用新型涉及一种高强度永磁同步电机的转子结构,它由中心轴,铁芯和附着在其外圆表面上的至少1对圆弧面形的磁钢构成圆辊状结构,各相邻两磁钢侧面之间留有气隙,各磁钢通过相应的锁紧件与铁芯构成锁紧联结结构,它解决了现有技术强度差、磁钢易被甩出,易出现事故的问题,用于制作各型永磁同步电机。 交流永磁同步调速电梯电机之特性 石正铎路子明 我国电梯性能随着计算机控制技术和变频技术的发展有很大的提高,但是异步变频电动机存在低频低压低速时的转矩不够平稳进而影响低速段运行不理想的缺点。用永磁同步调速电机替代交流异步电机,用同步变频替代异步变频可以解决低速段的缺点和启动及运行中的抖动问题,使电梯运行更平稳、更舒适,同时减小电机的体积,降低噪音。采用有齿轮电梯曳引机,当电梯制动器失灵、轿厢产生自由落体时,可利用永磁同步电机的电流制动功能保证轿厢低速溜车,为电梯安全增加了一道安全屏障。 一、永磁同步电机与异步电机的主要区别及特点 由于异步电机是靠电机定子电流为电机转子励磁的,而永磁电机转子是用永磁体直接产生磁场不需要电励磁。因此永磁同步电机具有结构简单、运行可靠、体积小、重量轻、效率高、形状和尺寸灵活多样等特点。 二、交流永磁同步调速电梯电机的主要优点 1、结构简单运行可靠,由于永磁电机转子不需要励磁,省去了线圈或鼠笼,简化了结构,实现了无刷,减少了故障,维修方便简单,维修复杂系数大大降低。 2、低温升、小体积永磁同步电机与感应电机相比,因为不需要无功励磁电流,而具备: (1)、功率因数高近于1。 (2)、反电势正弦波降低了高次谐波的幅值,有效的解决了对电源的干扰。 (3)、减小了电机的铜损和铁损。 同步电机发温升小(约38K),电机外形小,体积与异步电机相比,降低一至两个机座号。 3、高效率超节能,因为功率因数高(可近似为1),又省去电励磁,减少了定子电流和定子转子电阻的损耗,效率高(94~96%),满载起动电流比异步减少一半,所以节能效果明显,用于电梯时,同步电机可节能40%以上(用户实际使用后测试结果),轻载电流小,只相当于异步电机的10%,如11KW异步电机轻载时异步电机电流10A,而同步电机轻载电流只有0.7A。 4、调速范围宽,可达1:1000甚至于更高(异步电机只有1:100),调速精度极高,可大大提高电梯的品质。

城轨车辆用牵引电机分析

城轨车辆用牵引电机分析 学院:电气工程学院 班级:磁浮01 学号:20121485 姓名:孟振强

城轨车辆牵引—永磁同步电机 一.永磁同步电机的原理 在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在异步转矩、永磁发电制动转矩起的磁阻转矩和单轴转子磁路不对称,等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起动过程中,只有异步转矩是驱动性,电动机就是以这个转矩来得以加速的 , 其他的转矩大部分以制动性质为主。在电动机的转速由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,进而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下被牵入同步状态。 二.永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常的相似,主要是区别是转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,

在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。 面贴式的永磁同步电机在工业上是应用最广泛的,其最主要的原因是其拥有很多其他形式电机无法比拟的优点,例如其制造方便,转动惯性比较小以及结构很简单等。并且这种类型的永磁同步电机更加容易被设计师来进行对其的优化设计,其中最主要的方法是设计成近似正弦的分布把气隙磁链的分布结构,将其分布结构改成正弦分布后能够带来很多的优势,例如它所带来的负面效应,能减小磁场的谐波以及应用以上的方法能够很好的改善电机的运行性能。插入式结构的电机之所以能够跟面贴式的电机相比较有很大的改善是因为它充分的利 用了它设计出的磁链的结构有着不对称性所生成的独特的磁阻转矩 能大大的提高了电机的功率密度,并且在也能很方便的制造出来,所

