绝对值不等式-高考历年真题

绝对值不等式-高考历年真题
绝对值不等式-高考历年真题

温馨提示: 高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。 【考点35】绝对值不等式

2009年考题 1、(2009全国Ⅰ)不等式11

X X +-<1的解集为( )(A ){x }}01{1x x x ???U (B){}01x x ??(C ){}10x x -?? (D){}0x x ?

【解析】选D.

0040)1()1(|1||1|11122

2、(2009重庆高考)不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为

A .(,1][4,)-∞-+∞U

B .(,2][5,)-∞-+∞U

C .[1,2]

D .(,1][2,)-∞+∞U

【解析】选A.因为24314313x x x x a a -≤+--≤+--≤-对对任意x 恒成立,所以 223434041a a a a a a -≥--≥≥≤-即,解得或.

3、(2009广东高考)不等式112

x x +≥+的实数解为 . 【解析】112x x +≥+2302)2()1(0

22122-≤????≠++≥+????≠++≥+?x x x x x x x 且2-≠x . 答案:32

x ≤-且2-≠x . 4、(2009山东高考)不等式0212<---x x 的解集为 .

【解析】原不等式等价于不等式组①221(2)0x x x ≥??---

x x x ?<

或③12(21)(2)0

x x x ?≤???--+-

答案:{|11}x x -<<

5、(2009北京高考)若函数1,0()1(),03

x x x f x x ?

x f x x x

????. ∴不等式1|()|3

f x ≥

的解集为{}|31x x -≤≤,∴应填[]3,1-. 答案:[]3,1-

6、(2009福建高考)解不等式∣2x-1∣<∣x ∣+1

【解析】当x<0时,原不等式可化为211,0x x x -+<-+>解得

又0,x x <∴Q 不存在;

当102x ≤<时,原不等式可化为211,0x x x -+<+>解得 又110,0;22

x x ≤<∴<

x x x x x x ≥-<+<≥∴≤

7、(2009海南宁夏高考)如图,O 为数轴的原点,A,B,M 为数轴上三点,C 为线段OM 上的动点,设x 表示C 与原点的距离,y 表示C 到A 距离4倍与C 到B 距离的6倍的和.

(1)将y 表示成x 的函数;

(2)要使y 的值不超过70,x 应该在什么范围内取值?

高考数学经典专题:绝对值不等式含参数成立问题(含详解答案)

高考数学经典专题:绝对值不等式中含参数成立问题 1.已知函数()|1||2|f x x x m m =-+-∈R ,. (1)当3m =时,解不等式()3f x ≥; (2)证明:当0m <时,总存在0x 使00()21f x x <-+成立 2.已知函数()32f x x =-. (1)若不等式213f x t ? ?+≥- ???的解集为11,,33????-∞-?+∞ ??????? ,求实数t 的值; (2)若不等式()3133y y f x x m -≤+++?对任意x ,y 恒成立,求实数m 的取值范 围. 3.已知函数()2f x x a =-,()|1|g x a x =-,a R ∈. (Ⅰ)若1a =,求满足()(1)1g x g x +->的实数x 的取值范围; (Ⅱ)设()()()h x f x g x =+,若存在12,[2,2]x x ∈-,使得()()216h x h x -≥成立,试求实数a 的取值范围. 4.已知()|3|f x ax =-,不等式()6f x …的解集是{|13}x x -剟 . (1)求a 的值; (2)若()()3 f x f x k +-<存在实数解,求实数k 的取值范围. 5.已知函数f (x )=|2x ﹣a |+|x ﹣a +1|. (1)当a =4时,求解不等式f (x )≥8; (2)已知关于x 的不等式f (x )2 2 a ≥在R 上恒成立,求参数a 的取值范围. 6.已知定义在R 上的函数2 ()|24|f x x a x a =-+-. (1)当1a =时,解不等式()5f x ≥; (2)若2()4f x a -≥对任意x ∈R 恒成立,求a 的取值范围. 7.已知,a b 均为实数,且3410a b += . (Ⅰ)求22a b +的最小值; (Ⅱ)若2232x x a b +--≤+对任意的,a b ∈R 恒成立,求实数x 的取值范围.

