聚氨酯泡沫塑料的制备实验

聚氨酯泡沫塑料的制备实验
聚氨酯泡沫塑料的制备实验

聚氨酯泡沫塑料的制备实验

聚氨酯是由异氰酸酯和羟基化合物通过逐步加聚反应得到的聚合物。它具有各方面的优良性能,因此得到了广泛的应用。目前的聚氨酯产品有:聚氨酯橡胶、聚氨酯泡沫塑料、聚氨酯人造革、聚氨酯涂料及粘接剂。其中以聚氨酯泡沫塑料的产量最大,由于它具有消音、隔热、防震的特点。主要用于各种车辆的坐垫、消音防震材料以及各种包装用途

一、实验目的

熟悉多种不同密度软质和硬质聚氨酯泡沫塑料的制备方法,了解聚氨酯泡沫塑料发泡的原理。对比软硬泡沫使用原料的不同,合理设计配方,掌握分析影响泡沫材料性能的工艺因素 二、基本原理

聚氨酯泡沫的形成是一种比任何其他聚氨酯的形成都远为复杂的过程,处在聚合物系统中的化学和物理状态变化外,泡沫的形成又增加了胶体系统的特点。要了解聚氨酯泡沫的形成,还需要涉及到气体发生和分子增长的高分子化学、核晶过程和稳定泡沫的胶体化学以及聚合体系熟化时的流变学。

聚氨酯泡沫的制造分为三种预聚体法、半预聚体法和一步法。本实验主要采用一步法。一步法发泡即是将聚醚或聚酯多元醇、多异氰酸酯、、水以及其他助剂如催化剂、泡沫稳定剂等一次加入,使链增长、气体发生及交联等反应在短时间内几乎同时进行,在物料混合均匀后,1—10秒即行发泡,0.5-3分钟发泡完毕,并得到具有较高分子量、一定交联密度的泡沫制品。要制得孔径均匀和性能优异的泡沫,必须采用复合催化剂、外加发泡剂和控制合适的条件,使三种反应得到较好的协调。在聚氨酯泡沫制备过程中主要发生如下反应。

1、 预聚体的合成

由二异氰酸酯与聚醚或聚酯多元醇反应生成含异氰酸酯端基的聚氨酯预聚体。

OCN -R-NCO + H O

OH OCN-R-NH-C-O

O

O-C-NH-R-NCO

O

2、起泡的形成与扩链

异氰酸根与水反应生成的氨基甲酸不稳定,分解生成胺与与二氧化碳,放出的二氧化碳气体在聚合物中形成起泡,并且生成的端基聚合物可与异氰酸根进一步发生扩链反应得到含脲基的聚合物

NCO + H 2

O

NH-C-OH

NH 2 + CO 2

O

NH 2 +

NCO

扩链

N-CH-NH

O 3、交联固化

异氰酸根与脲基上的活泼氢反应,使分子链发生交联,形成网状结构

NH CO NH

R + OCN -R -

NCO + NH

CO

NH + CON -R -NCO +------R

聚氨酯泡沫塑料按其柔韧性可分为软泡沫和硬泡沫,主要取决于所用的聚醚或聚酯多元醇,使用较高分子量及相应的较低羟值的线性聚醚或聚酯多元醇时,得到的产物交联度较低,为软质泡沫;若用短链或支链较多的聚醚或聚酯多元醇时,为硬质泡沫。根据气孔的形状聚氨酯泡沫可分为开孔型和闭孔型,可通过添加助剂来调节。乳化剂可使水灾反应混合物中分散均匀,从而可保证发泡的均匀性;稳定剂可防止在反应初期泡孔结构的破坏。

表 1 制备泡沫塑料时产生的疵病原因及解决办法

三、仪器与原料

1、仪器 烧杯、玻璃、台秤、纸杯、烘箱

2、原料

原料 高密度泡沫 中密度泡沫 低密度泡沫 聚醚330 100 100 100

甲苯二异氰酸酯 30-35 35-40 37-42

NH CO

N-CONH-R-NCO-NH R

R

CO

NH-OCN-R-NCO

水 1.5-2.5 2.5-3 3-3.5

辛酸亚锡0.1-0.2 0.2-0.3 0.2-0.3

三乙基二胺0.2-0.3 0.1-0.2 0.1-0.2硅油 1.0-2.0 1.0-2.0 1.5-2.5

二氯甲烷0.5-1.5 0.5-1.5 15-2.5

四、实验步骤

1、将除甲苯二异氰酸酯外的组分按重量称取于一个纸杯中,然后加入一定重量的甲苯二异氰酸酯,迅速搅拌约30秒,观察发泡过程

2、室温静置20分钟后,将泡沫在90-120°C烘箱中熟化1h左右,移出烘箱冷至室温

3、按照高、中、低密度的三种配方各制备一次,若有失败,找出原因重做

4、将三种密度泡沫取样测试密度、抗涨强度、撕裂强度、压缩强度和回弹性。测试所得各项性能列表对比

5、参考有关资料设计一个硬质聚氨酯泡沫的配方,根据设计的配方参照上面的实验步骤

硬质聚氨酯泡沫

五、思考题

1、对比三种配方制备的软质聚氨酯泡沫的性能,分析影响密度的因素有哪些?

2、聚氨酯泡沫塑料的软硬有哪些因素决定

3、如何保证均匀的泡孔结构?