城市轨道交通地铁牵引传动系统

地铁牵引传动系统 进入21世纪以来,随着我国现代化建设和社会经济的飞速发展,现代城市人口大量增加、地域不断扩大,城市交通堵塞问题日益突出,交通事故、噪音和空气污染等影响着人们的工作和生活。轨道交通在优化城市空间结构、缓解城市交通拥挤、保护环境等方面均显示出积极促进作用,已日益成为中国走新型城镇化道路的重要战略举措。伴随着中国城市化进程的加快,城市交通需求剧增,城市轨道交通也进入高速发展时期。地铁作为城市快速轨道交通的一种工具,因其具有运量大、快捷、安全、舒适、乘坐方便、对环境污染少、占地面积小等诸多优点而受到越来越多城市的青睐。 车辆是地铁运输的主要载体,由于科技的高速发展,高性能的交流传动系统(牵引系统)己广泛应用于地铁车辆。据统计,欧美、日本等城市轨道交通技术强国,自20世纪90年代以来设计的地铁车辆全部采用IGBT或IPM的VVVF交流传动装置,极大地提升了地铁车辆在牵引、制动方面的动力性能。地铁车辆对牵引传动系统的安全性、可靠性、稳定性要求很高,由于各种历史原因,国内对地铁车辆交流传动系统的研究起步较晚,我国最早期的交流传动地铁列车都是整车进口的,但是,大量采用国外的变流器产品,不仅对我国轨道交通行业的发展极为不利,还会导致将来地铁车辆(一般地铁电气设备的使用寿命为30年)运营维护及维修成本提高。随着科技的发展和研究的不断深入,我们国家在装备制造方面已具备了一定的生产能力和技术基础,已经可以实现车体、空调、转向架、车钩、车门、乘客信息系统、ATO等列车重要部件的国产化,但是像牵引传动系统这样的关键部件,虽然取得一定进展,可是与国际先进水平相比,仍存在差距,国内已建或在建的地铁项目中,鲜有应用国产牵引变流设备的先例。 地铁车辆的运行条件与干线铁路/高速动车有很大差异。地铁车辆以动、拖车固定编组方式运行,站间距短,停靠站数多,区间运行时分少,要求列车动力性能优越,有较强的短时过载、断续工作能力;而大铁路的动力配置则关注城际间长距离的恒速/恒功率稳定运行,因此地铁不能像大铁路那样来进行牵引动力性能配置,这对地铁建设投资、列车服役寿命以及降低运营成本等方面均有重要影响。无论是地铁列车还是干线大铁路,其动力性能的发挥都是依靠牵引传动系统实现的,然而地铁车辆独特的运行特征决定了其牵引传动系统设计,可以借鉴