绝对值不等式,高考历年真题

温馨提示: 高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。 【考点35】绝对值不等式 2009年考题 1、(2009全国Ⅰ)不等式 1 1 X X +-<1的解集为( )(A ){x }}01{1x x x ??? (B){ }01x x ??(C ){}10x x -?? (D){ }0x x ? 【解析】选D. 0040)1()1(|1||1|11 1 22

【解析】原不等式等价于不等式组①221(2)0x x x ≥??---解得 又 0,x x <∴不存在; 当1 02 x ≤< 时,原不等式可化为211,0x x x -+<+>解得 又11 0,0;22 x x ≤<∴<< 当1 11 ,211,222 22 x x x x x x ≥-<+<≥∴≤<原不等式可化为解得又 综上,原不等式的解集为|0 2.x x <<

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

绝对值不等式例题解析

典型例题一 例1 解不等式2321-->+x x 分析:解含有绝对值的不等式,通常是利用绝对值概念? ??<-≥=)0()0(a a a a a ,将不等式中的绝对符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. 解:令01=+x ,∴ 1-=x ,令032=-x ,∴2 3=x ,如图所示. (1)当1-≤x 时原不等式化为2)32()1(--->+-x x ∴2>x 与条件矛盾,无解. (2)当2 31≤ <-x 时,原不等式化为2)32(1--->+x x . ∴ 0>x ,故2 30≤x 时,原不等式化为 2321-->+x x .∴6<-+-有解的条件为32 7<-a ,即1>a ; 当43≤≤x 时,得a x x <-+-)3()4(,即1>a ;

当4>x 时,得a x x <-+-)3()4(,即27+< a x ,有解的条件为42 7>+a ∴1>a . 以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为1>a . 解法二:设数x ,3,4在数轴上对应的点分别为P ,A ,B ,如图,由绝对值的几何定义,原不等式a PB PA <+的意义是P 到A 、B 的距离之和小于a . 因为1=AB ,故数轴上任一点到A 、B 距离之和大于(等于1),即134≥-+-x x ,故当1>a 时,a x x <-+-34有解. 典型例题三 例3 已知),0(,20,2M y a b y M a x ∈ε<-<ε<-,求证ε<-ab xy . 分析:根据条件凑b y a x --,. 证明:ab ya ya xy ab xy -+-=- ε=ε?+ε?<-?+-≤-+-=a a M M b y a a x y b y a a x y 22)()(. 说明:这是为学习极限证明作的准备,要习惯用凑的方法. 典型例题四 例4 求证 b a a b a -≥-22 分析:使用分析法 证明 ∵0>a ,∴只需证明b a a b a -≥-222,两边同除2 b ,即只需证明 b a b a b b a -≥-2222 2,即 b a b a b a -≥-22)(1)( 当1≥b a 时,b a b a b a b a -≥-=-222)(1)(1)(;当1

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

绝对值不等式解法问题—7大类型专题

绝对值不等式解法问题—7大类型 类型一:形如型不等式 解法:根据的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当时, 或 2、当 ,无解 使的解集 3、当时, ,无解 使成立的的解集. 例1不等式的解集为() A. B. C. D. 解: 因为,所以. 即 , 解得:

, 所以,故选A. 类型二:形如型不等式 解法:将原不等式转化为以下不等式进行求解: 或 需要提醒一点的是,该类型的不等式容易错解为: 例2 不等式的解集为() A. B. C. D. 解: 或 或,故选D 类型三:形如,型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把看成一个大于零的常数进行求解,即: , 或 例3设函数,若,则的取值范围是 解:

,故填:. 类型四:形如型不等式 解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即: 例4不等式的解集为 解: 所以原不等式的解集为 类型五:形如型不等式 解法:先利用绝对值的定义进行判断,再进一步求解,即: ,无解 例5解关于的不等式 解:

