第44讲 空间向量的概念(原卷版)

第44讲 空间向量的概念(原卷版)
第44讲 空间向量的概念(原卷版)

第44讲空间向量的概念和空间位置关系

一、课程标准

1、空间向量的线性运算

2、共线、共面向量定理的应用

3、空间向量数量积的应用

4、利用空间向量证明平行或垂直

二、基础知识回顾

1.空间向量及其有关概念

2.数量积及坐标运算

(1)两个空间向量的数量积:①a·b=|a||b|cos〈a,b〉;②a⊥b?a·b=0(a,b为非零向量);③设a=(x,y,z),则|a|2=a2,|a|=x2+y2+z2.

(2)空间向量的坐标运算:

三、自主热身、归纳总结

1、空间四点A(2,3,6),B(4,3,2),C(0,0,1),D(2,0,2)的位置关系为( )

A. 共线

B. 共面

C. 不共面

D. 无法确定

2、已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( )

A. 32

B. -2

C. 0

D. 3

2

或-2 3、在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB 与CD 的位置关系是( )

A . 垂直

B . 平行

C . 异面

D . 相交但不垂直

4、如图,平行六面体ABCD -A 1B 1C 1D 1中,AC 与BD 的交点为点M ,设AB ―→=a ,AD ―→=b ,AA 1―→

=c ,则向量C 1M ―→

可用a ,b ,c 表示为________.

5、如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.

6、O 为空间中任意一点,A ,B ,C 三点不共线,且OP ―→=34OA ―→+18OB ―→+t OC ―→

,若P ,A ,B ,C 四点共面,

则实数t =________.

四、例题选讲

考点一 空间向量的线性运算

例1 (1) 向量a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是________.(填序号)

①a ∥b ,a ∥c; ②a ∥b ,a ⊥c ; ③a ∥c ,a ⊥b .

(2) 已知点A ,B ,C 的坐标分别为(0,1,0),(-1,0,-1),(2,1,1),点P 的坐标是(x ,0,y),若PA ⊥平面ABC ,则点P 的坐标是____________.

变式1、(1)如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB ―→=a ,AD ―→

=b ,AA 1―→=c ,则下列向量中与BM ―→

相等的是( )

A .-12a +1

2b +c

B.12a +1

2b +c C .-12a -1

2b +c

D.12a -1

2

b +

c (2)已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE ―→=AA 1―→+x AB ―→+y AD ―→

,则x ,y 的值分别为( )

A .1,1

B .1,1

2

C.12,12 1

D.12

,1

变式2、 在三棱锥OABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用向量OA →,OB →,OC →

表示MG →,OG →.

变式3、如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1―→=a ,AB ―→=b ,AD ―→

=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点.

试用a ,b ,c 表示以下各向量: (1)AP ―→

; (2)A 1N ―→; (3)MP ―→+NC 1―→.

方法总结:本题考查空间向量基本定理及向量的线性运算. 用不共面的三个向量作为基向量表示某一向量时注意以下三点:(1)结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则. (3)在立体几何中三角形法则、平行四边形法则仍然成立. 考点二 共线、共面向量定理的应用

例2 如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC → (0≤k≤1). 判断向量MN →是否与向量AB →,AA 1→

共面.

变式1、.如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM ―→=kAC 1―→,BN ―→

=k BC ―→(0≤k ≤1).判断向量MN ―→是否与向量AB ―→,AA 1―→

共面.

变式2、(1)已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )

A .2,1

2

B .-13,12

C .-3,2

D.2,2

(2).若A (-1,2,3),B (2,1,4),C (m ,n,1)三点共线,则m +n =________.

方法总结:证明空间三点P ,A ,B 共线的方法有:①PA →=λPB →

(λ∈R);

②对空间任一点O ,OP →=xOA →+yOB → (x +y =1). 证明空间四点P ,M ,A ,B 共面的方法有:①MP →=xMA →

+yMB →;②对空间任一点O ,OP →=xOM →+yOA →+zOB → (x +y +z =1);③PM →∥AB → (或P A →∥MB →或PB →∥AM →

). 三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明.

考点三 空间向量数量积的应用

例3、 如图,已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.

(1)求线段AC 1的长;

(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD .

变式1、已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a =AB →,b =AC →

.

(1)求向量a 与向量b 的夹角的余弦值;

(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.

变式2、如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.

求:(1)AC 1―→

的长;

(2)BD 1―→与AC ―→

夹角的余弦值.