六、参考文献

1、梁辉等主编。高分子化学实验。北京:化学工业出版社,2004

环己烯的制备__实验报告

主反应式: 可能的副反应:(难) 0H H + A 共沸点 64.9o C 、J 30.5% 69.5% 实验八 环己烯的制备 、实验目的: 1、 学习以浓磷酸催化环己醇脱水制备环己烯的原理和方法; 2、 初步掌握分馏、水浴蒸馏和液体干燥的基本操作技能 、实验原理:书 P158 烯烃是重要的有机化工原料。工业上主要通过石油裂解的方法制备烯烃,有时也利用醇在氧化铝等催 化剂存在下,进行高温催化脱水来制取,实验室里则主要用浓硫酸,浓磷酸做催化剂使醇脱水或卤代烃在 醇钠作用下脱卤化氢来制备烯烃。 本实验采用浓磷酸做催化剂使环已醇脱水制备环已烯。 三、主要试剂、产物的物理和化学性质 化学物质 相对分子质里 相对密度/d 420 沸点/ c 溶解度/g (100g 水)-1 环己醇 100 0.96 161.1 3.6 20c 磷酸 98 1.83 -1/2出0(213 C ) 2340 环己烯 82.14 0.89 83.3 微溶于水 环己醚 182.3 0.92 243 微溶于水 四、实 验装置 一般认为,该反应历程为 E i 历程,整个反应是可逆的:酸使醇羟基质子化,使其易于离去而生成正碳 离子,后者失去一个质子,就生成烯烃。 共沸点97施; 共彿点.西.纨“

仪器:50mL圆底烧瓶、分馏柱、直型冷凝管,100mL 分液漏斗、100mL锥形瓶、蒸馏头,接液管。 试剂:10.0g (10.4mL, O.lmol )环已醇,4mL浓磷酸, 氯化钠、 无水氯化钙、5%碳酸钠水溶液。 其它:沸石 1、投料 六、预习实验步骤、现场记录及实验现象解释 在50ml干燥的圆底烧瓶中加入10g环己醇、4ml浓磷酸和几粒沸石,充分摇振使之混合均匀,安装反应装置。 2、加热回流、蒸出粗产物产物 将烧瓶在石棉网上小火空气浴缓缓加热至沸,控制分馏柱顶部的溜出温度不超过90C,馏出液为带 水的混浊液。至无液体蒸出时,可升高加热温度(缩小石棉网与烧瓶底间距离),当烧瓶中只剩下很少残 液并出现阵阵白雾时,即可停止蒸馏。 3、分离并干燥粗产物 将馏出液用氯化钠饱和,然后加入3—4ml 5%的碳酸钠溶液中和微量的酸。将液体转入分液漏斗中, 振摇(注意放气操作)后静置分层,打开上口玻塞,再将活塞缓缓旋开,下层液体从分液漏斗的活塞放出,产物从分液漏斗上口倒入一干燥的小锥形瓶中,用 1 —2g无水氯化钙干燥。 4、蒸出产品 待溶液清亮透明后,小心滤入干燥的小烧瓶中,投入几粒沸石后用水浴蒸馏,收集80—85 C的馏分于 一已称量的小锥形瓶中。 六、产品产率的计算注意事项: 1、投料时应先投环己醇,再投浓磷酸;投料后,一定要混合均匀。 2、反应时,控制温度不要超过90Co 3、干燥剂用量合理。 4、反应、干燥、蒸馏所涉及器皿都应干燥。 5、磷酸有一定的氧化性,加完磷酸要摇匀后再加热,否则反应物会 被氧化。 6、环己醇的粘度较大,尤其室温低时,量筒内的环己醇若倒不干净,会影响 产率。 7、用无水氯化钙干燥时氯化钙用量不能太多,必须使用粒状无水氯化钙。粗产物干燥好后再蒸馏,蒸馏装置要预先干燥,否则前馏分多(环己 供参考

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

药物分析实验报告

实验四苯甲酸钠的含量测定 一、目的 掌握双相滴定法测定苯甲酸钠含量的原理和操作 二、操作 取本品1.5g,精密称定,置分液漏斗中,加水约25mL,乙醚50mL和甲基橙指示液2滴,用盐酸滴定液(0.5mol/L)滴定,随滴随振摇,至水层显持续橙红色,分取水层,置具塞锥形瓶中,乙醚层用水5mL洗涤,洗涤液并入锥形瓶中,加乙醚20mL,继续用盐酸滴定液(0.5mol/L)滴定,随滴随振摇,至水层显持续橙红色,即得,每1mL的盐酸滴定液(0.5mol/L)相当于72.06mg的C7H5O2Na。 本品按干燥品计算,含C7H5O2Na不得少于99.0% 三、说明 1.苯甲酸钠为有机酸的碱金属盐,显碱性,可用盐酸标准液滴定。 COO Na +H C l COOH +N aC l 在水溶液中滴定时,由于碱性较弱(Pk b=9.80)突跃不明显,故加入和水不相溶混的溶剂乙醚提除反应生成物苯甲酸,使反应定量完成,同时也避免了苯甲酸在瓶中析出影响终点的观察。 2.滴定时应充分振摇,使生成的苯甲酸转入乙醚层。 3.在振摇和分取水层时,应避免样品的损失,滴定前,使用乙醚检查分液漏斗是否严密。 四、思考题 1.乙醚为什么要分两次加入?第一次滴定至水层显持续橙红色时,是否已达终点?为什么? 2.分取水层后乙醚层用5mL水洗涤的目的是什么? 实验五阿司匹林片的分析 一、目的 1.掌握片剂分析的特点及赋形剂的干扰和排除方法。 2.掌握阿司匹林片鉴别、检查、含量测定的原理及方法。 二、操作 [鉴别] 1.取本品的细粉适量(约相当于阿司匹林0.1g),加水10mL煮沸,放冷,加三氯化铁试液1滴,即显紫堇色。 2.取本品的细粉(约相当于阿司匹林0.5g),加碳酸钠试液10mL,振摇后,放置5分钟,滤过,滤液煮沸2分钟,放冷,加过量的稀硫酸,即析出白色沉淀,并发生醋酸的臭气。 [检查] 游离水杨酸 取本品的细粉适量(约相当于阿司匹林0.1g),加无水氯仿3mL,不断搅拌2分钟,用无水氯仿湿润的滤纸滤过,滤渣用无水氯仿洗涤2次,每次1mL,合并滤液和洗液,在室温下通风挥发至干;残渣用无水乙醇4mL溶解后,移至100mL量瓶中,用少量5%乙醇洗涤容器、洗液并入量瓶中,加5%乙醇稀释至刻度,摇匀,分取50mL,立即加新制的稀硫酸铁铵溶液[取盐酸液(1mol/L)1mL,加硫酸铁铵指示液2mL后,再加水适量使成100mL] 1mL,摇匀;30秒钟内如显色,和对照液(精密称取水杨酸0.1g,置1000mL量瓶中,加冰醋酸1mL,

