一种λ型互相关时差法超声波流量检测方法

一种λ型互相关时差法超声波流量检测方法
一种λ型互相关时差法超声波流量检测方法

超声波流量计快速测量方法

简 易 现 场 安 装 指 南 1. 管道外径 2. 管壁厚度 3. 管道材质 4. 衬材参数(如有的话,可包括衬里厚度和衬材声速) 5. 流体类型 6. 探头类型 (因为主机可支持多种不同探头,如M1型传感器) 7. 探头安装方式(DN300以上Z法安装,DN300以下V法安装) 上述参数条件的输入步骤一般遵循下列快速设置步骤顺序: 1. 键入 MENU 11 进入11号窗口输入管外径 ENT 2. 键入 ▼/- 进入12号窗口输入管壁厚度 ENT 3. 键入 ▼/- 进入14号窗口 ENT , ▲/+ 或 ▼/- 选择管材 ENT 4. 键入 ▼/- 进入16号窗口 ENT , ▲/+ 或 ▼/- 选择衬材 ENT 5. 键入 ▼/- 进入20号窗口 ENT , ▲/+ 或 ▼/- 选择流体类型 ENT 6. 键入 ▼/- 进入23号窗口 ENT , ▲/+ 或 ▼/- 选择探头类型 ENT (最小 S1 \中号 M1\最大 L1) 7. 键入 ▼/- 进入24号窗口 ENT , ▲/+ 或 ▼/- 选择安装方式 ENT 8. 键入 ▼/- 进入25号窗口,按所显示的安装距离及上步所选择的安装方式安装好探头(见本章安装节) 9. 键入 MENU 90 进入90号窗口显示上下游信号强度及信号质量(Q 值) 10. 键入 MENU 91 进入91号窗口显示传输时间比(97~103%),此项可通过调整安装距离确定 11. 键入 MENU 01 进入01号窗口显示测量结果

操作步骤及其他 1、确定管路口径(内径或外径)、壁厚、介质类型 2、开机按上面顺序输入参数,从11项开始到25项结束;输入所有参数 的目的是要取得25项-安装距离(mm为单位)。其中24项安装方式的选择:大于DN150mm以上都可使用Z法安装,即在管路两侧,传感器两前部相对,接线端朝外,两安装点在通过管道轴心的同一水平截面上,两传感器之间的垂直距离为25项的安装距离;小于DN150mm 使用V法安装,即在管路同侧,传感器两前部相对,接线端朝外,两安装点在通过管道轴心的同一水平截面上,两传感器之间的垂直距离为25项的安装距离;注意:在水平管路上安装不可将传感器置于管路的顶端。你处安装方式因只有KRCflo-S1小型传感器,所以只选V 法即可。 3、按25项菜单给出的安装距离在管路上确定安装位置,并将安装点管 路表面油漆和锈除掉,露出管路表面材质即可;然后将传感器抹上耦合剂(黄油或凡士林等)粘在安装点处;处理管道表面时,安装点的处理面积要大于传感器的长度或宽度,以备调整余量。 4、安装完传感器后,进入90项菜单,此项为上下游信号强度及信号质 量检测,数据要求60左右或以上更佳;再进入91项菜单,此项为传输时间比,是用来确定实际的安装距离的,标准数据为97%--103%。 如小于97%证明现在的安装距离小了,要加大;如大于103%,证明现在的安装距离大了,要减小。如90、91项都调整至标准之内,安装结束,可以到流量数据窗口观看数据,窗口菜单号参见说明书。 5、选择安装点注意事项,传感器安装点理论上直管段要求上游10D(D 为管道直径)下游5D;距泵30D;如现场直管段不满足要求,尽量取

时差法测量流量

时差法超声波流量计的原理和设计 王润田 1 引言 超声波用于气体和流体的流速测量有许多优点。和传统的机械式流量仪表、电磁式流量仪表相比它的计量精度高、对管径的适应性强、非接触流体、使用方便、易于数字化管理等等。近年来,由于电子技术的发展,电子元气件的成本大幅度下降,使得超声波流量仪表的制造成本大大降低,超声波流量计也开始普及起来。经常有读者回询问有关超声波流量测量方面的问题。作为普及,我们将陆续撰写一些专题文章,来介绍一些相关知识,以便推广和普及超声波流量技术的普及和提高。本文主要介绍目前最为常用的测量方法:时差法超声波流量计的原理和设计。 2时差法超声波流量计的原理 时差法超声波流量计(Transit Time Ultrasonic Flowmeter)其工作原理如图1所示。他是利用一对超声波换能器相向交替(或同时)收发超声波,通过观测超声波在介质中的顺溜和逆流传播时间差来间接测量流体的流速,在通过流速来计算流量的一种间接测量方法。 图1 时差法超声波流量测量原理示意图 图1中有两个超声波换能器:顺流换能器和逆流换能器,两只换能器分别安装在流体管线的两侧并相距一定距离,管线的内直径为D,超声波行走的路径长度为L,超声波顺流速度为tu,逆流速度为td,超声波的传播方向与流体的流动方向加角为θ。由于流体流动的原因,是超声波顺流传播L长度的距离所用的时间比逆流传播所用的时间短,其时间差可用下式表示: 其中:c是超声波在非流动介质中的声速,V是流体介质的流动速度,tu和td 之间的差为:

式中X 是两个换能器在管线方向上的间距。 为了简化,我们假设,流体的流速和超声波在介质中的速度相比是个小量。即: 上式可简化为: 也就是流体的流速为: 由此可见,流体的流速与超声波顺流和逆流传播的时间差成正比。 流量Q 可以表示为: 2 4 D Q V dt π= ? 3 时差法超声波流量计的设计 图2是我们设计的超声波流量计的原理框图。图中主要有两个超声波发射单元、一个时间测量单元和一个控制器。他们共同来完成超声波的发射、接受和时间差的测量等工作。其他的外围单元主要是为了测量仪表的参数设定、测量数据的输出、显示和传送等功能,可参考相关资料,这里不作介绍。

超声波流量计的基本原理及类型

超声波流量计的基本原理及类型 超声波流量计的基本原理及类型 刘欣荣 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种 非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。 众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。 另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。超声波流量计的适应能力也是其它仪表不可比拟的。超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、通用化发展,现已制成不同声道的标准型、高温型、防爆型、湿式型仪表以适应不同介质,不同场合和不同管道条件的流量测量。

超声波时差法测量

题目:超声波传输时差法的测量 姓名: . 学号: . 班级: . 同组成员: . 指导教师: . 日期: .

关键词:超声波流量计,时差法,换能器,脉冲 第一部分:摘要 1.中文摘要: 超声波用于气体和流体的流速有许多优点。和传统的机械式流量仪表,电磁式流量仪表相比它的计量精度高,对管径的适应性强,非接触流体,使用方便,易于数字化管理等。 近年来,由于电子计术的发展,电子元器件的成本大幅度下降,思潮申博流量仪表的制造成本大大降低,超声波流量计也开始普及起来。 根据其原理,研究了几种超声波流量计特别是时差法超声波流量计的测量原理,对超声波在流体中的传播特性及超声波换能器进行了一定的探讨和研究:根据流体力学及物理学的有关知识,对超声波流量计进行了相关了解。针对传统时差法超声波流量计测量精度易受温度影响的问题,采用了改进型算法,在很大程度上避免了温度变化对测量精度的影响。在多种测量原理及方法下,这里我们则采用的是多脉冲测量法的原理和应用。 当然,我们还要结合课题的实际情况,对时差法超声波流量计的硬件电路进行详细的分析和设计,讨论器件的选择、参数计算等技术问题,设计出了换能器发射和接收超声波的等效电路,当其换能器发射超声波时,相当于换能器给相应的计数环节给以上升沿脉冲使其开始计数,同理,当换能器接收超声波时也产生一个上升沿脉冲,来作用于相对应的计数器使其停止计数。 针对超声波流量计的工作环境,由于条件的限制,我们只能在普通环境下进行我们的课题设计。对造成超声波流量测量误差的各种因素我们也只能进行常规

的分析以及改进。 2.英文摘要: The FV ultrasonic flowmeter is designed to measure the fluid velocity of liquid within a closed conduit. The transducers are a non-contacting, clamp-on type, which will provide benefits of non-foulingoperation and easy installation. The FV transit-time flowmeter utilizes two transducers that function as both ultrasonic transmitters and receivers. The transducers are clamped on the outside of a closed pipe at a specific distance fromeach other. The transducers can be mounted in V-method where the sound transverses the pipe twice,or W-method where the sound transverses the pipe four times, or in Z-method where the transducersare mounted on opposite sides of the pipe and the sound crosses the pipe once. This selection of themounting method depends on pipe and liquid characteristics. The flow meter operates by

超声衍射时差(TOFD)技术原理简介(含图表)

超声衍射时差(TOFD)技术原理简介(含图表) 1.超声衍射时差(TOFD)技术介绍 “TOFD”即Timeofflightdiffraction,译成中文是“超声波衍射时差法检测”,TOFD检测技术原理是利用超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生迭加到正常反射波上的衍射波,探头探测到衍射波,从而判定缺陷的大小和深度。极大地提高了缺陷检出率。TOFD检验技术具有缺陷检出能力强、缺陷定位精度高、节省设备的制造时间等特点,在检测资料上保证安全,并且可以用数字型式永久保存,恰好弥补了常规超声波检测技术的不足。 此技术首先是应用于核工业设备检验,如今在电力、石化、管道、压力容器、钢结构等方面多有应用。 上个世纪七十年代早期,英国原子能管理局(UnitedKingdomAtomicEnergyAuthority,即UKAEA)的国家无损检测研究中心的Harwell实验室提出了了超声波衍射在UT中应用的原理。UKAEA为了开发比常规超声波检测更精确的缺陷定量技术,最早由史可·毛瑞斯(SILKMG)博士开发出了超声衍射时差技术 - 1 -