方法总结:空间向量数量积计算的两种方法:(1)基向量法:a·b=|a||b|cos〈a,b〉. (2)坐标法:设a=(x1,y1,z1),b=(x2,y2,z2),则a·b=x1x2+y1y2+z1z2. 利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置. 利用夹角公式,可以求异面直线所成的角,也可以求二面角. 可以通过|a|=a2,将向量的长度问题转化为向量数量积的问题求解,体现转化与化归的数学思想

考点四利用空间向量证明平行或垂直

例4如图所示的长方体ABCDA1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=2,M是线段B1D1的中点.求证:

(1) BM∥平面D1AC;

(2) D1O⊥平面AB1C.

变式1、如图,在四棱锥PABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=

PD=

2

2AD,设E,F分别为PC,BD的中点.求证:

(1) EF∥平面PAD;

(2) 平面PAB⊥平面PDC.

变式2、如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =

2

2

AD ,设E ,F 分别为PC ,BD 的中点. 求证:(1)EF ∥平面P AD ; (2)平面P AB ⊥平面PDC .

方法总结:(1)建立空间直角坐标系,建系时要尽可能地利用条件中的垂直关系.

(2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素. (3)通过空间向量的运算求出直线的方向向量或平面的法向量,再研究平行、垂直关系. (4)根据运算结果解释相关问题.

五、优化提升与真题演练

1、已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→

(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( )

A .必要不充分条件

B .充分不必要条件

C .充要条件 D.既不充分也不必要条件

2、(多选)已知点P 是平行四边形ABCD 所在的平面外一点,如果AB ―→=(2,-1,-4),AD ―→=(4,2,0),AP ―→

=(-1,2,-1).下列结论正确的有( )

A .AP ⊥A

B B .AP ⊥AD

C.AP ―→

是平面ABCD 的一个法向量 D.AP ―→∥BD ―→

3、(多选)已知ABCD -A 1B 1C 1D 1为正方体,下列说法中正确的是( )

A .(A 1A ―→+A 1D 1―→+A 1

B 1―→)2=3(A 1B 1―→)2 B.A 1

C ―→·(A 1B 1―→-A 1A ―→

)=0

C .向量A

D 1―→与向量A 1B ―→

的夹角是60°

D .正方体ABCD -A 1B 1C 1D 1的体积为|AB ―→·AA 1―→·AD ―→

|

4、如图,已知直三棱柱ABC -A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.

(1)求BN →

的模;

(2)求cos 〈BA 1→,CB 1→

〉的值; (3)求证:A 1B ⊥C 1M.

5、【2020年北京卷】如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点. (Ⅰ)求证:1//BC 平面1AD E ;

(Ⅰ)求直线1AA 与平面1AD E 所成角的正弦值.

平面向量的基本概念

平面向量得实际背景及基本概念 1、向量得概念:我们把既有大小又有方向得量叫向量。 2、数量得概念:只有大小没有方向得量叫做数量。 数量与向量得区别: 数量只有大小,就就是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小、 3.有向线段:带有方向得线段叫做有向线段。 4.有向线段得三要素:起点,大小,方向 5、有向线段与向量得区别; (1)相同点:都有大小与方向 (2)不同点:①有向线段有起点,方向与长度,只要起点不同就就就是不同得有向线段 比如:上面两个有向线段就就是不同得有向线段。 ②向量只有大小与方向,并且就就是可以平移得,比如:在①中得两个有向线 段表示相同(等)得向量。 ③向量就就是用有向线段来表示得,可以认为向量就就是由多个有向线段连接而成 6、向量得表示方法: ①用有向线段表示; ②用字母a 、b (黑体,印刷用)等表示; ③用有向线段得起点与终点字母:; 7、向量得模:向量得大小(长度)称为向量得模,记作||、 8、零向量、单位向量概念: 长度为零得向量称为零向量,记为:0。长度为1得向量称为单位向量。 9、平行向量定义: ①方向相同或相反得非零向量叫平行向量;②我们规定0与任一向量平行、即:0 ∥a 。 说明:(1)综合①、②才就就是平行向量得完整定义; (2)向量a、b、c 平行,记作a∥b ∥c 、 10、相等向量 长度相等且方向相同得向量叫相等向量、 说明:(1)向量a与b相等,记作a =b ;(2)零向量与零向量相等; (3)任意两个相等得非零向量,都可用同一条有向线段来表示,并且与有.. A(起点) B (终点) a

