宽视场成像光谱仪前置远心离轴三反光学系统设计

宽视场成像光谱仪前置远心离轴三反光学系统设计
宽视场成像光谱仪前置远心离轴三反光学系统设计

光谱成像技术的分类

光谱成像技术的分类 光谱成像技术,有时又称成像光谱技术,融合了光谱技术和成像技术,交叉涵盖了光谱学、光学、计算机技术、电子技术和精密机械等多种学科,能够同时获得目标的两维空间信息和一维光谱信息。 光谱成像技术发展到今天,出现的光谱成像仪的种类和数量己经具有较大规模,因而可以从光谱分辨率、信息获取方式(扫描方式)、分光原理和重构理论等不同的视角对光谱成像技术进行分类。 1基于光谱分辨率分类 光谱成像技术针对光谱分辨能力的不同,可分为多光谱(Multi-spectral),高光谱(Hyper- spectral)以及超光谱(Ultra-spectral)。多光谱的谱段数一般只有几十个,高光谱的谱段数可达到几百个,而超光谱一般指谱段数上千个。它们的区别如表1所示。 表1多、高、超光谱的比较 分类分辨 率 通道数光谱典型例子 多光谱(Multi-spectral)10-1λ 量级 5—30ETM+ ASTER 高光谱(Hyper-spectral)10-2λ 量级 100— 200 AVIRIS 超光谱(Ultra-spectral)10-3λ 量级 1000— 10000 GIFTS

2 基于信息获取方式分类 光谱成像仪需要对三维“数据立方”进行探测,而现今的探测器最多能进行二维探测。要想获得完整的三维数据,理论上至少需增加一维的空间扫描或光谱扫描。光谱成像技术获取图谱信息的主要方式有:挥扫式(Whiskbroom )、推扫式(Pushbroom)、凝视式(Staring)以及快照式(Snapshot)。 挥扫式成像光谱仪的光谱成像系统只对空间中某点进行光谱探测,通过沿轨和穿轨两个方向扫描获取完整的二维空间信息,其信息获取方式如图1a所示。AVIRIS就是通过挥扫成像[1]。 推扫式光谱成像系统探测空间中一维线视场(图1b中的X方向)的光谱,通过沿轨方向(Y方向)扫描实现二维空间信息的获取,芬兰国立技术研究中心实验室研制的AISA就是典型的推扫式成像光谱仪[2]。 凝视式光谱成像系统可对固定窗口目标成像,采用滤光的方式分离并获取不同波段的图像信息,再将不同波段的图像堆叠成“数据立方”。如图1c中所示,该类成像光谱仪实际上是采用光谱维扫描的方式实现图谱“数据立方”的获取。 图1 典型的光谱成像过程:a挥扫式;b推扫式;c凝视式;d快照式 快照式是一种新兴的图谱信息获取方式,它不需扫描便可获取三维图谱信息。快照式光谱成像技术实现方式主要有三种:一种是视场分割三维成像的方式,利用玻璃堆进视场分割,再利用分光器件将三维信息展开到二维平面进行面探测

镜头设计

变焦镜头设计案例 本案例的公开已征得客户的同意,但关键参数无法公开,且约为90%的设计进程。 一、设计应用 单透镜反射式照相机,全画幅(像面对角线为43mm)。 二、设计要求 适用波长:可见光 EFL:75~150mm 镜片数量:不超过12片 镜片面型:全部球面 镜片材料:光学玻璃 总长度:小于254mm 最大光圈:2 后截距:大于40mm 分辨率:大于80lp/mm@0.3 调焦方式:内调焦

可加入可变光圈 三、设计特点 采用机械补偿的变焦方式,这样做与光学补偿相比,可以使系统长度更短。而且,像面可以保持不变。然而,机械补偿方式的弊端就是给机械设计带来更多难度,因每个变焦组的移动量不成线性关系,必须加入空间凸轮。 四、设计结果

上海荧沃光电科技有限公司依托北京航天大学和杭州电子科技大学,设计团队由光学工程,电子专业硕、博士和教授组成,有近十年的多领域的光学设计经验,可根据客户订制要求设计各种镜头设计,激光光路设计,望远系统,扫描光路设计和LED透镜,手电筒反光碗,路灯透镜设计加工等。我们主要运用ZEMAX、Code V 、TracePro、Lighttool等国外优秀光学设计软计,为客户提供精准、高效、低成本的光学及机械设计方案和技术支持。 照明光学业务: 订制远、近红外透镜,玻璃透镜,安防透镜,车灯透镜,LED透镜光学设计,透镜LED,直下式LED背光透镜光学设计,LED透镜设计,LED透镜光学设计, COB透镜,LED透镜,凹面透镜,凸面透镜,菲尼尔透镜光学设计与加工;路灯透镜, PMMA透镜, PC透镜, 鼠标透镜,非球面透镜设计及加工生产;透光率极高,光效极度好,无黄斑。 成像光学设计:手机镜头,照相镜头,PDA镜头设计,望远镜头,扫描仪镜头,显微镜头,投影镜头,工业镜头等镜头的设计、加工。