(TimeofFlightDiffraction,简称TOFD)。后来欧美国家的有关机构进行了大量的试验,到80年代早期证实,对于核反应堆的压力容器和主要部件,TOFD技术作为超声检测是可行的,其可靠性和精度要高于常规超声检测(即脉冲回波)技术;相比常规的脉冲回波技术,当时的TOFD 技术有几个最明显的不同,一是很高的定量精度,绝对误差<±1mm,而裂纹监测的误差<±0.3mm;二是对缺陷的方向和角度不敏感,不向脉冲回波技术那样对某些方向的缺陷有“盲区”;三是对缺陷的定量不是基于信号的波幅,而是基于缺陷尖端衍射信号的声程和时间。 后来开发了便携的设备系统(即国际无损检测中心的ZIPSCAN),TOFD技术被国际工业界广泛公认。90年代,该项技术开始应用与石油化工管线的检测。此后,BSI、ASTM、ASME以及EN等相继承认了TOFD检测技术,颁布并不断修订了有关标准。而发展到今天,世界上有很多无损检测设备制造商开发了很多数字化的无损检测系统可以满足上述标准进行TOFD检测。当然,顶尖的制造商的设备系统可能还具备或者同时兼容常规超声、超声相控阵(PA)、常规涡流(ECT)和涡流阵列(ECTARRY)检 - 2 -

超声波传感器测流量

超声波传感器测流量 摘要超声波流量计是一种利用超声波脉冲来测量流体流量的速度式流量仪表,它从80年代开始进入我国工业生产和计量领域,并在90年代得到迅速发展。文章对各类超声波流 量计进行了深入研究分析,系统阐述了超声波流量计的分类方法,具体结构功能及其优缺点;从仪表性能、被测介质经济性,实用性等方面总结了选用超声波流量的原则。 原理:超声波流量计工作原理: 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。超声脉冲穿过管道从一个传感器到达另一个传感器。当气体不流动时,声脉冲以相同的速度在两个方向上传播。如果管道中的气体有一定流速V,则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间会短些,而逆流传输时间会长些。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法) 、波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型。 由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为:透过法、反射法、交叉法等。波束偏移法是利用超声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大.多普勒法是利用声学多普勒原理,通过测量不均匀流体中散射体散射的超声波多普勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。 相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。噪声法是利用管道内流体流动时产生的噪声与流体的流速有关的原理,通过检测噪声表示流速或流量值。 结构:超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。超声波流量计常用压电换能器。它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振劝。超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。

[超声波衍射时差法(TOFD)检测中参数设定的研究]超声波衍射时差法

[超声波衍射时差法(TOFD)检测中参数设定的研究]超声波 衍射时差法 摘?要在TOFD检测过程中,相关参数的设置非常为重要,关系到采集图谱质量的好坏。下面,就结合现场情况,把TOFD检测实践中的一些见解归纳分析一下,主要以ISONIC系列仪器进行研究。 关键词 TOFD检测;ISONIC;参数设定;研究 TN914 A 1673-9671-(xx)071-0198-01 1 TOFD检测中的参数设置的重要性 TOFD检测扫描前主要注意的参数有:探头真实频率,脉冲宽度,重复频率,阻抗,感抗,滤波频率,信号平均值,时间窗口,增益等参数。 脉冲宽度是非常重要的,它有助于优化接受信号的形状。改变脉冲宽度可以导致不同周期部分减弱或加强。如果想使两个超声脉冲组成单一频率的信号,则应将脉冲宽度设置为所用探头频率周期的一半(例:5 MHz时使用100 ns);为了使信号持续最低周期数,应将脉冲宽度设置为所用探头频率的一个周期(例:5 MHz时使用200 ns)。