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

[高二数学]平面向量的概念及运算知识总结

平面向量的概念及运算 一.【课标要求】 (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示; (2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件 二.【命题走向】 本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。 预测2010年高考: (1)题型可能为1道选择题或1道填空题; (2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。 三.【要点精讲】 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点 的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a | =0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量) 方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相

最新向量空间的定义教案(50分钟)

向量空间的定义教案 (50分钟)

“向量空间的定义”教案(50分钟) I 教学目的 1、使学生初步掌握向量空间的概念。 2、使学生初步了解公理化方法的含义。 3、使学生初步尝试现代数学研究问题的特点。 II 教学重点 向量空间的概念。 Ⅲ 教学方式 既教知识,又教思想方法。 Ⅳ 教学过程 第六章 向量空间 §6.1 定义和例子 一、向量空间概念产生的背景 1)αββα+=+ 数 a+b, ab; 2))()(γβαγβα++=++ 几何向量 αβα a ,+; 3)αα=+0 多项式 f(x)+g(x),af(x); 4)0='+αα 函数 f(x)+g(x),af(x); 5)βαβαa a a +=+)( 矩阵 A+B ,aA; 6)αααb a b a +=+)( …… 7))()(ααb a ab = 8)αα=1 二、向量空间的定义 定义1 令F 是一个数域,F 中的元素用小写拉丁字母a,b,c,…来表示。令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα来表示。把V 中的元素叫做向量,而把F 中的元素叫做数(标)量,如果下列条件被满足,就称V 是F 上的向量空间: 1 在V 中定义了一个加法,对于V 中任意两个向量βα,,有唯一确定的向量与它们对应,这个向量叫做βα与的和,并且记作βα+。

即若,,V V ∈∈βα则V ∈+→βαβα),(。 2 有一个数量与向量的乘法,对于F 中每一个数a 和v 中每一个向量α有v 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,并且记作αa 。 即V a a V F a ∈→∈∈ααα),(,,。 3 向量的加法和数与向量的乘法满足下列算律: 1)αββα+=+; 2))(γβαγβα++=++; 3)在V 中存在一个零向量,记作0,它具有以下性质:对于V 中每一个向量 α,都有αα=+0; 4)对于V 中每一向量α,在V 中存在一个向量α',使得0=+'αα,这样的α'叫做α的负向量。 5)βαβαa a a +=+)(; 6)ba a b a +=+αα)(; 7))()(ααb a ab =; 8)αα=1。 注1:定义1称为公理化定义,以公理化定义为基础进行研究的方法称为公理化方法。 公理化方法???形式以理化方法 实质公理化方法 注2:数域F 称为基础域。 三、向量空间的例子 例1 解析几何里,V 2或V 3对于向量的加法和实数与向量的乘法来说作成实数域上的向量空间。 例2 M mn (F )对于矩阵的加法和数乘来说作成F 上的向量空间。 特别,},,2,1,|),,,{(21n i F a a a a F i n n =∈=关于矩阵加法和数乘构成的F 上的向量空间称为F 上的n 元列空间。

空间向量知识点总结.doc

空间向量与立体几何知识点总结 一、基本概念 : 1、空间向量: 2、相反向量: 3 、相等向量: 4、共线向量: 5 、共面向量: 6、方向向量 : 7 、法向量 8、空间向量基本定理: 二、空间向量的坐标运算: 1.向量的直角坐标运算 r r 设 a =(a1,a2 , a3 ) , b = (b1 , b2 , b3 ) 则 (1) r r b1, a2 b2, a3 b3 ) ;(2) r r a +b=(a1 a -b=( a1 (3) r a2 , a3 ) (λ∈R);(4) r r λ a =( a1, a · b = a1b1 2.设 A( x1, y1, z1), B( x2, y2, z2),则b1 , a2 b2 , a3b3 ) ;a2b2a3b3; uuur uuur uuur AB OB OA = (x2x1 , y2y1 , z2z1 ) . r r 3、设a ( x1 , y1, z1 ) , b ( x2, y2 , z2 ) ,则 r r r r r r r r r r a P b a b(b 0) ; a b a b 0 x1 x2 y1 y2 z1z2 0 . 4. 夹角公式 r r r r a1b1 a2 b2 a3b3 . 设 a =(a1,a2, a3),b=(b1, b2, b3),则 cos a,b a12 a22 a32 b12 b22 b32 5.异面直线所成角 r r r r | a b | | x1x2 y1 y2 z1 z2 | cos | cos a,b . |= r r x12 y12 z12 x22 y22 z22 | a | | b | 6.平面外一点p 到平面的距离 n r 已知 AB 为平面的一条斜线, n 为平面的一个法 α