环己烯的制备实验报告

环己烯的制备实验报告 一、实验目的:利用环己醇以及其他相关的化学试剂来进行化学反应制备环己烯。 二、实验原理:化学反应式: 反应历程: 可能的副反应: 主要反应物,以及产物:环己醇(15g,也即是15.6ml)、1ml浓硫酸试剂、产物为、副产物为水,环己醚,以及环己醇、食盐Nacl、无水氯化钙、5%的碳酸钠水溶液。 其中环己醇的沸点为:163℃,纯粹环己烯的沸点为82.9℃。 三、实验仪器以及操作图: 实验仪器有:圆底烧瓶、铁架台,直型冷凝管、接受瓶、分液漏斗、温度计、橡胶塞、电炉、导管、接液管、水浴锅、锥形瓶、漏斗、烧杯、短的分馏柱、蒸馏头,电子天平。 四、实验步骤: 1、按照实验装置示意图从上到下、从左到右的顺序安装蒸馏装置,检查装置的气密性。 2、在50ml的圆底烧瓶里面加入15.6ml的环己醇,并加入1ml的浓硫酸,滴加时注意,防止浓硫酸烧伤手臂。并加入几粒沸石,充分摇匀后使之均匀混合。在烧瓶上装一短的分馏柱,接上冷凝管,把接受瓶浸在冷水中冷却。 3、将烧瓶在电炉上面用空气浴的方法加热,控制温度不超过90℃,分馏出的液体为带水的混浊液,到无液体蒸出而且在圆底烧瓶内有白雾出现的时候,停止蒸馏,此时记下蒸馏出产物的那段温度为85℃至90℃。 4、将蒸出的液体先加入食盐饱和,然后加入3——4ml5%的碳酸钠溶液进行中和微量的酸。将液体转入分液漏斗中,摇振后静置,直至有机相分离出来,然后用分液漏斗分理处需要的上层有机相,即为环己烯的粗产物。此时用1——2g无水氯化钙进行干燥,待溶液清亮透明后滤入重新洗净干燥后的烧瓶中,此时把锥形瓶洗干净并烘干称量干重。

5、将分离干燥后的滤液重新加入圆底烧瓶后,加入几粒沸石进行水浴加热,收集温度在80——85℃之间的馏分于已经称量干重的锥形瓶内,此时锥形瓶干重为51.6g。待蒸馏出只剩下很少部分液体时,且温度变化范围突然下降时,停止蒸馏,此时称量锥形瓶连同液体的质量,的数据为55.8g。 五、实验数据计算: 产物环己烯的质量=55.8g—51.6g=4.2g 生产出的环己烯的质量为4.2g。产率为4.2g/15g=28% 六、误差分析:产物过低的原因主要有: a.气密性不够,导致生成的环己烯有泄漏。 b.在转移液体以及过滤的时候液体有沾到器壁上,导致有损失。C.火力的大小有问题,导致加热不够稳定,火力过大时,导致生成环己烯的速率过快,从而来不及液化就散到容器外部。 七、思考题: 1、答案:加入食盐的目的就是为了降低环己烯的溶解度。 2、答案:由于反应进入末期时,绝大部分的环己醇已被反应生成环己烯,此时容器内生成剩余的环己烯很少,造成容器内蒸汽含量降低,蒸汽压不稳定,从而生成阵阵白雾。 3、答案:Cacl2+5H2O==Cacl2`5H2O 过滤的原因是因为五水氯化钙里面含有水,若不过滤则在第二次蒸馏时有水,是环己烯和水生成共沸物,从而影响环己烯的产量和纯度。 4、脱水产物: ①(CH3)2CHCH=CH2 ②(CH3)2C=CHCH3或者(CH3)2CHCH=CH2 ③(CH3)3CH=CH2 八、讨论: 1、本实验具有一定的危险性,在取浓硫酸时一定注意按照实验正规操作取浓硫酸。 2、要保证装置的气密性,防止出现严重的泄露。 3、第一次加热时可以是空气浴或者水浴加热,但是第二次的时候一定要水浴加热,防止温度变化范围太大。 4、各实验药品的添加顺序一定要正确,否则会影响实验的整个进程。 5、第一次蒸馏和第二次蒸馏的仪器有细微的差别,主要是短的分馏柱和分馏头的区别。

冷库中硬质聚氨酯泡沫塑料(_PU_)保温工程施工规程

冷库中硬质聚氨酯泡沫塑料(PU )保温工程施工规程(试行) 第一章一般说明 第一条:以聚酯树脂或聚醚树酯为主要原料与甲苯二异氰酸酯(TDI)或二苯基甲烷二异氰酸脂(MDI)或聚次甲基聚苯基异酸脂(PA-PI)按一定比例加入发泡剂、催化剂、泡沫稳定剂等,在适宜的温度下,经混合搅拌进行发泡所制成的泡沫塑料即为聚氨酯泡沫塑料。 第二条:聚氨酯泡沫塑料可分硬质、软质两种。冷库中主要采用机械喷涂或机械灌注成型的硬质聚氨酯泡沫料(以下简称泡塑)。 机械喷涂一般用于传统土建冷库中现场进行发泡作业。灌注成型一般用于冷库的特殊需要部位或由工厂生产成复合保温板用以制造装配式冷库围护结构。 第三条:软质聚氨酯一般用于人造革、制鞋等其它工业门类、冷库中原则上不使用。 第四条:泡塑适用于冷库地坪、墙体、屋面和搁楼层的保温工程。同时也适用于冷库中系统管道、调节站、低压贮液器等部分的保温工程。 第五条:泡塑可自粘于金属、木材、水泥或其它非金属材料。用于喷涂时,其粘结度即为喷涂强度。 第六条:本施工规程主要用于冷库现场喷涂聚氨酯的施工作业,对于灌注成型作为仅供参考。 第七条:聚氨酯泡沫塑料的原材料选择十分重要。所用原材料应采用国内外知名厂家产品并应具备详细产地、产品批号、产品说明书、产品性能等介绍。 第八条:大批量喷涂的用料应采用未打开的由标准商用集装箱直接运至施工现场的原料。 第九条:使用前不应打开桶盖并应避免不必要的摇动。 第十条:散装运至现场的喷涂用料必须带有生产厂家原始标签,其内容应含: 1、生产厂家名称; 2、货物名称; 3、堆号或批号; 4、净重; 5、推荐贮存范围; 6、标明贮存及安全操作说明的警示牌; 7、混料说明。 第十一条;在产品质量保证期内,施工单位应保存厂家的标签及收货记录。 第三章施工队伍 第十二条:根据原商业部副食品局1992年全国冷库建设“广州会议”精神,承担冷库泡塑保温工程的施工单位应用进行过冷库保温施工实践,并须具有国家相应主管单位(如化工部、航天部等)认可的定点厂家。 第十三条:施工中的防火对策应是选择施工队伍的重要内容之一。 第十四条:在招标过程中,应选择二个以上的施工单位在相同条件下进行现场喷涂实测。实测内容为产品外观,泡塑厚度,表面平整度、喷涂质量及喷涂强度、(粘接度)五项指标。 第十五条:中标单位应保留实测合格的样品作为施工全过程的产品标准。 第十六条:进行施工操作的喷涂工必须是从事此项地专业泡沫喷涂工作合格的技术工人。 第十七条:施工单位必须按照生产厂家提供的说明书及有关规定进行泡塑的原料贮存、保管、运输、配制及操作。 第四章隔汽防潮 第十八条:泡塑表层并非是密实结膜,严禁作为隔汽层使用。 第十九条:目前国内传统土建冷库,其隔汽层一般为二毡三油(二毡三油隔