其中探头频率必须是探头实际频率,而不是探头的标称频率。在实际工作中必须通过试验来获得最优脉冲宽度。 如果使用手动采集数据,则需要注意脉冲重复频率PRF与探头移动速度必须相匹配,由于手动扫查时计算机不能判断和控制探头移动,只能由操作者正确选择PRF来保证能正常采集A扫数据。若采用编码器或者电机驱动,则PRF相对不重要,因计算机可以计算出探头位置,在规定的A扫采样率间隔采集数据。若PRF设置不当时将采集到空白A扫。 阻抗Tuning项匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 感抗damping项的单位是欧。知道了交流电的频率f(Hz)和线圈的电感L(H),就可以把感抗计算出来。在实际调节射频波波幅时,需要不断地改变感抗值来选择最优波幅,使图谱效果达到最佳。 在选择高低通滤波器频率时,推荐滤波器带通宽度的最小范围是0.5到2倍的探头中心频率。选择信号平均值至最低要求,以获得一个合理的信噪比,设置时间窗口覆盖A扫的有用部分,以便数字化。

超声波流量计检定规程

附件2: 明渠堰槽流量计型式评价大纲 1范围 本型式评价大纲适用于分类代码为12185000的明渠堰槽流量计(以下简称流量计)的型式评价。 2引用文件 本大纲引用了下列文件: JJG 711-1990 明渠堰槽流量计 GB/T 9359-2001 水文仪器基本环境试验条件及方法 GB/T 11606-2007 分析仪器环境试验方法 GB/T 17626.2电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.8电磁兼容试验和测量技术工频磁场抗扰度试验 JB/T 9329-1999 仪器仪表运输、运输贮存基本环境条件及试验方法 HJ/T 15-2007 环境保护产品技术要求超声波明渠污水流量计 凡是注日期的引用文件,仅注日期的版本适用于本规范。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。 3术语 3.1 明渠堰槽流量计weirs and flumes for flow measurement 在明渠中利用量水堰槽和水位~流量转换仪表(二次仪表)来测量流量的流量计。 3.2 水位stage 从测量基准点(或零点)高程算起,加上某一水面的距离后所得到的高程值,单位m。 3.3 喉道throat 测流堰槽内截面面积最小的区段。 4概述 4.1工作原理 在明渠中设置标准量水堰槽,液位计安装在规定位置上测量流过堰槽的水位。将测出的水位值代入相应的流量公式或经验关系式,即可计算出流量值。明渠堰槽

流量计的水位与流量呈单值关系。 4.2结构型式 明渠堰槽流量计包括:薄壁堰、宽顶堰、三角形剖面堰、流线型三角形剖面堰、平坦V形堰、巴歇尔(Parshall)槽、孙奈利(SANIIRI)槽、P-B(Palmer-Boulus)槽等槽体及与之配套的液位计和水位、流量显示仪表。 明渠堰槽流量计由量水堰槽和水位~流量转换仪表(二次仪表)所组成。水位~流量转换仪表包括:液位计、换算器和显示器。 为准确计量流量,明渠堰槽流量计还应包括:堰体上游行近段、下游渠槽衔接段和水位观测设施。 量水堰槽有多种形式,如:薄壁堰、宽顶堰、三角形剖面堰、喉道槽等,可根据现场条件、流量范围和使用要求选取。 5法制管理要求 5.1计量单位 流量计应采用法定计量单位。选用的流量计量单位为m3/h、m3/s或m3,温度单位为℃。 5.2 外部结构 流量计应具有防护装置及不经破坏不能打开的封印。凡能影响计量准确度的任何人为机械干扰,都将在流量计或保护标记上产生永久性的有形损坏痕迹。 5.3 标志 5.3.1计量法制标志的内容 试验样机应预留出位置,以标出制造计量器具许可证的标志和编号,流量计型式批准标志和编号以及产品合格印、证。 5.3.2铭牌 铭牌应包括: a)制造商名称(商标); b)产品名称及型号; c)出厂编号; d)制造计量器具许可证标志和编号; e)工作温度范围; f)在工作条件下的最大、最小流量或流速;

时差法超声波流量计

时差法超声波流量计

1 引言 超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表。凭借其非接触测流、仪表造价基本上与被测管道口径大小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统中被广泛应用。随着超声波流量计的技术的不断成熟和用户对它的逐渐认可,超声波流量计市场正以前所未有的发展速度向前发展。 2 超声波流量计分类 根据对信号检测的原理,超声波流量计可分为多普勒法、波束偏移法、噪声发、相关法等。 2.1 多普勒法 多普勒法是应用声学中多普勒原理,检测反射声波与发射声波之间的频率偏移量即可以测定流体的流动速度,进而测出流体流量。其工作原理如图1所示。 图1 多普勒法工作原理图 Fig.1 Theory of Doppler approach 管壁两侧分别装有发射和接收两个超声波换能器,发射器向含有固体颗粒的流体中发射频率为0f 的连续超声波。根据多普勒效应,在中间相交区的频率为1f ,接收器收到的经固体颗粒反射后的超声波频率为 2f ,当粒子流速均为u 时,其关系为: )sin 21()sin 1()sin 1(02012C u f C u f C u f f β ββ-≈-=- = (1) β sin 2)(020f C f f u -= (2) 多普勒法只能用来测量含有固体颗粒的流体,比如血液、污水、蒸汽等。 2.2 波束偏移法 波束偏移法是根据测量由于流体流动而引起的超声波束偏移角来确定流体流速的。其测量原理如图2所示。