平面向量的基本概念

平面向量的实际背景及基本概念 1.向量的概念:我们把既有大小又有方向的量叫向量。 2.数量的概念:只有大小没有方向的量叫做数量。 数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 3.有向线段:带有方向的线段叫做有向线段。 4.有向线段的三要素:起点,大小,方向 5.有向线段与向量的区别; (1)相同点:都有大小和方向 (2)不同点:①有向线段有起点,方向和长度,只要起点不同就是不同的有向线段 比如:上面两个有向线段是不同的有向线段。 ②向量只有大小和方向,并且是可以平移的,比如:在①中的两个有向线 段表示相同(等)的向量。 ③向量是用有向线段来表示的,可以认为向量是由多个有向线段连接而成 6.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母: AB ; 7.向量的模:向量AB 的大小(长度)称为向量的模,记作|AB |. 8.零向量、单位向量概念: 长度为零的向量称为零向量,记为:0。长度为1的向量称为单位向量。 9.平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.即:0 ∥a。 说明:(1)综合①、②才是平行向量的完整定义; (2)向量a、b、c平行,记作a∥b∥c. 10.相等向量 A(起点) B (终点) a

长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有.. 向线段的起点无关......... 11.共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关) 说明:(1)平行向量是可以在同一直线上的。 (2)共线向量是可以相互平行的。 例1.判断下列说法是否正确,为什么? (1)平行向量是否一定方向相同? (2)不相等的向量是否一定不平行? (3)与零向量相等的向量必定是什么向量? (4)与任意向量都平行的向量是什么向量? (5)若两个向量在同一直线上,则这两个向量一定是什么向量? (6)两个非零向量相等当且仅当什么? (7)共线向量一定在同一直线上吗? 解析:(1)不是,方向可以相反,可有定义得出。 (2)不是,当两个向量方向相同的时候,只要长度不相等就不是相等向量,但是是平行的。 (3)零向量 (4)零向量 (5)共线向量(平行向量 (6)长度相等且方向相同 (7)不一定,可以平行。 例2.下列命题正确的是( ) A.a与b共线,b与c共线,则a与c 也共线 B.任意两个相等的非零向量的始点与终点是平行四边形的四顶点 C.向量a与b不共线,则a与b都是非零向量 D.有相同起点的两个非零向量不平行 解:由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C. B A O D E F

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

平面向量概念教学设计

篇一:平面向量概念教案 平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。 3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣 三.教学类型:新知课 四、教学重点、难点 1、重点:向量及其几何表示,相等向量、平行向量的概念。 2、难点:向量的概念及对平行向量的理解。 五、教学过程 (一)、问题引入 1、在物理中,位移与距离是同一个概念吗?为什么? 2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗? 3、在物理中,像这种既有大小、又有方向的量叫做矢量。 在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。 (二)讲授新课 1、向量的概念 练习1 对于下列各量: ①质量②速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度 其中,是向量的有:②③④⑤ 2、向量的几何表示 请表示一个竖直向下、大小为5n的力,和一个水平向左、大小为8n的力(1厘米表示1n)。思考一下物理学科中是如何表示力这一向量的? (1)有向线段及有向线段的三要素 (2)向量的模 (4)零向量,记作____; (5)单位向量 练习2 边长为6的等边△abc中,=__,与相等的还有哪些? 总结向量的表示方法: 1)、用有向线段表示。 2)、用字母表示。 3、相等向量与共线向量 (1)相等向量的定义 (2)共线向量的定义 六.教具:黑板 七.作业 八.教学后记 篇二:平面向量的实际背景及基本概念教学设计 平面向量的实际背景及基本概念教学设计

空间向量

学校:年级:教学课题:空间向量 学员姓名:辅导科目:数学学科教师: 教学目标掌握空间向量的基本概念及应用 教学内容 空间向量及其运算 一、学习目标 1. 理解空间向量的概念,掌握其表示方法; 2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 复习1:平面向量基本概念: 具有和的量叫向量,叫向量的模(或长度);叫零向量,记着;叫单位向量. 叫相反向量,a的相反向量记着. 叫相等向量. 向量的表示方法有,, 和共三种方法. 复习2:平面向量有加减以及数乘向量运算: 1. 向量的加法和减法的运算法则有法则和法则. 2. 实数与向量的积: 实数λ与向量a的积是一个量,记作,其长度和方向规定如下: (1)|λa|= . (2)当λ>0时,λa与A. ; 当λ<0时,λa与A. ; 当λ=0时,λa=. 3. 向量加法和数乘向量,以下运算律成立吗? 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb

二、知识点讲解 探究任务一:空间向量的相关概念 问题: 什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表示? 新知:空间向量的加法和减法运算: 空间任意两个向量都可以平移到同一平面内,变为两个平面向量的加法和减法运算,例如右图中, OB = , AB = , 试试:1. 分别用平行四边形法则和三角形法则求 ,. a b a b +-a . b 2. 点C 在线段AB 上,且 5 2 AC CB =,则 AC = AB , BC = AB . 反思:空间向量加法与数乘向量有如下运算律吗? ⑴加法交换律:A. + B. = B. + a ; ⑵加法结合律:(A. + b ) + C. =A. + (B. + c ); ⑶数乘分配律:λ(A. + b ) =λA. +λb . 典型例题 例1 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量: AB BC +⑴; 'AB AD AA ++⑵;1 '2 AB AD CC ++⑶ 1 (')2 AB AD AA ++⑷. 变式:在上图中,用',,AB AD AA 表示' ',AC BD 和'DB .

平面向量的基本概念练习题

平面向量的实际背景及基本概念 一、选择题: 1.下列物理量中,不能称为向量的是( ) A .质量 B .速度 C .位移 D .力 2.设O 是正方形ABCD 的中心,向量AO 、OB 、CO 、OD 是( ) A .平行向量 B .有相同终点的向量 C .相等向量 D .模相等的向量 3.下列命题中,正确的是( ) A .||||a b =a b ?= B .||||a b >a b ?> C .a b a =?与b 共线 D .||00a a =?= 4.在下列说法中,正确的是( ) A .两个有公共起点且共线的向量,其终点必相同 B .模为0的向量与任一非零向量平行 C .向量就是有向线段 D .若||||a b =,则a b = 5.下列各说法中,其中错误的个数为( ) (1)向量AB 的长度与向量BA 的长度相等;(2)两个非零向量a 与b 平行,则a 与b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行 A .2个 B .3个 C .4个 D .5个 *6.ABC ?中,D 、E 、F 分别为BC 、CA 、AB 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与EF 共线的向量有( ) A .2个 B .3个 C .6个 D .7个 二、填空题: 7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是 . 8.如图,O 是正方形ABCD 的对角线的交点,四边形OAED 、OCFB 是正方形,在图中所示的向量中, (1)与AO 相等的向量有 ; (2)与AO 共线的向量有 ; (3)与AO 模相等的向量有 ; (4)向量AO 与CO 是否相等答: . 9.O 是正六边形ABCDEF 的中心,且AO a =,OB b =,AB c =,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中: (1)与a 相等的向量有 ; (2)与b 相等的向量有 ; (3)与c 相等的向量有 . O A B C D E F

向量的概念及表示

课题:向量的概念及表示 教学目的: 1.理解向量的概念,掌握向量的几何表示; 2.了解零向量、单位向量、平行向量、相等向量等概念,并会辨认图形中的相等向量或出与某一已知向量相等的向量; 3.了解平行向量的概念. 教学重点:向量概念、相等向量概念、向量几何表示 教学难点:向量概念的理解 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题 向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法 本章共分两大节。第一大节是“向量及其运算”,内容包括向量的概念、向量的加法与减法、实数与向量的积、平面向量的坐标运算;平面向量的数量积及运算律、平面向量数量积的坐标表示等 本节从台湾与大陆直航问题中的距离和方向两个要素出发,以及金钱豹与小狗的追逐问题。抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念 在“向量及其表示”中,主要介绍有向线段,向量的定义,向量的长度,向量的表示,相等向量,相反向量,自由向量,零向量 教学过程: 一、复习引入: 在现实生活中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们在物理中所学习的位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量. 例如:从台湾与大陆直航问题中的距离和方向,以及金钱豹与小狗的追逐问题,方向不同效果不同。抽象出向量的概念,向量是数学中的重要概念之一,向量和数一样也能进行运算,而且用向量的有关知识还能有效地解决数学、物理等学科中的很多问题,在这一章,我们将学习向量的概念、运算及其简单应用.这一节课,我们将学习向量的有关概念. 二、讲解新课: 1.向量的概念:我们把既有大小又有方向的量叫向量 注意:1?数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小 2?从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质 2.向量的表示方法: ①用有向线段表示;