(1)当时,原不等式等价于: (2)当时,原不等式等价于: (3)当时,原不等式等价于: 或 或 综上所述 (1)当时,原不等式的解集为: (2)当时,原不等式的解集为: (3)当时,原不等式的解集为: 类型六:形如使恒成立型不等式. 解法:利用和差关系式:,结合极端性原理

即可解得,即: ; ; 例6不等式对任意的实数恒成立,则实数a 的取值范围是() A. B. C. D. 解: 设函数 所以 而不等式对任意的实数恒成立 故,故选择A 类型七:形如 , , 1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解

高考中常见的七种含有绝对值的不等式的解法

常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x , 所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ???<<-∈2 1x R x , 所以 )2,1(-∈x ,故选A.

类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 不等式311<+型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下 解法:把)(x g 看成一个大于零的常数a 进行求解,即: )()()()()(x g x f x g x g x f <<-?<, )()()()(x g x f x g x f >?>或)()(x g x f -< 例3 设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是 解: 53125)(≤++-?≤x x x f 2122212+-≤-≤-?+-≤-?x x x x x ???+-≤--≥-?2 12212x x x x 1111≤≤-?? ??≤-≥?x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

2020高考数学---均值不等式

第45炼 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >= (1)调和平均数:12 111n n n H a a a = ++ + (2 )几何平均数:n G = (3)代数平均数:12n n a a a A n ++ + = (4)平方平均数: n Q = 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a === 特别的,当2n =时,22G A ≤?2 a b + ≤ 即基本不等式 3、基本不等式的几个变形: (1)),0a b a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 3y x x =+≥,右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两 个 2x ,则22422y x x x x x =+=++≥=

② 乘积的式子→和为定值,例如3 02 x << ,求()()32f x x x =-的最大值。则考虑变积为和后保证x 能够消掉,所以()()()2 112329 322322228 x x f x x x x x +-??=-=?-≤= ???(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点: ① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突) ② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。 5、常见求最值的题目类型 (1)构造乘积与和为定值的情况,如上面所举的两个例子 (2)已知1ax by +=(a 为常数),求 m n x y +的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解。 例如:已知0,0,231x y x y >>+=,求 32 x y +的最小值 解: ()3232942366y x x y x y x y x y ??+=++=+++ ??? 94121224y x x y =+ +≥+= (3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值 解:()2 2 21 1222 228 x y x y xy x y ++??=??≤ = ? ?? 所以()() 2 224248 x y x y xy x y +++=?++ ≥ 即()()2 282320x y x y +++-≥,可解得24x y +≥,即()min 24x y +=

高考中常见的七种含有绝对值的不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x , 所以 222<-<-x x . 即 ?????<-->+-02 222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A.

类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下 解法:把)(x g 看成一个大于零的常数a 进行求解,即: )()()()()(x g x f x g x g x f <<-?<, )()()()(x g x f x g x f >?>或)()(x g x f -< 例3 (2007年广东高考卷)设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是 解: 53125)(≤++-?≤x x x f 2122212+-≤-≤-?+-≤-?x x x x x ? ??+-≤--≥-?212212x x x x 111 1≤≤-????≤-≥?x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式

高中数学必修5 均值不等式

均值不等式复习(学案) 基础知识回顾 1.均值不等式:ab ≤ a +b 2 (1)均值不等式成立的条件:_______________. (2)等号成立的条件:当且仅当____________时取等号. 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ). (2)b a +a b ≥2(a ,b 同号). (3)ab ≤? ????a +b 22(a ,b ∈R ). (4) a 2+ b 22≥? ?? ??a +b 22 (a ,b ∈R ). 注意:使用均值不等式求最值,前提是“一正、二定、三相等” 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,均值不等式可叙述为两个正数的 算术平均数大于或等于它的几何平均数. 4.利用均值不等式求最值问题 已知x >0,y >0,则 (1) 如果积xy 是定值p ,那么当且仅当________时,__________有最_____值是_____(简记:积定和 最小) (2)如果和x +y 是定值s ,那么当且仅当_____时,____有最______值是_______.(简记:和定积最大) 双基自测 1.函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2 +1x 2+1≥1.其中正确的个数是( ). A .0 B .1 C .2 D .3 3.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2 +b 2 有最小值 22 4.若实数b a ,满足2=+b a ,则b a 33+的最小值是( ) A .18 B. 6 C. 32 D. 432 5.若正数b a ,满足3++=b a ab ,则ab 的取值范围是 . 6.若+ ∈R y x ,,且12=+y x ,则 y x 1 1+的最小值为 . 典型例题 类型一 利用均值不等式求最值 1.若函数f (x )=x +1 x -2 (x >2)的最小值为____________. 2.已知t >0,则函数y =t 2-4t +1 t 的最小值为________.