用zemax设计光学显微镜光学系统设计实验报告

课 程 设 计 光学显微镜设计 设计题目 学 号 专业班级 指导教师 学生姓名 测量显微镜

根据学号得到自己设计内容的数据要求: 1.目镜放大率10(即焦距25) 2.目镜最后一面到物面距离110 3.对准精度1.2微米 按照实验步骤,先计算好外形尺寸。然后根据数据要求选取目镜与物镜。 我先做物镜。因为这个镜片比较少。按物镜放大率选好物镜后,将参数输入。简单优化,得到比较接近自己要求的物镜。 然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。将曲率半径设为可变量,调入默认的优化函数进行优化。发现“优化不了”,所有参数均没有变化。而且发现把光源放在“焦点”位置,目镜出射的不是平行光。我百思不得其解。开始认为镜头库的参数可能有问题。最后我问老师,老师解释,那个所谓的“焦点”其实不是焦点,我错误的把“焦点”到目镜第一个面的距离当成了焦距。这个目镜是有一定厚度的,不能简单等效成薄透镜。焦点到节点的距离才是焦距。经过老师指点后,我尝试调节光源到目镜第一面的距离,想得到出射平行光,从而找到焦点。但这个寻找是很费力气的,事倍功半。老师建议我把目镜的参数倒着顺序输入参数。然后用平行光入射,然后可以轻松找到焦点。 但是,按照这个方法,倒着输入参数,把光源放在无限

远的地方(平行光入射),发现光线是发散的。不解。还是按照原来的方法。把光源放在目镜焦点上,尽量使之出射平行光。然后把它与优化好的物镜拼接起来。后来,加入理想透镜(会聚平行光线),加以优化。 还有一个问题,就是选物镜的时候,发现放大倍率符合了自己的需求,但工作距离与共轭距,不符合自己的要求。这个问题在课堂上问过老师,后来经老师指点,通过总体缩放解决。 物镜参数及优化函数

广角镜头设计

特广角镜头的预研报告 产品所需要的监控成像的专用特广角镜头进行了预研,现将预研结果报告如下: 一、问题的提出和技术要求 根据介绍,在开发某游戏设备时,其中需要用到摄像头摄取图象以便进行后续的图象识别。根据他们的市场定位,希望摄像头安装的位置越低越好,同时保持效果不变。工作时所需要拍摄的图象如下: 提出的技术要求如下: 1、被摄物整体面范围尺寸:480x480mm; 2、图像传感器:1/4英寸(CMOS),30万像素; 3、镜头离被摄物面的位置:480×480mm面的一侧,离边缘50mm以内,高度为250mm之内; 4、图像清晰度:能分辨物面上1mm的细节; 5、图像校正畸变:无梯形失真,线性畸变小于5% 对矩形网格成像无变形; 6、景深大于5mm,离镜头近的物体与远的物体成像清晰度无差别; 7、镜片个数:3-5片,(含玻璃和塑料两种透镜)外壳为塑料,安装方式为螺纹连接; 8、成品单价:成本低廉,在大规模供货时(每月10K以上),每只镜头成品(包括所有镜

片及外壳)批发单价10元人民币以下。 二、解决问题的几种途径 1. 用普通的摄像镜头 用普通的摄像镜头拍摄画面的话,由于普通镜头视场角太小,同时由于镜头处在被摄面的边缘会产生很大的畸变,尤其是梯形畸变,如下图所示: 2 用倾斜CMOS成像面的办法消除畸变 用普通的摄像镜头对准画面中心,由于镜头光轴和被摄面不垂直,会产生很大的固有畸变,这样的畸变,可以用倾斜CMOS成像面的办法消除,如下图所示:

用这样的办法,虽然能消除畸变,但是由于整个光学系统失去了轴对称,像差校正困

难,造成像面模糊,无法识别细节。 3用传统的球面特广角镜头成像 由于非轴对称的光学系统难于校正像差,所以只有采用轴对称的光学系统的才能解决问题。 所谓特广角镜头,是指视场角超过90度的广角镜头,在设计上有很大难度。广角镜头的畸变很大,为了消除畸变,镜头往往需要十多片镜片组成(如下图),它的成本很高,无法推广。 另一种消除畸变的球面广角镜头,是对称设计的镜头,从光学理论可知结构对称的镜头可以自动消除畸变。但是由于本镜头的焦距很小( 约为1~2mm ),对称设计的结果造成后截距很短( 约在0.05mm ),装配调整困难,并且透镜的表面曲率半径很小,在1mm以下,这样小的半径在模具制造和注塑工艺上都十分困难,甚至无法加工,该方案的光学原理如下:

800 万像素手机镜头的zemax设计

800 万像素手机镜头的zemax设计2012.03.13 评论关闭 4,757 views 目录 [隐藏] , 1引言 , 2, 感光器件的选取 , 3, 设计指标 , 4, 设计思路 , 4.1,(, 材料选取 , 4.2,(, 初始结构选取 , 4.3,(, 优化过程 , 5, 设计结果 , 5.1,(, 光学调制传递函数 , 5.2,(, 点列图 , 5.3,(, 场曲和畸变 , 5.4,(, 色差和球差 , 5.5,(, 相对照度 , 6, 公差分析 , 7, 结论 随着手机市场对高像素手机镜头的需求增大,利用,,,,,光学设计软件设计一款大相对孔径,,,万像素的广角镜头。该镜头由,片非球面玻璃镜片,,片非球面塑料镜片,,片滤光镜片和,片保护玻璃构成。镜头光圈值,为,(,,,视场角,ω为,,?,焦距为,(,,,,,后工作距离为,(,,,。采用,,,,,, 公司的,,,,,,,型号,,,

万像素传感器,最大分辨率为,,,,×,,,,,最小像素为,(,μ,。设计结果显示:各视场的均方根差(,,,)半径小于,(,μ,,在奈奎斯特频率,,,处大多数视场的,,,值均大于,(,,畸变小于, ,,,, 畸变小于,(, ,。关键词:手机镜头;光学设计;,,,万像素;,,,,, 引言 手机镜头的研发工作始于,,世纪,,年代,世界上第一款照相手机是由夏普,,,,,,(现在的日本沃达丰)在,,,,年推出的,,,,,手机,它只搭载了一个,,万像素的,,,,数码相机镜头。随后各大手机知名制造厂商纷纷开始研发手机摄像功能。,,,,年,月,,日夏普制造了,,,万素的,,,,,,目前照相手机的市场占有率几乎是,,,,,特别是带有高像素,,、,,、,,、,, 的镜头就成为镜头研发的热点,,,。目前,,,万像素的手机市场占有率还不是太多,但随着人们对高端手机的需求量越来越大,,,,万像素手机肯定是主流趋势。鉴于此,在选用合理初始结构的基础上,优化出了一款,,,万像素的手机镜头。 , 感光器件的选取 感光器件有,,,(电荷耦合器件)和,,,,(互补金属氧化物半导体)两种。,,,,器 件产生的图像质量相比于,,,来说要低一些,到目前为止,大多数消费级别以及高端数码相机都使用,,,作为感光元件;,,,,感应器则作为低端产品 应用于一些摄像镜头上,目前随着,,,,技术的日益成熟,也有一些高端数码产品使用,,,,器件。,,,,相对于,,,有很多优点,比如价格低、集成化程度高、体积小、质量轻、功耗低、无光晕、高读出速率等,,,。所以很多手机生产商都采用,,,,器件作为手机镜头的图像传感器。目前,,,,芯片的尺寸越做越小,相应的像素尺寸也越来越小,分辨率反而越来越高。 现在国际上,,,,生产厂家主要有,,,,,,、,,,,,,,,,,、,,,,;,,、,,,,,,,等,本文采用,,,,,,公司的 ,,,,,,, 型号 ,(,,,,(,,,(,,,;,),该款传感器采用超低

成像光谱仪及其应用概述

成像光谱仪简介及其应用概述 成像光谱仪:将成像技术和光谱技术结合在一起,在探测物体空间特征的同时并对每个空间像元色散形成几十个到上百个波段带宽为10nm左右的连续光谱覆盖。它以高光谱分辨率获取景物或目标的高光谱图像。在陆地、大气、海洋等领域的研究观测中有广泛的应用。 成像光谱仪–概述 成像光谱仪是20世纪80年代开始在多光谱遥感成像技术的基础上发展起来的,它以高光谱分辨率获取景物或目标的高光谱图像,在航空、航天器上进行陆地、大气、海洋等观测中有广泛的应用,高成像光谱仪可以应用在地物精确分类、地物识别、地物特征信息的提取。建立目标的高光谱遥感信息处理和定量化分析模型后,可提高高光谱数据处理的自动化和智能化水平.。由于成像光谱仪高光谱分辨率的巨大优势,在空间对地观测的同时获取众多连续波段的地物光谱图像,达到从空间直接识别地球表面物质的目的,成为遥感领域的一大热点,正在成为当代空间对地观测的主要技术手段。地面上采用成像光谱仪也取得了很大的成果,如科学研究、工农林业环境保护等方面。 成像光谱仪主要性能参数是:(1)噪声等效反射率差(NE?p),体现为信噪比(SNR);(2)瞬时视场角(IFOV),体现为地面分辨率;(3)光谱分辨率,直观地表现为波段多少和波段谱宽。 高光谱分辨率遥感信息分析处理,集中于光谱维上进行图象信息的展开和定量分析,其图象处理模式的关键技术有:⑴超多维光谱图象信息的显示,如图像立方体(见图一)的生成;⑵光谱重建,即成像光谱数据的定标、定量化和大气纠正模型与算法,依此实现成像光谱信息的图象-光谱转换;⑶光谱编码,尤其指光谱吸收位置、深度、对称性等光谱特征参数的算法;⑷基于光谱数据库的地物光谱匹配识别算法; ⑸混合光谱分解模型;⑹基于光谱模型的地表生物物理化学过程与参数的识别和反演算法。 高光谱分辨率成像光谱遥感起源于地质矿物识别填图研究,逐渐扩展为植被生态、海洋海岸水色、冰雪、土壤以及大气的研究中。 成像光谱仪的基本原理