向量空间的定义教案(50分钟)

“向量空间的定义”教案(50分钟) I 教学目的 1、使学生初步掌握向量空间的概念。 2、使学生初步了解公理化方法的含义。 3、使学生初步尝试现代数学研究问题的特点。 II 教学重点 向量空间的概念。 Ⅲ 教学方式 既教知识,又教思想方法。 Ⅳ 教学过程 第六章 向量空间 §6.1 定义和例子 一、向量空间概念产生的背景 1)αββα+=+ 数 a+b, ab; 2))()(γβαγβα++=++ 几何向量 αβα a ,+; 3)αα=+0 多项式 f(x)+g(x),af(x); 4)0='+αα 函数 f(x)+g(x),af(x); 5)βαβαa a a +=+)( 矩阵 A+B ,aA; 6)αααb a b a +=+)( …… 7))()(ααb a ab = 8)αα=1 二、向量空间的定义 定义1 令F 是一个数域,F 中的元素用小写拉丁字母a,b,c,…来表示。令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα来表示。把V 中的元素叫做向量,而把F 中的元素叫做数(标)量,如果下列条件被满足,就称V 是F 上的向量空间: 1 在V 中定义了一个加法,对于V 中任意两个向量βα,,有唯一确定的向量与它们对应,这个向量叫做βα与的和,并且记作βα+。 即若,,V V ∈∈βα则V ∈+→βαβα),(。 2 有一个数量与向量的乘法,对于F 中每一个数a 和v 中每一个向量有v 中唯一确定的向量与它们对应,这个向量叫做a 与的积,并且记作。

即V a a V F a ∈→∈∈ααα),(,,。 3 向量的加法和数与向量的乘法满足下列算律: 1)αββα+=+; 2))(γβαγβα++=++; 3)在V 中存在一个零向量,记作0,它具有以下性质:对于V 中每一个向量,都有αα=+0; 4)对于V 中每一向量,在V 中存在一个向量,使得0=+'αα,这样的叫做的负向量。 5)βαβαa a a +=+)(; 6)ba a b a +=+αα)(; 7))()(ααb a ab =; 8)αα=1。 注1:定义1称为公理化定义,以公理化定义为基础进行研究的方法称为公理化方法。 公理化方法???形式以理化方法 实质公理化方法 注2:数域F 称为基础域。 三、向量空间的例子 例1 解析几何里,V 2或V 3对于向量的加法和实数与向量的乘法来说作成实数域上的向量空间。 例2 M mn (F )对于矩阵的加法和数乘来说作成F 上的向量空间。 特别,},,2,1,|),,,{(21n i F a a a a F i n n =∈=关于矩阵加法和数乘构成的F 上的向量空间称为F 上的n 元列空间。 ??? ???????????=∈??????? ??=n i F a a a a F i n n ,,2,1,|21 关于矩阵加法和数乘构成的F 上的向量空间称为F 上的n 元列空间。 例3 复数域C 可以看成实数域R 上向量空间 },|{R b a b a C ∈+=ε

空间向量的概念和运算(一)

§9.5.1 空间向量的概念和运算 教学目标: ⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程设计: 一、复习引入 复习有关平面向量的一些知识 1.向量的概念,向量的表示,相等向量,自由向量,向量的平移 2.向量的加减以及数乘运算法则和运算律: 在平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27. 二、新课讲授 1.空间向量的概念:空间中具有大小和方向的量叫做向量. 空间的一个平移就是一个向量,平移实际就是点到点的一次变换,因此我们说空间任意两个向量是共面的. 2.空间向量的表示方法:用有向线段表示 3.相等向量的内涵:同向且等长的有向线段表示同一向量或相等的向量. 4.空间向量的加法、减法、数乘向量的定义 总结论:空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: AB OA OB +==a +b , OA OB AB -=(指向被减向量), =OP λa )(R ∈λ 5.空间向量的加法与数乘向量的运算律. ⑴加法交换律:a + b = b + a ; ⑵加法结合律:(a + b ) + c =a + (b + c );(课件 验证) ⑶数乘分配律:λ(a + b ) =λa +λb . 说明:空间向量加法的运算律要注意以下几点: ⑴首尾相接的若干向量之和,等于由起始向量的起点指向 末尾向量的终点的向量.即:

向量的基本概念公式

向量的基本概念公式: 1. 向量的概念 (1)向量的基本要素:大小和方向. (2)向量的表示:几何表示法 ;字 母表示:a ; 坐标表示法 a =xi+yj =(x,y). (3)向量的长度:即向量的大小,记作|a |. (4)特殊的向量:零向量a =O ?|a |=O . 单位向量:a O 为单位向量?|a O |= 1. (5)相等的向量:大小相等,方向相同 (x1,y1)=(x2,y2)???==?2 12 1y y x x (6) 相反向量:a =-b ?b =-a ?a +b =0 (7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量. ()(a b c a b ++=++AC BC AB =+ AB BA =-,OA OB =-||||a a λλ=>0时, a a λ与同向; a a 与异向; 0a =. ()()a a λμλμ= )a a a μλμ=+ )a b λλ=+ //b a b λ?= 3已知两个非零向量与b ,作OA =a , =b ,则∠AOB=θ (001800≤≤θ)叫做向量与b 的夹角。 4.两个向量的数量积: 已知两个非零向量与b ,它们的夹角为θ,则·b =︱︱·︱b ︱cos θ. 其中︱b ︱cos θ称为向量b 在a 方向上的投影.

5.向量的数量积的性质: 若a =(11,y x ),b =(22,y x )则e ·a =a ·e =︱a ︱cos θ (e 为单位向量); a ⊥ b ?a ·b =0?12120x x y y +=(a ,b 为非零向量);︱a ︱ ; cos θ= a b a b ?? . 6 .向量的数量积的运算律: ·b =b ·;(λ)·b =λ(·b )=·(λb );(+b )·c =·c +b ·c . 7.重要定理、公式 (1) 平面向量基本定理 e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1, λ2,使a =λ1e 1+λ2e 2. (2) 两个向量平行的充要条件 a ∥ b ?a =λb (b ≠0)?x 1y 2-x 2y 1=O. (3) 两个向量垂直的充要条件 a ⊥b ?a ·b =O ?x 1x 2+y 1y 2=O. (4) 线段的定比分点公式 设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP ,则 ??? ????++=++=.1,12 12 1λ λλ λy y y x x x (线段定比分点的坐标公式) 当λ=1 时,得中点公式: OP =21(1+2OP )或??? ????+=+=.2,2 2121y y y x x x

52向量空间的定义和基本性质

5.2向量空间的定义和基本性质 授课题目:5.2线性空间的定义和基本性质 教学目标:理解并掌握线性空间的定义及基本性质 授课时数:3学时 教学重点:线性空间的定义及基本性质 教学难点:性质及有关结论的证明 教学过程: 一、线性空间的定义 1. 引例―――定义产生的背景 例子. 设F b a F n ∈∈,,,,γβα则向量的加法和数与向量的乘法满足下述运算律. (1)αββα+=+ (2))()(γβαγβα++=++ (3)ααα=+??有零向量 (4) 0=-+-?)(使,有对αααα (5)βαβαa a a +=+)( (6)αααb a b a +=+)( (7))()(ααb a ab = (8)αα=?1 这里F b a F n ∈∈,,,,γβα 2. 向量空间的定义-抽象出的数学本质 Def: 设V 是一个非空集合,其中的元素称为向量。记作 ,,,γβα;F 是一个数域F c b a ∈ ,,,如果在集合V 中定义了一个叫做加法的代数运算,且定义了F ?V 到V 的一个叫做纯量乘法的代数运算.(F 中元素a 与V 中α的乘积记作V a a ∈αα,)。如果加法和纯量乘法满足: 1)αββα+=+ 2))()(γβαγβα++=++ 3)ααα=+∈?∈?0,0,有对V V (找出0元) 4)?∈?,V ααˊV ∈使得αα+ˊ=称αˊ为α的负向量(找出负元) 5)βαβαa a a +=+)( 6)αααb a b a +=+)( 7))()(ααb a ab =