高考知识点绝对值不等式

第1节绝对值不等式 最新考纲 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a. 知识梳理 1.绝对值不等式的解法 (1)含绝对值的不等式|x|a的解集 (2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法 ①|ax+b|≤c?-c≤ax+b≤c; ②|ax+b|≥c?ax+b≥c或ax+b≤-c; (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想; ③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质 (1)如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立. (2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.

诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)若|x|>c的解集为R,则c≤0.() (2)不等式|x-1|+|x+2|<2的解集为?.() (3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.() (4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.() (5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.() 答案(1)×(2)√(3)×(4)×(5)√ 2.不等式|x-1|-|x-5|<2的解集是() A.(-∞,4) B.(-∞,1) C.(1,4) D.(1,5) 解析①当x≤1时,原不等式可化为1-x-(5-x)<2, ∴-4<2,不等式恒成立,∴x≤1. ②当10,|x-1|

高考数学均值不等式专题含答案家教文理通用

高考:均值不等式专题 ◆知识梳理 1.常见基本不等式 2 ,0, a R a ∈≥0 a ≥222 ()22 a b a b ++≥, 222a b c ab bc ac ++≥++ 若a>b>0,m>0,则 b b m a a m +< +; 若a,b 同号且a>b 则11 a b <。 ab b a R b a 2,,2 2≥+∈则;.2,,22ab b a R b a -≥+∈ 2.均值不等式: 两个正数的均值不等式:ab b a ≥+2 变形ab b a 2≥+,2 2a b ab +?? ≤ ???, ab b a 222≥+等。 3.最值定理:设,0,x y x y >+ ≥由 (1)如果x,y 是正数,且积(xy P =是定值),则 时,x y +和有最小值 (2)如果x,y 是正数和(x y S +=是定值),则 时,22 S xy 积有最大值() 4.利用均值不等式可以证明不等式,求最值、取值范围,比较大小等。 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b +≤≤≤ 2 2 2b a +。 ◆课前热身 1. 已知,x y R + ∈,且41x y +=,则x y ?的最大值为 . 2. 2. 若0,0x y >>1x y +=,则 41 x y +的最小值为 . 3. 已知:0>>x y ,且1=xy ,则22 x y x y +-的最小值是 . 4. 4. 已知下列四个结论 ①当2 lg 1lg ,10≥+≠>x x x x 时且;②02x >≥当时; ③x x x 1,2+ ≥时当的最小值为2;④当x x x 1 ,20-≤<时无最大值. 则其中正确的个数为 ◆考点剖析 一、基础题型。 1.直接利用均值不等式求解最值。 例1:(2010年高考山东文科卷第14题)已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 。

高中数学 绝对值不等式高考题合集详解

绝对值不等式 1.(2015·山东卷)不等式|x -1|-|x -5|<2的解集是( ) A .(-∞,4) B .(-∞,1) C .(1,4) D .(1,5) 解析 当x ≤1时,不等式可化为(1-x )-(5-x )<2,即-4<2,满足题意; 当1a 的解集为M ,且2?M ,则a 的取值范围为( ) A.? ????14,+∞ B.???? ??14,+∞ C.? ????0,12 D.? ?? ??0,12 解析 由已知2?M ,可得2∈?R M 。 于是有???? ??2a -12≤a , 即-a ≤2a -12≤a ,解得a ≥14,故选B 。 答案 B 3.对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3 D .4