大视场凝视型红外共形光学系统设计_姜洋

第41卷第6期红外与激光工程2012年6月Vol.41No.6Infrared and Laser Engineering Jun.2012 大视场凝视型红外共形光学系统设计 姜洋1,2,孙强1,孙金霞3,刘英1,李淳1,王健1,杨乐1,2 (1.中国科学院长春光学精密机械与物理研究所,吉林长春130033; 2.中国科学院研究生院,北京100049; 3.中国空空导弹研究院,河南洛阳471009) 摘要:为提高导弹整流罩气动性能,增强导引头系统稳定性,增大观察视场,完成了共形整流罩结合红外鱼眼镜头的新型红外凝视成像导引头光学系统设计。光学系统采用的椭球形共形整流罩将反远距结构与f-θ成像相结合,通过控制像方视场角提高像面照度的均匀性。对不同结构共形系统的像差特性进行了分析。光学系统解决了大视场光阑像差问题,最终获得±90°的无渐晕观察视场,其冷光阑效率为100%,全视场MTF在15lp/mm处均大于0.5,点斑均方根半径小于30μm,在半径为50μm 圆内能量集中度为93%以上,像面相对照度高于85%,满足大视场光学系统的成像要求。 关键词:光学系统设计;共形光学;红外成像制导;鱼眼镜头 中图分类号:TN216文献标志码:A文章编号:1007-2276(2012)06-1575-06 Design of infrared staring conformal optical system with wide field of view Jiang Yang1,2,Sun Qiang1,Sun Jinxia3,Liu Ying1,Li Chun1,Wang Jian1,Yang Le1,2 (1.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun130033,China; 2.Graduate University of Chinese Academy of Sciences,Beijing100049,China; 3.China Airborne Missile Academy,Luoyang471009,China) Abstract:In order to optimize the aerodynamic performance of missile domes,enhance the stability and enlarge the FOV,an infrared staring imaging seeker combining the conformal dome and infrared fisheye lens was designed.The solution used an ellipsoidal conformal dome,inverted telephoto lens and f-θlens.Uniform illumination was realized through managing the imaging angle and pupil aberrations.Aberration characteristics of conformal dome were analyzed.The pupil aberrations at large FOV were solved.An optical system with±90°unvignetted FOR,100%cold stop efficient was designed.The MTF is higher than0.5at the spatial frequency of15lp/mm across the entire field.The RMS radiuses of spot diagram are less than 30μm;the geometric encircled energy is above93%in50μm range;the relative illumination is above85% at margin FOV.The specifications can meet the requirements of the wide field systems. Key words:optical system design;conformal optics;infrared imaging guidance;fisheye lens 收稿日期:2011-10-05;修订日期:2011-12-03 基金项目:国家自然科学基金(60977001);国家863计划(2007AA122110) 作者简介:姜洋(1984-),男,博士生,主要从事光学系统设计等方面的研究。Email:le_zhi@https://www.360docs.net/doc/c018399327.html, 导师简介:孙强(1971-),男,研究员,博士生导师,博士,主要从事现代红外光学仪器、二元光学、红外系统仿真等方面的研究。 Email:sunq@https://www.360docs.net/doc/c018399327.html,

800 万像素手机镜头的zemax设计

800 万像素手机镜头的zemax设计 2012.03.13 评论关闭4,757 views 目录 [隐藏] ?1引言 ?21感光器件的选取 ?32设计指标 ?43设计思路 ? 4.13.1材料选取 ? 4.23.2初始结构选取 ? 4.33.3优化过程 ?54设计结果 ? 5.14.1光学调制传递函数 ? 5.24.2点列图 ? 5.34.3场曲和畸变 ? 5.44.4色差和球差 ? 5.54.5相对照度 ?65公差分析 ?76结论 随着手机市场对高像素手机镜头的需求增大,利用Zemax光学设计软件设计一款大相对孔径800万像素的广角镜头。该镜头由1片非球面玻璃镜片,3片非球面塑料镜片,1片滤光镜片和1片保护玻璃构成。镜头光圈值F为2.45,视场角2ω为68°,焦距为4.25mm,后工作距离为0.5mm。采用APTINA公司的MT9E013型号800万像素传感器,最大分辨率为3264×2448,最小像素为1.4μm。设计结果显示:各视场的均方根差(RMS)半径小于1.4μm,在奈奎斯特频率1/2处大多数视场的MTF值均大于0.5,畸变小于2%,TV畸变小于0.3%。 关键词:手机镜头;光学设计;800万像素;Zemax 引言 手机镜头的研发工作始于20世纪90年代,世界上第一款照相手机是由夏普JPHONE(现在的日本沃达丰)在2001年推出的JSH04手机,它只搭载了一个11万像素的COMS数码相机镜头。随后各大手机知名制造厂商纷纷开始研发手机摄像功能。2003年5月22日夏普制造了100万素的JSH53,目前照相手机的市场占有率几乎是100%,特别是带有高像素2M、3M、5M、8M的镜头就成为镜头研发的热点[1]。目前800万像素的手机市场占有率还不是太多,但随着人们对高端手机的需求量越来越大,800万像素手机肯定是主流趋势。鉴于此,在选用合理初始结构的基础上,优化出了一款800万像素的手机镜头。 1感光器件的选取 感光器件有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)两种。CMOS器件产生的图像质量相比于CCD来说要低一些,到目前为止,大多数消费级别以及高端数码相机都使用CCD作为感光元件;CMOS感应器则作为低端产品