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

无机化学实验报告

无机化学实验报告集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

实训一化学实验基本操作 [实验目的] 1、掌握常用量器的洗涤、使用及加热、溶解等操作。 2、掌握台秤、煤气灯、酒精喷灯的使用。 3、学会液体剂、固体试剂的取用。 [实验用品] 仪器:仪器、烧杯、量筒、酒精灯、玻璃棒、胶头滴管、表面皿、蒸发皿、 试管刷、 试管夹、药匙、石棉网、托盘天平、酒精喷灯、煤气灯。 药品:硫酸铜晶体。 其他:火柴、去污粉、洗衣粉 [实验步骤] (一)玻璃仪器的洗涤和干燥 1、洗涤方法一般先用自来水冲洗,再用试管刷刷洗。若洗不干净,可用毛刷蘸少量去污粉或洗衣粉刷洗,若仍洗不干净可用重络酸加洗液浸泡处理(浸泡后将洗液小心倒回原瓶中供重复使用),然后依次用自来水和蒸馏水淋洗。 2、干燥方法洗净后不急用的玻璃仪器倒置在实验柜内或仪器架上晾干。急用仪器,可放在电烘箱内烘干,放进去之前应尽量把水倒尽。烧杯和蒸发皿可放在石棉网上用小火烘干。操作时,试管口向下,来回移动,烤到不见水珠时,使管口向上,以便赶尽水气。也可用电吹风把仪器吹干。带有刻度的计量仪器不能用加热的方法进行干燥,以免影响仪器的精密度。 (二)试剂的取用 1、液体试剂的取用 (1)取少量液体时,可用滴管吸取。 (2)粗略量取一定体积的液体时可用量筒(或量杯)。读取量筒液体体积数据时,量筒必须放在平稳,且使视线与量筒内液体的凹液面最低保持水平。 (3)准确量取一定体积的液体时,应使用移液管。使用前,依次用洗液、自来水、蒸馏水洗涤至内壁不挂水珠为止,再用少量被量取的液体洗涤2-3次。 2、固体试剂的取用 (1)取粉末状或小颗粒的药品,要用洁净的药匙。往试管里粉末状药品时,为了避免药粉沾到试管口和试管壁上,可将装有试剂的药匙或纸槽平放入试管底部,然后竖直,取出药匙或纸槽。

环己烯的制备思考题

环己烯的制备思考题 1、在粗制环己烯中加入精盐使水层达到饱和的目的何在? 答:目的是降低环己烯在水中的溶解;加饱和食盐水的目的是尽可能的除去粗产品中的水分,有利于分层。 2、在蒸馏终止前,出现的阵阵白雾是什么? 答:是浓磷酸由于反应物的减少而导致浓度增大而挥发的酸雾。 3、写出无水氯化钙吸水所起化学变化的反应式?为什么蒸馏前一定要将它过滤掉?答:CaCl2 +xH2O=CaCl 2?xH2O 常温下x 最大一般等于6。 蒸馏前若不将它过滤,会重新释放出H2O,使蒸馏产物中不可避免地混有少量水蒸气。 4、写出下列醇与浓硫酸进行脱水的反应产物。 a.3- 甲基-1-丁醇; b .3- 甲基-2-丁醇; c .3,3-二甲基-2-丁醇。 CH3 CH 3C=CHCH3 CH 3C=CHCH3 CH 3C=CCH3 CH3 CH3 CH3 补充: 1、用磷酸做脱水剂比用浓硫酸做脱水剂有什么优点? 答:(1)磷酸的氧化性小于浓硫酸,不易使反应物碳化;(2)无刺激性气体SO2放出。 2、如果你的实验产率太低,试分析主要在哪些操作步骤中造成损失? 答:(1)环己醇的粘度较大,尤其室温低时,量筒内的环己醇很难倒净而影响产率。(2)磷酸和环己醇混合不均,加热时产生碳化。(3)反应温度过高、馏出速度过快,使未反应的环己醇因于水形成共沸混合物或产物环己烯与水形成共沸混合物而影响产率。(4)干燥剂用量过多或干燥时间过短,致使最后蒸馏是前馏份增多而影响产率。 3、在环己烯制备实验中,为什么要控制分馏柱顶温度不超过73℃? 答:因为反应中环己烯与水形成共沸混合物(沸点70.8℃,含水10 %);环己醇与环己烯形成共沸混合物(沸点64.9℃,含环己醇30.5 %);环己醇与水形成共沸混合物(沸点97.8℃,含水80 %),因此,在加热时温度不可过高,蒸馏速度不易过快,以减少未反应的环己醇的蒸出。 4、当浓硫酸与环己醇混合时,为什么要充分摇匀? 答:浓硫酸与环己醇混合时应要充分摇匀,以免加热时使环己醇局部炭。 5、如果经干燥后蒸出的环己烯仍然浑浊,是何原因? 答:用无水氯化钙干燥的时间一般要在半个小时以上,并不时摇动。但实际实验中,由于时间关系,只能干燥5~10 分钟。因此,水可能没有除净的,在最后蒸馏时,会有较多的前馏分(环己烯和水的共沸物)蒸出,蒸出的环己烯会仍然浑浊。另外如果粗制品的最后一步蒸馏所用的仪器不干燥或干燥不彻底,则蒸出的产品将浑浊。 6、为什么蒸馏粗环已烯的装置要完全干燥? 答:因为环已烯可以和水形成二元共沸物,如果蒸馏装置没有充分干燥而带水,在蒸馏时则