图2 波束偏移法原理图 Fig.2 Theory of beam-excursion approach 流速越大,偏移角越大,而两接收器收到的信号强度差值也越大,因此测出两接收器的信号强度差值可确定流体的流速。波束偏移法用于测量准确度要求不高的高速流体流量测量。 3 时差法原理 3.1 时差法 时差法超声波流量计就是利用声波在流体中顺流、逆流传播相同距离时存在时间差,而传播时间的差异与被测流体的流动速度有关系,因此测出时间的差异就可以得出流体的流速。基本原理如图3所示。 图3 时差法工作原理图 Fig.3 Theory of transit-time method 超声波换能器A 、B 是一对可轮流发射或接收超声波脉冲的换能器。设超声波信号在被测流体中的速度为C ,顺流从A 到B 时间为1t ,逆流从B 到A 时间为2t ,外界传输延迟总时间为0t 。则由几何关系可知 01sin cos /t v C d t ++= θ θ (3) 02sin cos /t v C d t +-= θ θ (4) 由于2 C >> θ2 2 sin v ,则

用时差法测量超声声速

用超声波流量计测量超声声速 姓名:田田班级:网络(2)班学号:090602231 摘要:在大学物理实验里,我们学习了用共振干涉法和相位比较法测量超声声速,但在工程中运用的是更为精确的时差法测量超声声速。在此,我们可以使用超声波流量计进行测量。超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。根据对信号检测的原理超声流量计可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。 关键字:时差法,超声声速,超声波流量计 Use ultrasound flowmeter measurement ultrasonic velocity Name:TianTian class: network (2) class student id: 090602231 Abstract:in university physics experiment, we studied the use is also called the resonant interfering method and phase comparison ultrasonic velocity measurement, but in engineering is the use of more precise time difference method for measuring the ultrasonic velocity. Here, we can use the ultrasonic flowmeter measurements. Ultrasonic flowmeter is through testing the fluid flow of ultrasonic beam (or ultrasonic pulse) role to measure flow meter. According to the principle of signal detection ultrasound flowmeter can be divided into velocity differential method (direct time difference method, the method of time difference, the method of phase difference and frequency offset method), beam migration method, doppler method, cross-correlation method, space filter method and noise method, etc. Ultrasonic flowmeter and electromagnetic flowmeter is same, because instrument circulation channel not set any block up pieces, belong to the unimpeded flowmeter is suitable for solving the flow measurement

时差法超声波流量计_2006_硕士论文-

重庆大学硕士学位论文中文摘要 摘要 超声波流量计由于具有非接触式测量、测量范围宽、安装简便、以及特别适合大管径及危险性流体流量测量等优点,被供水、石油、化工、电力等部门广泛应用。然而,由于超声波流量计只是在近几十年才出现的一种新型仪表,还有很多不完善的地方,比如成本较高、精度不够等,有必要对其加以改进和提高。 本论文通过充分调研及查阅大量的文献资料,选择时差法超声波流量计为研究对象,对如何提高系统的精度及系统稳定性和可靠性问题进行了深入的理论研究,并设计了具体的硬件电路,主要工作及创新有: 1.研究了几种超声波流量计特别是时差法超声波流量计的测量原理,对超声波在流体中的传播特性及超声波换能器进行了较深入的研究;根据流体力学及物理学的有关知识,对超声波流量计进行了修正,并给出了不同情况下流量修正系数的计算公式; 2.针对传统时差法超声波流量计测量精度易受温度影响的问题,采用了改进型算法,在很大程度上避免了温度变化对测量精度的影响;介绍了几种常用提高超声波测时精度方法的同时,讨论并采用了超声波时差测量的新方法——多脉冲测量法的原理和应用; 3.结合课题的实际情况,对时差法超声波流量计的硬件电路进行了详细的分析和设计,讨论了器件的选择、参数计算等技术问题,设计出了匹配性能良好的发射、接收电路;在信号调理上,除了常规的滤波电路外,还采用了自动增益放大电路来提高信号的可靠性;而且,采用主从单片机协同工作的方式,提高了系统的稳定性;在软件方面,给出了系统的软件流程图并较详细地叙述了算法的实现; 4.针对流量计的工作环境,对流量计系统的抗干扰性进行了研究,并采取了相应的软、硬件措施; 5.对造成超声波流量测量误差的各种因素进行了详细的分析、研究,并应用误差理论,对时差法超声波流量计的各种可能的误差进行了误差分配和合成;对硬件电路和软件进行了试验性的验证,给出了实验结果。 关键词:超声波流量计,时差法,传播时间