8)αα=?1 V 是F 上的一个线性空间,并称F 为基数域. 3. 进一步的例子――加深定义的理解 例1:复数域C 对复数的加法和实数与复数的乘法作成实数域R 上的线性空间. 例2:任意数域F 可看作它自身的线性空间. 例3 {}V α=其加法定义为ααα+=, 数乘定义为a αα=, 则V 是数域F 上的线性空间. 注: V={0}对普通加法和乘法是数域F 上的线性空间, 称为零空间. 例4:设F 是有理数域,V 是正实数集合,规定),,(,F a V a a ∈∈=?=⊕βααααββα 练习 集合V 对规定的,⊕ 是否作成数域F 上的线性空间? 1212112212,(,,,)(,,,) (,,,), (,,,)(0,0,,0) n n n n n n V F a a a b b b a b a b a b a a a a =⊕=+++= 解 显然V 对,⊕ 满足条件1)—7),但对任意的 12(,,,)n n a a a F ∈ 有12121(,,,)(0,0,,0)(,,,),n n a a a a a a =≠ 故集合V 对规定的不作成数域F 上的线性空间. 由此例可以看出, 线性空间定义中的条件8)是独立的, 它不能由其他条件推出. 二、线性空间的简单性质 1、线性空间V 的加法和纯量乘法有以下基本性质. Th5.2.1 1) V 的零向量唯一,V 中每个向量的负向量是唯一的. 2) αα=--)( 证明:1)设120,0是V 的两个零向量,则11220000=+=. 设12,αα是α的负向量, 则有 120,0,αααα+=+= 于是 111212220()()0αααααααααα=+=++=++=+= *由于负向量的唯一性, 以后我们把的α唯一负向量记作α-. 2) 因()0,αα+-= 所以().αα--= 3) *我们规定: (),αβαβ-=+- 且有.αβγαγβ+=?=-

高中数学平面向量基本概念

平面向量基本概念 一.考试内容: 向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移. 二.考试要求: (1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式. 【注意】向量是数学的重要概念之一,它给平面解析几何奠定了必要的基础,同时也为物理学提供了工具,这部分内容与实际结合比较密切.在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用. 三.基础知识: 1.实数与向量的积的运算律:设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 2.向量的数量积的运算律: (1) a·b= b·a(交换律); (2)(λa)·b= λ(a·b)=λa·b= a·(λb); (3)(a+b)·c= a·c +b·c. 切记:两向量不能相除(相约);向量的“乘法”不满足结合律, 3.平面向量基本定理 如果e 1、e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有 一对实数λ 1、λ 2 ,使得a=λ 1 e 1 +λ 2 e 2 .不共线的向量e 1 、e 2 叫做表示这一平面内所有向量的 一组基底.

向量的概念 人教版

向量的概念 教案一 课题:6.1向量的概念 教学目标: 1.理解向量的有关概念;掌握向量的表示方法. 2.通过对向量概念的引入,培养学生具体与抽象的数学思维方法. 3.通过本节课的教学,激发学生的学习兴趣和学习热情,促使学生学好本章. 教学重点:向量概念.对相等的向量、位置向量概念的理解. 教学难点:对相等的向量、位置向量概念的理解. 教学方法:讲授法 教学手段:计算机,投影仪 教学过程: 一、导引新课 在现实生活中,我们会遇到很多量.有一些量,在选定单位后,只用一个实数就可以确切地表示它们.如距离、面积等.还有一些量,如小船的位移: 小船由甲向北偏东45°,航行30 mile到达乙地,如果仅指出:小船“由甲地航行30 mile”,而不指明“向东偏北45°”航行,那么小船就不一定到达乙地,这就是说,位移是一个既有大小,又有方向的量,这种量就是我们本章所要学习的向量,利用向量的有关知识还能有效地解决数学、物理等学科中的很多问题,这一章里我们学习向量的性质和运算. (板书课题6.1向量的概念) 二、讲授新知 1.有向线段 在几何学中,点表示位置,连结两点的线段的长度,表示两点的距离,射线表示方向. (教师一边用语言叙述一边在黑板上演示) 在线段的两个端点中,我们规定一个顺序:为始点,为终点(如图6-2),我们就说线段具有 射线的方向. (1)有向线段:具有方向的线段,叫有向线段.(2)有向线段表示方法:在有向线段的终点处画上箭头表示它的方向.以为始点,以为终点的有向线段记作,(注意顺序)(3)有向线段的长度(或模).已知, 线段的长度叫做有向线段的长度(或模),的长度记作||.(4)有向线段的三要素:始点、方向和长度.(5)两条有向线段方向相同或相反两条有向线段所在的直线平行(或重合). 2.向量的概念 重新观察小船的位移,得向量的定义. (1)向量:具有大小和方向是量叫做向量.向量的两要素:大小、方向. (2)向量的表示:A.用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的

相关文档
最新文档