聚氨酯泡沫材料及成型方法总结

聚氨酯泡沫材料 一、概况 聚氨酯是聚氨基甲酸酯的简称。凡是在高分子主链上含有许多重复的-NHCOO-基团的高分子化合物统称为聚氨基甲酸酯。一般聚氨酯系由二元或多元有机异氰酸酯(通常为甲苯二异氰酸酯,简称TDI)与多元醇化合物(聚醚多元醇或聚酯多元醇)相互作用而得。由于聚氨酯的结构不同,性能也不一样。利用这种性质,聚氨酯类聚合物可以分别制成塑料、橡胶、纤维、涂料、胶粘剂等。近二十年来,聚氨酯在这几个方面的应用都发展很快,特别是聚氨酯泡沫塑料、聚氨酯橡胶、聚氨酯涂料发展更加迅速。 泡沫塑料是聚氨酯合成材料的主要品种之一,它的主要特征是具有多孔性,因而相对密度较小,质轻,隔热隔音,比强度高,减振等优异特性。根据所用原料不同和配方的变化,可制成软质、半硬质和硬质聚氨酯泡沫塑料几种。 图1 聚氨酯泡沫合成主要原料 聚氨酯泡沫形成的化学机理 多元醇与多异氰酸酯生成聚氨酯的反应,是所有聚氨酯泡沫塑料制备中都存在的反应。发泡过程中的“凝胶反应”一般即指氨基甲酸酯的形成反应。因为泡沫原料采用多官能度原料,得到的是交联网络,这使得发泡体系能够迅速凝胶。基团反应如下: —NCO+—OH→—NHCOO— 在有水存在的发泡体系中,例如聚氨酯软泡发泡体系、水发泡聚氨酯硬泡体系,多异氰酸酯与水的反应不仅生成脲的交联(凝胶反应),而且是重要的产气发泡反应。所谓“发泡反应”,一般是指有水参加的反应。 —NCO+H 2O+OCN—→—NHCONH—+CO 2 ↑ 上述几个反应产生大量的热,这些热量可促使反应体系温度迅速增加,是发泡反应在短时间内完成。并且,反应热为物理发泡剂(辅助发泡剂)的气化发泡提供了能量 二、软质聚氨酯泡沫塑料 软质聚氨酯泡沫塑料(简称聚氨酯软泡)是指具有一定弹性的一类柔软性聚氨酯泡沫塑料,它是用量最大的一种聚氨酯产品。聚氨酯软泡的泡孔结构多为开孔的。一般具有密度低、抗氧化老化、耐油耐溶剂、弹性回复好、吸音、透气、保温性能,主要用作家具垫材、交通工具座椅垫材、各种软性衬垫层压复合材料,工业和民用上也把软泡用作

氯化六氨合钴的制备实验报告

一、实验目的 1. 掌握三氯化六氨合钴(III)的合成及其组成测定的操作方法, 通过对产品的合成和组分的测定,确定配合物的实验式和结构。 2. 练习三种滴定方法(酸碱滴定,氧化还原滴定,沉淀滴定)的操作。 3.通过对溶液的配制和标定、仪器的使用、处理实验结果等提高学生独立分析能力、解决问题的综合能力。 二、实验内容——三氯化六氨合钴(III)的制备及组成的测定 Ⅰ、三氯化六氨合钴(III)的制备 (1)实验原理: 钴化合物有两个重要性质:第一,二价钴离子的盐较稳定;三价钴离子的盐一般是不稳定的,只能以固态或者配位化合物的形式存在。 显然,在制备三价钴氨配合物时,以较稳定的二价钴盐为原料,氨-氯化铵溶液为缓冲体系,先制成活性的二价钴配合物,然后以过氧化氢为氧化剂,将活性的二价钴氨配合物氧化为惰性的三价钴氨配合物。反应需加活性炭作催化剂。反应方程式: 2CoCl 2·6H 2 O + 10NH 3 + 2NH 4 Cl + H 2 O 2 ====2[Co(NH 3 ) 6 ]Cl 3 + 14H 2 O (橙黄色) (2) 实验仪器及试剂: 仪器:锥形瓶(250ml)、滴管、水浴加热装置、抽滤装置、温度计、蒸发皿、量筒(10ml、25ml、100ml) 药品:氯化铵固体、CoCl2·6H2O晶体、活性炭、浓氨水、5%H2O2、浓HCl、2mol/L的HCl溶液、乙醇溶液、冰、去离子水 (3)实验步骤: 在锥形瓶中,将4gNH 4 Cl溶于水中,加热至沸(加速溶解并赶出O2),加入6g 研细的CoCl 2·6H 2 O晶体,溶解后,加0.4g活性炭(活性剂,需研细),摇动锥形 瓶,使其混合均匀。用流水冷却后(防止后来加入的浓氨水挥发),加入浓氨水,再冷却至283K以下(若温度过高H2O2溶液分解,降低反应速率,防止反应过于激烈),用 滴管逐滴加入% H 2O 2 溶液(氧化剂),水浴加热至323~333K,保持20min,并不断 旋摇锥形瓶。然后用冰浴冷却至273K左右,吸滤,不必洗涤沉淀,直接把沉淀溶于50ml沸水中,水中含浓盐酸(中和过量的氨)。趁热吸滤,慢慢加入浓盐酸(同离子效应)于滤液中,即有大量橙黄色晶体([Co(NH3)6]Cl3)析出。用冰浴冷却后吸滤,晶体以冷的2ml 2mol/L HCl洗涤,再用少许乙醇洗涤,吸干。晶体在水浴上干燥,称量,计算产率。 Ⅱ、三氯化六氨合钴(III)组成的测定 (一)氨的测定