双胶合望远镜头设计要点

XX大学 课程设计说明书 201X/201X 学年第 1 学期 学院:信息与通信工程学院 专业:XXXXXXXX 学生姓名:XXXXX 学号:XXXXX 课程设计题目:双胶合望远镜头设计 起迄日期:20XX年12月22日~20XX年01月02日课程设计地点:XX大学5院楼513、606 指导教师:XXXX 职称: 教授

摘要 (1) 关键词 (1) 第一章课题要求 1.1课题背景 (2) 1.2设计目的 (2) 1.3设计内容和要求 (2) 第二章方案分析 2.1课题名称 (3) 2.2主要数据 (3) 2.3设计思路 (3) 2.4实现原理 (3) 2.5主要过程 (4) 第三章光学系统设计 3.1光圈参数设定 (5) 3.2视场参数设定 (5) 3.3波长设定 (6) 3.4玻璃厚度的设定 (6) 3.5像空间的设定 (7) 第四章光学系统分析 4.1 2D光路分布草图 (7) 4.2 标准点列图Spot Diagram (8) 4.3 光路图OPD FAN (9) 4.4 光线相差图RAY FAN (10) 4.5波前分布图 (11) 第五章光学系统优化 5.1光学系统调焦 (12) 5.2设置可变参数 (13) 5.3优化函数设定 (13) 5.4最终优化 (14) 第六章系统优化前后比较 6.1优化后的2D草图 (15) 6.2优化后的标准点列 (15) 6.3优化后光路图 (16) 第七章心得体会 心得体会 (17)

ZEMAX是一款多功能的光学设计软件,可建立反射、折射、绕射等光学模型,可以用来模拟、分析和辅助设计光学系统,并对光学系统进行优化。双胶合透镜不仅有较好的横向分辨率,而且有较高的轴向分辨率,能够作为共焦3-D成像的一种理想光学元件,在光学领域得到了广泛的应用。本次课程设计,我们将利用ZEMAX软件设计一个双胶合望远镜头,展示利用ZEMAX设计、分析和优化一个简单光学系统的过程,进一步掌握该软件。 关键词:ZEMAX双胶合望远镜头光学系统设计分析

长焦距宽视场离轴三反光管设计

长焦距宽视场离轴三反光管设计 杨宇飞1,2,颜昌翔1 (1.中国科学院长春光学精密机械与物理研究所,吉林长春130033; 2.中国科学院大学,北京100049) 摘要:针对大口径、长焦距、宽视场平行光管高像质的应用需求,提出一种采用离轴三反射镜结构的平行光管。从共轴三反理论出发,推导出系统的初始结构;并且在用zemax 软件优化时,提出一种基于ZPL 语言优化离轴量的方法。设计出一个焦距10m ,视场2°×1°的离轴三反平行光管。设计结果表明,系统像质接近衍射极限,全视场波像差RMS 值优于/200(=632.8nm),系统总长度小于f ′/3,为大口径、长焦距、宽视场光管设计提供了一种设计方法。 关键词:平行光管;离轴三反;长焦距;宽视场;ZPL 中图分类号:O43文献标志码:A 文章编号:1007-2276(2015)07-2070-05 Optical design of the off?axis three?mirror anastigmatic collimator with long focal length and wide field Yang Yufei 1,2,Yan Changxiang 1 (1.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China; 2.University of Chinese Academy of Sciences,Beijing 100049,China) Abstract:For the application demand of high image quality collimator with large diameter,long focal length and wide field,an off?axis three?mirror configuration for the light collimator was proposed.Based on the coaxial three?mirror configuration theories,the computation of the initial structure of the system was dervied,and a method of optimizing the off?axis amount was put forward by using the ZPL language of zemax software.A wide field off?axis three?mirror light tubes was designed,with focal length of 10m,F -number of 28.57.Results show that the modulation transfer function of this system is near the diffraction limit,within the field 2°×1°,the full field wave?front aberration is less than /200(=632.8nm),the total length of the system is less than f ′/3,providing a possibility design of long focal length,large diameter,and wide field of view light collimator. Key words:collimator;off?axis TMA;long focal length;wide field;ZPL 收稿日期:2014-11-03;修订日期:2014-12-07 基金项目:国家863高新技术发展计划(2011AA12A103);中国地质调查局工作项目(1212011120227) 作者简介:杨宇飞(1991-),男,硕士生,主要从事光学设计方面的研究。Email:yyf2008223@https://www.360docs.net/doc/c018399327.html, 导师简介:颜昌翔(1973-),男,研究员,博士,主要从事空间光学遥感技术方面的研究。Email:yancx@https://www.360docs.net/doc/c018399327.html, 第44卷第7期 红外与激光工程2015年7月 Vol.44No.7Infrared and Laser Engineering Jul.2015