超声波流量计的测量原理

超声波流量计的测量原理 超声波流量计 超声波流量计是一种非接触式流量测量仪表,近20多年发展迅速,已成为流量测量仪表中一种不可缺少的仪表。尤其在大管径管道流量测量,含有固体颗粒的两相流的流量测量,对腐蚀性介质和易燃易爆介质的流量侧量,河流和水渠等敞开渠道的流量及非充满水管的流量测量等方面,与其他测量方法相比,具有明显的优点。 超声波流量计的测量原理 超声波流量计是利用超声波在流体中的传播特性实现流量测量的。电磁流量计超声波在流体中传播时,将载上流体流速的信息。因此,通过接收到的超声波,就可以检测出被测流体的流速,再换算成流量,从而实现测量流量的目的。 利用超声波测量流且的方法很多。根据对信号检测的方式,大致可分为传播速度法、多普勒法、相关法、波束偏移法等。在工业生产测量中应用传播速度法最为普遍。 1.传播速度法 根据在流动流体中超声波顺流与逆流传播速度的视差与被测流体流速有关的原理,检测出流体流速的方法,称为传播速度法。很据具体测最参数的不同,又可分为时差法、相差法和频差法。 传播速度法的基本原理如图2.59所示。远传式水表从两个作为发射器的超声换能器T, , T,发出两束超声波脉冲。各自达到下、上游两个作为接收器的超声换能器R,和RZ。设流体静止时超声波声速为C,发射器与接收器的间距为L。则当流体速度为时,顺流的传播时间为式中,L, C均为常量,所以只要能测得时差At,就可得到流体流速。,进而求得流最p。这就是时差法。 时差法存在两方面间题:一是计算公式中包括有声速C,可拆卸螺翼式水表它受流体成分、沮度影响较大,从而给测量带来误差;另一是顺、逆传播时差At的数量级很小(约为10-’一10"9s),测量Lt,过去需用复杂的电子线路才能实现。 相差法是通过测量上述两超声波信号的相位差△lp来代替测量时间差6r的方法。如图2.61,设顺流方向声波信号的相位为9).二“:;逆流方向声波信号的相位为T2 =则结合式(2.56)可得逆、顺流信号的相位差为式中。—声波信号的角频率。 此方法可通过提高。来取得较大的相位差乙甲,滴水计数水表从而可提高测量精度。但此方法仍然没有解决计算公式中包含声速C的影响。 频差法是通过测量顺流和逆流时超声波脉冲的重复频率差来测量流量的方法。该方法是将发射器发射的超声波脉冲信号,经接受器接受并放大后,再次切换到发射器重新发射,形成“回鸣”,并如此重复进行。由于超声波脉冲信号是在发射器一流体一接收器一放大电路一发射器系统内循环的,故此法又称为声还法。脉冲在生还系统中一个来回所需时间的倒数称为声还频率(即重复频率),它的周

多普勒流量计与时差法流量计区别

多普勒流量计与PORAFLOW X超声波流量计区别: 1.多普勒流量计的测量原理,从配管外部发射超声波,超声波被流 体中的杂质反射后,作为接收信号被接受。利用多普勒效应产生的接收信号波的頻差和流速之间的比例关系,进行流速的测量。 a)基于该原理,(1)流体中含有杂质(包含气泡)是测量的前提 条件,适用于下水,不适用于上水;(2)由于无法明确接收的 反射波来自流体中的哪个部分,考虑到配管中的流速分布,如 杂质混入程度发生变化,将会对精度产生影响。 2.PORAFLOW X超声波流量计是利用横穿配管的超声波来测量流 速,所得到的是管内的平均流速,与多普勒式流量计相比较而言,是一种高精度的流量计。 3.多普勒流量计和时差法超声波流量计的区别: 超声波流量计采用时差式测量原理:一个探头发射信号穿过管壁、介质、另一侧管壁后,被另一个探头接收到,同时,第二个探头同样发射信号被第一个探头接收到,由于受到介质流速的影响,二者存在时间差Δt,根据推算可以得出流速V和时间差Δt之间的换算关系V=(C2/2L)×Δt,进而可以得到流量值Q。 超声波在传播路径上如遇到微小固体颗粒或气泡会被散射,因此用时差法测量含有这类东西的流体时就不能很好地工作,它只能用来测量比较洁净的流体。而多普勒法正是利用超声波被散射这一特点工作的,所以多普勒法正适合测量含固体颗粒或气泡的流体,但由于散射粒子或气泡是随机存在的,流体传声性能也有差别。如果是测量传