环己烯的制备

环己烯的制备 一、实验目的 1、学习、掌握由环己醇制备环己烯的原理及方法。 2、了解分馏的原理及实验操作。 3、练习并掌握蒸馏、分液、干燥等实验操作方法。 二、实验原理 OH 85%H 3PO 4+ H 2O OH 85%H 3PO 4 2 O + H 2O 主反应副反应 主反应为可逆反应,本实验采用的措施是:边反应边蒸出反应生成的环己烯和水形成的二元共沸物(沸点70.8℃,含水10%)。但是原料环己醇也能和水形成二元共沸物(沸点97.8℃,含水80%)。为了使产物以共沸物的形式蒸出反应体系,而又不夹带原料环己醇,本实验采用分馏装置,并控制柱顶温度不超过90℃。 反应采用85%的磷酸为催化剂,而不用浓硫酸作催化剂,是因为磷酸氧化能力较硫酸弱得多,减少了氧化副反应。 分馏的原理就是让上升的蒸汽和下降的冷凝液在分馏柱中进行多次热交换,相当于在分馏柱中进行多次蒸馏,从而使低沸点的物质不断上升、被蒸出;高沸点的物质不断地被冷凝、下降、流回加热容器中;结果将沸点不同的物质分离。详细的原理参见P88-89。 三、实验药品及物理常数 药品名称 分子量 (mol wt) 用 量 (ml 、g 、mol) 熔点 (℃) 沸点 (℃) 比重 (d 420) 水溶解度 (g/100ml) 环己醇 100.16 10ml (0.096mol ) 25.2 161 0.9624 稍溶于水 环己烯 82.14 83.19 0.8098 不溶于水 85%磷酸 98 5ml (0.08mol ) 42.35 1.834 易溶于水 其它药品 饱和食盐水、无水氯化钙

四、实验装置图 圆底烧瓶 刺形分馏柱 温度计 直形冷凝管 接引管 锥形瓶 蒸馏头 水浴 温度计 直形冷凝管 接引管 锥形瓶 图1 反应装置图2 蒸馏装置 图3 分液漏斗 五、实验流程图 10ml 环己醇5ml85%加样品摇匀 安装好仪器 加热反应分馏柱顶<90分去水层 粗产品无水等体积饱和食盐水洗涤 至出现白雾停止蒸馏 干燥 收集80-85度馏分产品称重,计算产率。 CaCl 2H 3PO 4 几粒沸石 ℃ 水浴蒸馏 六、实验步骤 在50毫升干燥的圆底(或茄形)烧瓶中,放入10ml 环己醇(9.6g ,0.096mol)、5ml85%磷酸,充分振摇、混合均匀。投入几粒沸石,按图1安装反应装置,用锥形瓶作接受器。 将烧瓶在石棉网上用小火慢慢加热,控制加热速度使分馏柱上端的温度不要超过90℃,馏出液为带水的混合物。当烧瓶中只剩下很少量的残液并出现阵阵白雾时,即可停止蒸馏。全部蒸馏时间约需40min 。 将蒸馏液分去水层,加入等体积的饱和食盐水,充分振摇后静止分层,分去水层(洗涤微量的酸,产品在哪一层?)。将下层水溶液自漏斗下端活塞放出、上层的粗产物自漏斗的上口倒入干燥的小锥形瓶中,加入1-2克无水氯化钙干燥。 将干燥后的产物滤入干燥的梨形蒸馏瓶中,加入几粒沸石,用水浴加热蒸馏。收集80-85℃的馏分于一已称重的干燥小锥形瓶中。产量4-5g 。 本实验约需4h 。 七、注意事项 1、环己醇在常温下是粘碉状液体,因而若用量筒量取时应注意转移中的损失。所以,取样时,最好先取环己醇,后取磷酸。 2、环己醇与磷酸应充分混合,否则在加热过程中可能会局部碳化,使溶液变黑。 3、安装仪器的顺序是从下到上,从左到右。十字头应口向上。 4、由于反应中环己烯与水形成共沸物(沸点70.8℃,含水l0%);环己醇也能与水形成共沸物(沸点97.8℃,含水80%)。因比在加热时温度不可过高,蒸馏速度不宜太快,以减少末作用的环己醇蒸出。文献要求柱顶控制在73℃左右,但反应速度太慢。本实验为了加快蒸出