基于Offner结构分视场成像光谱仪光学设计

第!!卷! 第"期!!!!!!!!!!!!光谱学与光谱分析#$%&!!!'$&"!(( )),)-)),=)*+!年"月!!!!!!!!!!!!.(/012$30$(4567.(/0125%865%43938:; :31!)*+!!基于"::425结构分视场成像光谱仪光学设计 吴从均+ ) 颜昌翔+" 刘!伟+ 代!虎+ )+<中国科学院长春光学精密机械与物理研究所空间光学一部!吉林长春!+!**!! )<中国科学院大学!北京! +***J I 摘!要!为满足航天应用中仪器小型和轻量化)大视场的观测要求!通过分析现有C R R 6/2成像光谱仪!给出了一种简单的采用凸面光栅设计成像光谱仪的方法"并据此方法设计了一应用于J **^P 高度!波段范围为*&J " +*P !焦距为,)*P P !E 数为L !全视场大小为J &!V 的分视场成像光谱仪系统"分视场采用光纤将望远系统的细长像面连接到光谱仪的三个不同狭缝而实现"三狭缝光谱面共用一个像元数为+*)J c +*)J !像元大小+"*Pc +"*P 的B B E 探测器"通过g H S 8N 软件优化和公差分析后!系统在)"%(+P P \+处S ?>优于*&=)!光谱分辨率优于L 6P !地面分辨率小于+*P !能很好的满足大视场应用要求!该光学系统 刈幅宽度相当于国内已研制成功的同类最好仪器的三倍"关键词!C R R 6/2 %成像光谱仪%分视场%光学设计中图分类号 C J !!!!文献标识码 8!!!%"& +*&!I =J K &9336&+***-*L I ! )*+! *"-)),)-*L !收稿日期 )*+)-++-)+ 修订日期 )*+!-*)-+=!基金项目 国家# "=!计划$项目#)*++88+)8+*!$资助!作者简介 吴从均!+I "=年生!中国科学院长春光学精密机械与物理研究所博士研究生!!/-P 59%&Q :0$6;K :6,"I ! +=!<0$P "通讯联系人!!/-P 59%&4560j ! 09$P (<50<06引!言 !!星载超光谱成像仪按地面像元分辨率分为中分辨率和高 分辨率!中分辨率超光谱成像仪地面分辨率为数百米至数千 米量级!高分辨率超光谱成像仪为数十米量级' +("目前制约星载成像光谱仪发展的主要是探测器和分光方式!国内星载设备探测器一般都通过国外购买!价格昂贵!而且购买的渠道越来越窄%分光方式上!光栅和棱镜作为传统的分光元件!各自存在一定的缺点"傅里叶变换光谱仪虽然是一种比较理想的成像光谱仪形式!但环境要求非常高!往往信噪比并不是很高%基于8C ?>)T B ?> )波带片等二元光学元件和折衍射系统组合的分光在星载应用中相对还不成熟')!!("传 统光谱仪系统包括准直和成像系统!一些独特结构的光谱仪系统采用汇聚光路!这种方法在很大程度上都采用了准直和成像对称形式!C R R 6/2结构就是一种对称严格的结构形式"C R R 6/2光栅成像光谱仪在)*世纪I *年代初就已经被提 出了!随着光栅制造水平的提高!其结构简单)利于小型化 的突出优势逐渐被放大!已经在应用中崭露头角'J ("文献 'L !=(分别从如何消除像散等离轴像差上分析了C R R 6/2成像 光谱仪的设计方法!文献',(给出了在汇聚光路中和在发散光路中分别采用光栅和曲面棱镜设计成像光谱仪的光学系统 并比较了两者的优缺点!程欣等' "(采用在汇聚光路中加入>p 24棱镜作为分光元件设计了光谱范围在* &J ")&L *P 的成像光谱仪"一些相关文献中还对C R R 6/2成像光谱仪的机械结构设计'I ()图像数据压缩)装调方法'+*(和杂散光'++(的分 析研究" 分视场成像光谱仪#3:Z -R 9/%79P 5;96;3(/012$P /1/2!.>@. $能有效增大地面刈副宽度!利用视场分割思想!将望远镜宽线视场分割)折叠成窄线视场阵列!通过一个光谱仪进行分光!充分发挥面阵探测器的优势!各窄线视场的光谱图像数据按序首尾相连!便得到了宽线视场情况下的高分辨率超光谱成像数据"早期的宽视场大部分采用视场分离器分 别进入不同光谱仪系统' +)(!这种情况下光谱仪必须根据视场分离的结果置很多台!而且体积大"本方法大大减小了仪器的体积和重量" +!C R R 6/2光谱仪的设计方法!!对于C R R 6/2结构的数值分析设计在文献'L !=(中给出了详细的设计过程!而且这些结构都是通过离轴形式对其进行分析!过程极为繁琐"下面从同轴结构出发进行分析!可以很快得到这种初始结构"'('!确定凸面光栅的曲率半径