声性能差的流体,则在近管壁的低流速区散射较强;而测量传声性能好的流体在高流速区散射占优势,这就使得多普勒法的测量精度较低。虽然采用发射换能器与接收换能器分开的结构,这样可以只接收流速断面中间区域的散射,但与时差法比较测量精度还是低一些。 时差法流量计必须有一双传感器,每个包含压电晶体。一个传感器传输的声音,而作为接收器的其他行为。顾名思义,时差法流量计测量的时间,它需要从一个传感器发出的超声波信号,跨越管和第二个传感器接收。上游和下游的时间测量比较。没有流量,传输时间将在两个方向上一律平等。由于超声波信号必须跨越到管道,流体不得含有气泡或固体的浓度。否则,高频率的声音会衰减,过弱无法穿越。多普勒流量计使用单头传感器设计允许快速,简单,安装在管道外。单头传感器,包括发送和接收在同一个换能器的压电晶体。它是采用多普勒效应来测量流量的。多普勒流量计利用声波将返回到在改变频率变送器,如果在液体的反射运动中的主体,这种频移是液体的速度成正比。据精确测量仪器计算流速。因此,液体中含有气泡或固体必须采用多普勒测量工作。 多普勒超声波流量计适合测量较脏的液体如废水和泥浆或充气液体。而像干净的水,油和化学品液体可选用时差法超声波流量计来测量。

无损检测技术,衍射时差法超声TOFD检测基本原理

目录 1.TOFD检测技术定义及原理 2.TOFD检测技术基本知识 3.TOFD检测技术的盲区 4.TOFD检测技术的特点 5.几种典型缺陷TOFD图谱 1TOFD检测定义及基本原理 1.1TOFD检测的定义 衍射时差法超声检测(Time of Flight Diffraction ,英文缩写 TOFD)是依靠超声波与被检对象中的缺陷尖端或端部相互作用后发出的衍射信号来检测缺陷并对缺陷进行定位、定量的一种无损检测技术。 概况起来说 TOFD技术就是一种基于衍射信号实施检测的技术。 1.2 TOFD检测原理 1.2.1 衍射现象 衍射现象:是指波在传播过程中,遇到障碍物,能够绕过障碍物,产生偏离直线传播的现象。 缺陷端点衍射现象可以用惠更斯-菲涅尔原理解释: 惠更斯提出,介质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。 菲涅尔充实了惠更斯原理,他提出波前上每个面元都可视为子波的波源,在空间某点的振动是所有这些子波在该点产生的相干振动的叠加。

图1.1缺陷端部衍射信号的解释 由图示可见:当一束超声波入射到裂纹缺陷时: (1)在裂纹中部会形成有一定方向的反射波,其方向满足反射定律。反射波接近平面波,其波阵面是由众多子波源反射波叠加构成; (2)在裂纹尖端则没有叠加现象发生。这种裂纹尖端以独立的子波源发射的超声波即为衍射波。 衍射波的重要特点: 1.没有明显的方向性; 2.衍射波强度很弱。 衍射波的这两个特点都是由于裂纹尖端独立发射超声波没有波的叠加所造成的 图1.2裂纹端点衍射波特点 裂纹的上下端点都可以产生衍射波。 衍射波信号比反射波信号弱得多,且向空间的各个方向传播,即没有明显的指向性。

超声波流量计的测量原理简介

超声波流量计的测量原理简介 一、定义 超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。 二、工作原理 超声波流量计根据对信号检测的原理可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。 超声波流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的流量计之一。 1、时差法 当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,并且其传播时间的变化正比于液体的流速,其关系符合下列表达式:

其中 θ为声束与液体流动方向的夹角 M 为声束在液体的直线传播次数 D 为管道内径 Tup 为声束在正方向上的传播时间 Tdown为声束在逆方向上的传播时间 ΔT=Tup –Tdown 设静止流体中的声速为c,流体流动的速度为u,传播距离为L,当声波与流体流动方向一致时(即顺流方向),其传播速度为c+u;反之,传播速度为c-u.在相距为L的两处分别放置两组超声波发生

器和接收器(T1,R1)和(T2,R2)。当T1顺方向,T2逆方向发射超声波时,超声波分别到达接收器R1和R2所需要的时间为t1和t2,则 t1=L/(c+u) t2=L/(c-u) 由于在工业管道中,流体的流速比声速小的多,即c>>u,因此两者的时间差为▽t=t2-t1=2Lu/cc 由此可知,当声波在流体中的传播速度c已知时,只要测出时间差▽t即可求出流速u,进而可求出流量Q。利用这个原理进行流量测量的方法称为时差法。此外还可用相差法、频差法等。 2、相差法原理 如果超声波发射器发射连续超声脉冲或周期较长的脉冲列,则在顺流和逆流发射时所接收到的信号之间便要产生相位差▽O,即▽ O=w▽t=2wLu/cc 式中,w为超声波角频率。当测得▽O时即可求出u,进而求得流量Q。此法用测量相位差▽O代替了测量微小的时差▽t,有利于提高测量精度。但存在着声速c对测量结果的影响。 3、频差法原理 为了消除声速c的影响,常采用频差法。由前可知,上、下游接收器接受到的超声波的频率之差为▽f可用下式表示▽f=[(c+u)/L]-[(c-u)/L]=2u/L 由此可知,只要测得▽f就可求得流量Q,并且此法与声速无关。