解析 ∵|x -1|+|x |+|y -1|+|y +1| =(|1-x |+|x |)+(|1-y |+|1+y |) ≥|(1-x )+x |+|(1-y )+(1+y )|=1+2=3, 当且仅当(1-x )·x ≥0,(1-y )·(1+y )≥0,即0≤x ≤1,-1≤y ≤1时取等号, ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3。 答案 C 4.(2015·重庆卷)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =________。 解析 当a ≤-1时, f (x )=|x +1|+2|x -a |=????? -3x +2a -1,x -1, 所以f (x )在(-∞,a )上单调递减,在(a ,+∞)上单调递增, 则f (x )在x =a 处取得最小值f (a )=-a -1, 由-a -1=5得a =-6,符合a ≤-1; 当a >-1时, f (x )=|x +1|+2|x -a | =????? -3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a , 3x -2a +1,x >a 。 所以f (x )在(-∞,a )上单调递减,在(a ,+∞)上单调递增, 则f (x )在x =a 处取最小值f (a )=a +1, 由a +1=5,得a =4,符合a >-1。 综上,实数a 的值为-6或4。 答案 -6或4

高考数学含绝对值不等式专题训练(一)

1、(长葛市第三实验高中2012届高三数学调研) 已知函数()|2|,()|3|.f x x g x x m =-=-++ (1)解关于x 的不等式()10()f x a a R +->∈; (2)若函数()f x 的图象恒在函数()g x 图象的上方,求m 的取值范围。 【解析】(1)不等式()10f x a +->,即210x a -+->。 当1a =时,不等式的解集是(,2)(2,)-∞+∞ ; 当1a >时,不等式的解集为R ; 当1a <时,即21x a ->-,即21x a -<-或者21x a ->-,即1x a <+或者3x a >-,解集为(,1)(3,)a a -∞+-+∞ 。 (5分) (2)函数()f x 的图象恒在函数()g x 图象的上方,即23x x m ->-++对任意实数x 恒成立。即23x x m -++>对任意实数x 恒成立。 由于23(2)(3)5x x x x -++≥--+=,故只要5m <。 所以m 的取值范围是(,5)-∞。 2、(濮阳市华龙区高级中学2012届高三数学上学期摸底) 3、(哈尔滨市第六中学2011届高三数学第三次模拟) 若关于x 的方程 243x x a a -++-=0有实根 (1)求实数a 的取值集合A (2)若存在a A ∈,使得不等式22120t a t -+<成立,求实数t 的取值范围。 (1)0)3(416≥-+-=?a a 即 27 21≤≤-a 所以 ??? ??? -=27,21 A ---------5分 (2)令212)(t t a a f ++-= 即 0)(m in

【新人教】高考数学专题复习《含绝对值的不等式》测试题2013

第3课时 含绝对值的不等式的解法 一.课题:含绝对值的不等式的解法 二.教学目标:掌握一些简单的含绝对值的不等式的解法. 三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次 (二次)不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解 过程中,集合间的交、并等各种运算. 四.教学过程: (一)主要知识: 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2.当0c >时,||ax b c ax b c +>?+>或ax b c +<-,||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. (三)例题分析: 例1.解下列不等式: (1)4|23|7x <-≤;(2)|2||1|x x -<+;(3)|21||2|4x x ++->. 解:(1)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为 17[2,)(,5]22 -- . (2)原不等式可化为22(2)(1)x x -<+,即12x >,∴原不等式解集为1[,)2+∞. (3)当12x ≤- 时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122 x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53 x >,此时2x ≥. 综上可得:原不等式的解集为(,1)(1,)-∞-+∞ . 例2.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞; (2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞. 解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|3x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <; (2)与(1)同理可得|1||3|4x x --+≤,∴4a >. 例3.设0,0a b >>,解关于x 的不等式:|2|ax bx -≥. 解:原不等式可化为2ax bx -≥或2ax bx -≤-,即()2a b x -≥①或

相关文档
最新文档