手机照相镜头的光学设计

本科毕业设计论文 手机照相镜头的光学设计 摘要 随着市场的发展,可拍照手机逐渐取代普通手机,而手机的小型超薄化也是必然趋势,手机的照相功能的提升和小型超薄化应并进,而二者又是相互制约的,因此尽量减小手机照相镜头的体积并提高其性能成为必然趋势。 本文后半部分运用ZEMAX对所设计的镜头进行了调整和优化,用缩放法对初始模型反复调试和修改,并根据课题要求进行了数据分析,最终得出了符合设计要求的结果.最终设计结果为:镜头总长:10.07mm,后焦距:1.27mm。畸变范围-1.07到1。76 之间.中心视场MTF@160lp/mm值为0.52.边缘视场MTF@120lp/mm值为0.53。 关键字:可拍照手机镜头小型化ZEMAX 优化。 目录 摘要 (Ⅰ) Abstract (Ⅱ) 目录 (1) 1 绪论 (1) 1。1 研究的目的和意义 (1) 1。2 可拍照手机和镜头设计的国内外发展 (1) 1。2。1 可拍照手机国内外发展状况 (1) 1。2。2 现今镜头设计的国内外发展状况 (2) 2 手机照相镜头的成像原理介绍 (3) 2.1 可拍照手机照相原理....................................... (3) 2。2 感光元件简介............................................. (3)

2。3 镜头结构分类及选择........................... (3) 2.4手机镜头的性能指标和相关术语 (4) 2.4。1镜头类型选择的依据[7] (4) 2.4.2数码镜头鉴别率 (4) 2。4。3光圈范围 (4) 2. 4. 4影响像质的几个因素 (5) 3光学系统设计 (6) 3。1光学设计软件简介 (6) 3.1.1 ZEMAX MTF函数 (6) 3。1.2缺省的评价函数及优化 (6) 3。1. 3归一化的视场和光瞳坐标 (7) 3。2设计要求及分析 (7) 3.3初始结构的选择 (8) 3。3。1 视场角的确定 (10) 3.3.2 F数的确定 (10) 3。3。3 工作波长的选择 (10) 3.3.4调制传递函数图如下 (11) 3.3.5七种塞得像差分别为 (11) 3。3.6场曲和畸变图 (12) 3.3。7点列图如下 (12) 3.3.8光线特性曲线图 (13) 3。4 像差的初步校正 (13) 3.4.1初步校正后的数据 (13) 3.4。2二维光路图如下 (15) 3.4。3调制传递函数图如下: (15) 3.4。4场曲畸变图 (16) 3。4.5点列图 (17) 3.4.6光线特性曲线图 (17) 3。5系统优化 (18) 3.5。1优化数据 (18) 3. 5。2二维光路图 (19) 3.5.3 点列图 (20) 3。5。4场曲畸变示意图 (20) 3.5.5 MTF分析图 (21) 3.5。6光线特性曲线图 (23) 3。6公差分析 (24) 3. 6. 1公差分析的一般过程 (24)