超声波时差法检测技术在煤矿风速测量中的应用

周川云,黄强,张明明,等.超声波时差法检测技术在煤矿风速测量中的应用[J ].矿业安全与环保,2018,45(3):42-45.文章编号:1008-4495(2018)03-0042-04 开发设计 超声波时差法检测技术在煤矿风速测量中的应用 周川云1,2,黄 强1,2,张明明1,张远征1 (1.中煤科工集团重庆研究院有限公司,重庆400039;2.煤炭科学研究总院,北京100013) 摘要:针对在煤矿高湿二高粉尘复杂环境下,现有矿用风速检测技术难以高精度测量低风速的情况,为实现对煤矿巷道风速0~0.3m/s区间的高精度测量,克服传感器安装角度对风速测量精度的影响,提出将超声波时差法测风原理应用于煤矿风速测量的新方案三介绍了一种新型超声波传输时间精密测量算法,并优化了超声波立面对射探头结构和低功耗驱动方法三实验结果表明:该超声波时差法检测系统实现了对煤矿风速0~15.0m/s的高精度测量,能够较好地满足煤矿使用要求,具有良好的经济效益三 关键词:超声波时差法;传输时间;精密测量;巷道风速;低风速;插补细分 中图分类号:TD723 文献标志码:A 收稿日期:2017-09-26;2018-05-11修订基金项目:国家重点研发计划专项(2016YFC0801405)作者简介:周川云(1993 ),男,重庆大足人,硕士研究 生,主要从事安全监控技术及仪器仪表开发等方面的研究工 作三E-mail :964148259@qq.com三 The Application of Ultrasonic Time Difference Method in the Measurement of Wind Speed in Coal Mine ZHOU Chuanyun 1,2,HUANG Qiang 1,2,ZHANG Mingming 1,ZHANG Yuanzheng 1(https://www.360docs.net/doc/c015353849.html,TEG Chongqing Research Institute ,Chongqing 400039,China ;2.China Coal Research Institute ,Beijing 100013,China )Abstract :Inthecomplexenvironmentofhighhumidityandhighdustincoal mine,theexistingtechnologyofminingwindspeeddetectionisdifficulttoachievehighprecisionmeasurementoflowwindspeed.Inordertorealizethehighaccuracymeasurementofwindspeedofroadwayfrom0m/sto0.3m/sandavoidtheinfluenceofthesensorinstallationangleonthemeasurement,thispaperpresentanewmethodforapplyingtheprincipleofultrasonic timedifferencemethodtothemeasurementofwindspeedincoal mine,introducedanewalgorithmofprecisionmeasurementonultrasonic transmissiontime.Furthermore,thestructureofultrasonic elevationandlowpowerconsumptionwasoptimized.Theresultsshowedthatthisdetectionsystemachieveshighprecisionmeasurementofwindspeedfrom0m/sto15.0m/sincoal mine,itcanmeettherequirementsofthecoal minebetterandhasgoodeconomic benefit. Keywords :ultrasonic timedifferencemethod;transmissiontime;precisionmeasurement;roadwaywindspeed;lowwindspeed;interpolationsubdivision 近年来,超声波时差法测风技术成为众多科研工作者的研究重点,许多成果被广泛地应用于民用 领域,如测距二风速测量二流量测量等[1-3],并在这些领域中体现出了一定的优势和研发潜力三由于煤矿 井下环境复杂,对仪器仪表的可靠性二环境适应性都有更高的要求,目前超声波时差法测风技术在煤矿风速检测中尚未有成熟应用的案例三煤矿巷道风速的精确测量是煤矿安全生产的必要保障之一,当前一般采用机械式风速测量仪二超声波涡街式风速测量仪二皮托管差压式风速测量仪等 几种常规矿用测量传感器进行煤矿风速检测[4],其各自在煤矿安全监控系统中的不同发展阶段分别 发挥了重要的作用[3]三但现有风速测量技术无法测量到‘煤矿安全规程“规定的煤矿巷道最低允许 风速0.15m/s,同时传感器安装方向产生的误差 会影响风速测量的准确性[5-7],不能完全满足煤矿四 24四Vol.45No.3Jun.2018 矿业安全与环保MININGSAFETY&ENVIRONMENTAL PROTECTION 第45卷 第3期2018年6月万方数据

相关文档
最新文档