地铁车辆用永磁直驱同步牵引电动机冷却结构设计

地铁车辆用永磁直驱同步牵引电动机冷却结构设计 发表时间:2018-12-19T16:00:50.937Z 来源:《基层建设》2018年第32期作者:蔡卫国 [导读] 摘要:地铁系统具有客运量大、站间距离短、行车密度大等特点,同时对车载设备的体积和重量也有严格要求,因此,地铁车辆牵引系统需具备转矩密度高、过载能力强、可靠性高及转矩输出平稳等特点。 中车永济电机有限公司山西省永济市 044102 摘要:地铁系统具有客运量大、站间距离短、行车密度大等特点,同时对车载设备的体积和重量也有严格要求,因此,地铁车辆牵引系统需具备转矩密度高、过载能力强、可靠性高及转矩输出平稳等特点。同时绿色城市轨道交通的建设对车辆节能降耗提出了更高的要求,需要牵引系统具有高效节能的特点。因此,研究并开发出高性能的牵引系统,对提高我国城市轨道交通牵引系统技术水平和建设绿色城市轨道交通意义重大 关键词:地铁车辆;永磁直驱同步牵引电动机;冷却设计;分析 引言:永磁同步电机是由永磁体励磁产生同步旋转磁场的同步电机,永磁体作为转子产生旋转磁场,三相定子绕组在旋转磁场作用下通过电枢反应,感应三相对称电流。此时转子动能转化为电能,永磁同步电机作发电机(generator)用;此外,当定子侧通入三相对称电流,由于三相定子在空间位置上相差120,所以三相定子电流在空间中产生旋转磁场,转子旋转磁场中受到电磁力作用运动,此时电能转化为动能,永磁同步电机作电动机(motor)用。 1.地铁车辆用永磁同步牵引电动机 地铁系统具有客运量大、站间距离短、行车密度大等特点,因此,地铁车辆牵引系统须具备以下特点:一是转矩输出能力强,满足车辆的加速度和减速度要求,整个速度范围内转矩响应快,满足加速度的同时满足列车旅行速度的要求;二是全速度范围内保持高效率,为建设绿色城市轨道交通提供保证;三是牵引系统质量轻、体积小、结构坚固、维护少,降低牵引系统寿命周期成本。地铁车辆用永磁同步牵引电动机须满足地铁车辆的牵引/制动特性。 2.永磁同步电机工作方式 2.1直流发电机供电的励磁方式 这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。 2.2交流励磁机供电的励磁方式 现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁测量装置机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100——200Hz的中频发电机,而交流副励磁机则采用400——500Hz的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。 2.3无励磁机的励磁方式 在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结构简单,设备少,投资省和维护工作量少等优点。自复励磁方式除设有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。 3.冷却结构方案 永磁直驱电机体积受限于电机与轨面安全间距,为了实现永磁直驱电机高转矩输出需求,电机定子冲片外径最大化,冷却水道优先布置在机壳四角位置,以最大化有效利用空间。对四角布置的水路结构形式,采用轴向往返式循环水路结构,冷却水沿着外壳轴向长度方向往返迂回,通过外壳端部连通水路实现四角往返迂回水路的连通,使外壳四角冷却水路形成整体的密闭循环结构。该水路结构形式加工工艺简单,散热均匀,在电机轴向长度方向上不会形成温度梯度,但水路往返迂回形成很多转弯和折角,使流阻增大,造成较大的压头损失; 一是冷却结构方案一:外売四角位置水路分2层布置。冷却水通过外壳端部连通水路在四角布置的2层水路间往返迂回流动;该方案水路与外壳圆周占比比例最大可达45%,四角的内层与外层水道串联,可以形成一定的温度梯度,有利于提高散热效果;同时内层与外层水路可以设置加强筋,使两层水路与外壳的内壁形成一个整体,提高了外壳机械强度。 二是冷却结构二:四角位置水路按左右两边布置。冷却水通过外壳端部连通水路在四角布置的2条左右平行水路间往返迂回流动;该方案水路在四角位置左右分布,单个水路截面积明显增大,而且水路与外壳圆周占比比例最大可达38%,散热效果相对较好。但是左右2条水路截面相差较大,极易导致水路流速差异大。 三是冷却结构三:在四角水路设置2个直径45 mm的圆形水道。冷却水通过外壳端部连通水路在四角布置的2条左右平行水路间往返迂回流动;该方案最大特点是结构简单,工艺实施难度小,且圆型水道可使冷却水流速均匀,减小直管阻力和局部阻力。 4.温度场分析 为进一步评估冷却结构方案三的散热效果,对其进行温度场仿真计算。考虑到电机结构沿周向对称,选取电机的1/4周向截面建立三维温度场物理模型机温度场三维模型各部分均为拉伸体,结构较为规则,网格剖分质量较高。入口水流速为0.27 m/s(流速根据流量设置),水温与环境温度一致,为25℃;出水口静压设为101325 Pa;入水口湍流强度为5%,水力直径为45mm。。根据永磁直驱电机的各部分损耗值进行热源加载。由于永磁转子发热较少,因此忽略转子部分产生的损耗。在进行热计算时,在永磁体与转子铁心上适当加载体热源。电

相关文档
最新文档