分析化学实验报告

篇一:分析化学实验报告 分析化学实验报告 2009-02-18 20:08:58| 分类:理工类 | 标签: |字号大中小订阅盐酸和氢氧化钠标准溶液的配制和标定时间:12月15号指导老师:某某—、实验目的 1. 熟练减量法称取固体物质的操作,训练滴定操作并学会正确判断滴定终点。 2. 掌握酸碱标准溶液的配制和标定方法。 3.通过实验进一步了解酸碱滴定的基本原理。二.实验原理有关反应式如下: na2co3 + 2hcl == 2nacl + co2 + h2o khc8h4o4 + naoh ==knac8h4o4 + h2o 三.实验步骤 1、 0.1.mol/l hcl溶液的配制 用小量筒量取浓盐酸42ml,倒入预先盛有适量水的试剂瓶中(于通风柜中进行),加水稀释至500ml,摇匀,贴上标签。 2、 0.1mol/l naoh溶液的配制 用烧杯在台秤上称取2g固体naoh,加入新鲜的或新煮沸除去co2的冷蒸馏水,溶解完全后,转入带橡皮塞的试剂瓶中,加水稀释至500ml,充分摇匀,贴上标签。 3、 0.1 mol/l hcl 标准溶液浓度的标定 用差减法准确称取 0.15 ~ 0.20 g无水na2co3 三份,分别置于三个250ml锥形瓶中,加20~30 ml蒸馏水使之溶解,再加入1~2滴甲基橙指示剂,用待标定的hcl溶液滴定至溶液由黄色恰变为橙色即为终点。平行标定三份,计算hcl溶液的浓度。 4、0.1mol/l naoh标准溶液浓度的标定 (1)用基准物邻苯二甲酸氢钾标定在称量瓶中以差减法称取khc8h4o4 0.4~0.5 g三份,分别置于三个250ml 锥形瓶中,加20~30ml蒸馏水,溶解。加入2~3 滴酚酞指示剂,用待标定的naoh 溶液滴定至溶液由无色变为微红色并持续30s 不褪色,即为终点,平行标定三份,计算naoh 溶液的浓度。 (2)与已标定好的盐酸溶液进行比较用移液管移取25.00ml naoh 溶液于洗净的锥形瓶中,加甲基橙指示剂1~2 滴,用hcl 溶液滴定至溶液刚好由黄色转变为橙色,即为终点。平行滴定3 次。要求测定的相对平均偏差在0.2%以内。五.思考题 1. 滴定管、移液管至使用前为什么要用待装液润洗2~3 次?用于滴定的锥形瓶是否需要干燥?是否要用待装液荡洗?为什么? 答:避免滴定液被管内壁的蒸馏水稀释待装溶液,多次润洗实验数据更精确。不需要干燥,不用待装液荡洗,加入物品后还需用蒸馏水溶解,荡洗对待装液的物质的量并无影响。 2. 溶解基准物质na2co3使用蒸馏水的体积是否需要准确?为什么? 答:不需要,需要溶解蒸馏水的体积在20~30ml,在这之间均可,且计算时采用n=m/m,与c 无关。 3、酚酞指示剂有五色变为为红色时,溶液的ph值为多少?变红的溶液在空气中放置后右边为无色的原因? 答:ph值为8.0~9.6;是因为吸收了空气中的co2,ph值小于8.0,所以又变为无色了。 4、标定hcl的两种基准物质na2co3和na2b4o7·10h2o各有什么优、缺点?答:基准物质na2co3的缺点是易吸潮,使用前应干燥,保存于干燥容器中。 基准物质na2b4o7·10h2o的优点是容易制的纯品,摩尔质量大,称量时相对误差小,不易吸水。缺点是空气中的相对温度小于39%时,易失去结晶水。 na2s2o3标准溶液的配制和标定时间12月16号指导老师:某某—、实验目的 1. 掌握na2s2o3 的配制和贮存方法。 2. 学会用k2cr2o7标定na2s2o3浓度的原理和标定条件的控制。 3. 了解淀粉指示剂的作用及使用方法。二、实验原理

硬质聚氨酯泡沫塑料现场发泡

硬质聚氨酯现场发泡施工方案 本工程内天井三层以上外墙设计为30厚硬质聚氨酯发泡保温层,所选用做法为L06J202外墙18做法,根据工作联系单002上部分要求,取消聚氨酯防潮底漆,直接在现在的砼和加气砼砌块墙面喷涂,要求表观密度大于等于30kg/m3,导热系数为0.027W/m.k。施工时对于窗洞口四周侧面不做喷涂,只施工大面即可。 一、施工准备 1、现场发泡施工所用材料的技术性能和质量必须符合设计要求、相应材料规范和产品标准。 2、要求做见证送检试样,复试结果合格,满足设计要求的指标。 3、外墙基体进行浮浆,粘接、孔洞及杂物清理,并做灰饼,控制发泡的平整度。 二、作业条件 1、基层已通过检查验收,质量符合设计和规范规定。同时基层表面温度不能过低、也不能有水份。 2、施工所需的各种材料已按计划进入现场,并经验收。 3、配合比已确认并经过现场验证。 4、禁止在雨天、和五级风及其五级风以上的环境中施工作业。环境温度过低、或过高,都将影响发泡施工质量,不利于施工操作。 5、硬质聚氨酯泡沫塑料现场发泡施工必须在专业技术人员监督指导下进行。 三、操作工艺 1、工艺流程 2、硬质聚氨酯泡沫塑料现场发泡施工操作要领 A、清扫基层,使基层表面无水、无杂物,过分光滑的部位刷明矾水处理。 B、按已确定的现场实际配合比例正确秤量,先将甲组份中六种材料置于甲组料容器均匀混合,通过水浴调节物料温度在+25℃左右。 C、乙组份“多苯基多异氰酸酯”同样调节在+25℃、加入已混合均匀的甲组料,用手提电动搅拌器混合15~20s,即注入分隔仓内发泡成型。

D、硬质聚氨酯泡沫塑料现场发泡施工的参考配合比见下表。 E、发泡材料每次搅拌、灌注时控制在1~2Kg料的范围内,以免每次料层过厚影响散热。 F、物料从搅拌到开始起泡约50s~1min30s,如搅拌15~20s,则物料搅拌完毕到开 始发泡之间的灌注操作仅有30~70s,物料约在4min以后凝固,宜在泡沫体凝固前进行后 续料的灌注,因此操作组织要周密、准备应充分,保持分仓内物料搅拌、灌注的连续。 如操作需要,可酌减三乙醇胺用量,能稍为延迟起泡开始时间,以有利于灌注操作。 G、物料形成泡沫体时的温度以+25℃最好,所形成的泡沫体为乳白色,气泡均匀、 密实,泡沫体表面光滑,气泡孔径约0.4mm,表观密度为35kg/m3。 四、施工中需注意的技术和质量问题 1、进入现场的各种材料必须包装完好、加盖密封运输及保管;贮存地应阴凉、干燥、 通风、远离火源;应分类存放、防止混杂、并有标明材料名称、性能等参数的明显标记; 在保管及操作场地划定区域内,注意防火、防毒、防爆、防高温等事项。 2、施工混合搅拌时的物料温度直接影响发泡量及泡沫体质量,必须严格控制。物料 形成泡沫体时的温度以+25℃最好,因此,全部物料须在水浴中加热(或冷却)调节温度。 )的密度大,容易沉积于甲组份中各种原料相对密度不同,特别是三氟三氯乙烷(FCl 3 底部,混合前,甲组份料要先充分搅拌均匀。 泡沫体组成物料的活性大,对气候条件敏感,材料配比用量随气候条件不同而有所变 化,必须通过试验经校对后再确定现场施工配比。 3、灌注泡沫体的基层表面温度过低,泡沫体即产生收缩,如不能对基层加温,可以 先在基层表面薄涂一层甲组份料层,然后灌注。 基层表面必须干净、无水,有水份或其它杂物,会直接导致混合料发泡量大减,同时

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

硬质聚氨酯泡沫塑料(新版)

硬质聚氨酯泡沫塑料(新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0651

硬质聚氨酯泡沫塑料(新版) 硬质聚氨酯泡沫塑料是一种绝热防腐高分子合成材料,用作防腐保温保冷层,它导热系数低、密度小、强度高、吸水性小、绝热、绝缘、隔音效果好、化学稳定性能好,作为一种绝热材料,广泛应用于石油、化工、运输、建筑、日常生活等领域,如输油和辅热水管道、油库、贮罐、冷库、空调、冰箱、集中供热供汽管道等设施的保温保冷。有数据显示,用硬质聚氨酯泡沫塑料保温的管道比传统的管道可减少热损失35%,节约了大量能源,减少了维修费用。另外,它还具有优良的防水防腐性脂,可直接埋入地下或水中,使用寿命可达20~30年以上,使用温度-190~120℃。 聚氨酯泡沫塑料有聚酯与聚醚型之分。通常聚酯在强度、耐温性能等方面较聚醚型为好,但因聚酯原料成本高,所以在应用上受

到限制。 1.硬质聚氨酯泡沫塑料的主要性能 硬质聚氨酯泡沫塑料1000℃火焰温度下燃烧5s后离火,在1~2s内自熄。耐浓度小于10%的无机酸,不耐高浓度的无机酸;耐中等浓度的碱液;耐汽油、机油,耐酮、耐酯,不耐醇。 各种绝热材料性能对比见表5—1。 表5-1各种绝热材料性能 项目 聚氨酯硬质泡沫塑料 聚苯乙烯 泡沫玻璃 聚氯乙然泡沫 软木 密度/kg·m-3 50 50

甲基橙(实验室酸碱指示剂)的制备-学生用

甲基橙(实验室酸碱指示剂)的制备 一、训练要求 1、学习和掌握甲基橙(实验室酸碱指示剂)制备原理和方法,清楚反应的影响因素,进行制备方案的查询和选择。 2、根据所确定的方案查阅并记录原料、中间产物、副产物、产品的常规物性和毒理性质。做实验环境的评估、选择和安全预案。 3、理解反应过程中出现的副反应,且在合成操作后,有逻辑的明确提纯方案。 4、根据实施路线和数量要求,合理选择适合的玻璃仪器,辅助装置,并能够正确、熟练的搭建实验装置。 5、能够熟练的操作仪器,控制反应进程,对粗品进行纯化处理,进行基本的性质检测。 6、实验训练中,能够仔细观察现象,正确分析现象的原因,进行对应的正确操作与处理。 7、实验过程中,及时、准确、正确的记录实验数据和现象。实验结束后进行数据的归纳、整理、计算。 8、本实验要求熟练掌握:试剂的称量、低温合成、洗涤与抽滤操作、干燥、以及熔点仪的使用。 二、教学重点和难点 重点:偶氮化合物的制备原理和方法,反应设备的搭建,减压抽滤的原理和方法。 难点:通过减压抽滤去除固液混合组分中非产品成分的方法。甲基橙(实验室酸碱指示剂)粗品的重结晶提纯。 本制备过程的粗产物是固液非均相体系,并含有副产物,使用减压抽滤和重结晶的处理方式,获得纯度较高的产品是典型的固液混合相产物处理方法,在有机合成操作中具有代表意义。 三、试验原理 中文别名:金莲橙D 英文名称::Methyl Orange 结构式: 外观与性状:橙黄色鳞状晶体或粉末。 分子量:327.24 甲基橙的变色范围是pH<3.1 变红,pH>4.4变黄,3.1~4.4呈橙色。

相对密度:1.28 溶解性: 微溶于冷水,易溶于热水,几乎不溶于乙醇; 最大吸收波长:505nm 在酸碱滴定中主要用作酸碱指示剂,在氧化还原滴定法中可以用作氧化还原指示剂,在催化动力光度分析和氧化还原光度分析中主要用作还原剂,在配合物水相光度分析中主要用作配位剂。 主反应: 甲基橙是指示剂,它是由对氨基苯磺酸重氮盐与N ,N —二甲基苯胺的醋酸盐,在弱酸性介质中偶合,首先得到亮黄色的酸式甲基橙称为酸性黄,在碱中酸性黄转变为橙黄色的钠盐,即甲基橙。 大多数重氮盐很不稳定,温度高时易发生分解,所以重氮化反应和偶合反应都需在低温下进行。同时强酸性介质的存在,防止重氮盐与未反应的芳胺发生偶合。 对氨基苯磺酸是两性化合物,其酸性比碱性强,能形成酸性内盐,它能与碱作用生成盐,难与酸作用生成盐,所以不溶于酸。但重氮化反应要求在酸性溶液中完成,因此,首先将对氨基苯磺酸与碱作用,生成水溶性较大的对氨基苯磺酸钠,再进行重氮化反应。 四、实验步骤 第一部分,重氮盐的制备 第一步:在100 mL 烧杯中,加入2.1 g 对氨基苯磺酸,10 mL 5% NaOH 溶液,水浴中,加热溶解,冷却至室温。 第二步:加入0.8 g 亚硝酸钠,溶解。搅拌下将混合物分批倒入装有13 mL 冰水和2.5 mL 浓盐酸的烧杯中,保持温度在5 ℃以下(重氮盐为细粒状白色沉淀)。冰盐浴中放置15 min ,使重氮化反应完全。 第二部分,偶合反应 第一步:在另一烧杯中加入1.2 g N , N-二甲基苯胺,溶于1 mL 冰醋酸中,不断搅拌 NH 2 HO 3S NH 3 O 3S NaOH NH 2 NaO 3S H 2O

相关文档
最新文档