测绘用离轴三反光学系统技术_郭疆

1007-4619 (2012) 增刊-0017-05Journal of Remote Sensing 遥感学报 收稿日期:2012-08-01;修订日期:2012-11-20基金项目:国家自然科学资金(No.60507003) 第一作者简介:郭疆(1976— ),男,副研究员,主要从事空间遥感成像技术的研究。E-mail: guojiang001@https://www.360docs.net/doc/c018399327.html, 。 测绘用离轴三反光学系统技术 郭疆1,刘金国1,王国良1,朱磊1,龚大鹏1, 2,齐洪宇1, 2 1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033; 2.中国科学院大学,北京 100049 摘 要:离轴三反光学系统可以同时兼顾长焦距与大视场,可以优化为零畸变、低场曲的光学系统,很好地满足了测绘对光学系统的要求,被公认为航天遥感测绘相机的发展方向。本文阐述了航天测绘相机的现状和发展趋势,对离轴三反光学系统应用于测绘的相机内方位元素定义、焦距计算公式的修正、调焦方式对主点位置精度的影响、系统畸变标定以及系统稳定性等问题进行讨论为中国自主获取高分辨率、高精度的测绘数据提供了技术参考。关键词:长焦距,离轴三反,光学系统,测绘相机中图分类号:TP73/V447.3 文献标志码: A 1 引 言 随着地理信息系统软件技术的不断完善和成熟,制约中国地球空间信息产业发展的瓶颈是基础地理数据获取问题。中国数据产业的生产和需求之间存在着较大矛盾,加之国民经济和社会发展迅速,交通和城市建设等地理要素变化很快,加大了测绘对地理信息更新速度的要求,而数据资源获取速度太慢,制约了地理信息的更新速度。为满足地理信息技术快速发展的需求,迫切需要高分辨率的航天遥感测绘相机去获取大比例尺地图。同时宽视场有利于减少图像的整合处理量,提高测绘精度,缩短重访周期,增强卫星的实时性,也成为航天测绘相机的需求之一。 离轴三反光学系统易于设计成长焦距兼大视场,较同轴光学系统有更多的可优化变量,可以很好的解决镜头畸变和场曲等问题,很好地满足了测绘相机对光学系统的要求,是航天遥感测绘相机的发展方向和趋势(姜会林,1982;Juranek 等,1998;Korsch ,1987;潘君骅,1988)。例如,美国的Quickbird-2、印度的CARTOSAT-I 相机和日本的ALOS-PRISM 相机 均为离轴三反光学系统。日本计划在2015年发射的ALOS3,地面像元分辨率为0.8 m ,幅宽为50 km ,也采用离轴三反光学系统。从以上信息可以看出高分辨率、宽幅、低畸变和平视场是大比例尺航天遥感测绘相机的需求(张科科 等,2008),而采用离轴三反光学系统遥感测绘相机是未来发展趋势。目前,中国离轴三反测绘相机还是空白,而离轴三反测绘相机又有别于同轴系统(常军和姜会林,2003;伍和云和王培纲,2006),需要对离轴三反光学系统应用于测绘的相关理论和模型进行研究,为中国遥感测绘的快速发展打下基础。 2 离轴三反测绘相机需注意的问题 经典测绘数学模型(王任享,2006;王之卓,2007)中,相机模型均按同轴系统进行处理,而离轴三反光学系统由于视场的偏置,其像面不在光轴上,如图1所示,因此航天测绘在采用离轴三反光学系统时,需对测绘模型和公式进行相应的修正,以保证测绘应用的要求。

显微镜系统设计实验报告

光学系统设计实验报告 设计题目:测量显微镜光学系统 专业班级:光信息08-1班 学生姓名: 学号: 指导老师:

一实验目的 1.了解光学系统设计的基本步骤,学会基本外形尺寸的计算。 2.熟悉ZEMAX软件的操作,了解操作要领,学会应用基本的相差 评价函数并进行优化。 二、实验器材 ZEMAX软件、相关实验指导书 三、设计要求 1)设计说明书和镜头文件。镜头文件包括物镜镜头文件、目镜镜头文件和光学系统镜头文件。 2)部分技术参数选择: ①目镜放大率10 ②沿光轴,目镜最后一面到物面沿光轴的几何距离280毫米 ③对工件实边缘的对准精度为2.2微米 ④其它参数自定 3)其他要求 ①视场大小自定,尽可能大些,一般达到商用仪器的一半。 ②可以不加棱镜。如加棱镜,折转角大小自定。棱镜可以按照等效玻璃板处理。 ③可以对物镜和目镜进行整体优化或独立优化。 ④可以加上CCD。 四、具体设计 1.系统结构设计思路 1)系统结构框图

物体经物镜所成的放大的实像与分划板重合,两者一同经目镜成一放大的虚像。棱镜的型式为斯米特屋脊棱镜,它能使系统成正像,并且使光路转折45°角,以便于观察和瞄准(此处可以不加设计)。为避免景深影响瞄准精度,物镜系统采用物方远心光路,即孔径光阑位于物镜像方焦面上。 (图1 显微镜系统结构图) 2)等效光路原理图

(图2 显微镜无光轴偏转的等效光路图) 2.外形尺寸计算 1)首先绘出光学系统的等效光路原理图。如图所示,首先将棱镜作为等效空气平板处理。 2)求实际放大率。系统的有效放大率由系统的瞄准精度决定。用米字形虚线瞄准被测件轮廓,得系统有效放大率 由于工具显微镜一般要求有较大的工作距和物方线视场,又要求共轭距不能太长,因而工具显微镜的实际放大率和物镜的放大率均不宜过大。取实际放大率为 3)求数值孔径 4)求物镜和目镜的放大率 目镜的放大率 物镜的放大率 5)求目镜的焦距 ? -=Γ30102.02 .21.500055 .061.061.0 nsinU ≈??===δλk NA 3 -=ΓΓ =e β?=Γ10e mm f e e 25250 =Γ= '? ≥?=≥ Γ222 .21.55 .725.72δk

成像光谱技术简介

成像光谱技术 1.成像光谱技术发展简述 光谱技术是指利用光与物质的相互作用研究分子结构及动态特性的学科,即通过获取光的发射、吸收与散射信息可获得与样品相关的化学信息,成像技术则是获取目标的影像信息,研究目标的空间特性信息。这两个独立的学科在各自的领域里已有数百年的发展历史,但是知道上个世纪六十年代,遥感技术兴起,空间探测和地表探测一时成为科学界研究的热点,人们希望得到的不单纯是目标的影响信息或者目标的光谱信息,而是同时得到影像信息和光谱信息,这一需求极大的导致了成像技术和光谱技术的结合,催生出了成像光谱技术。 所谓光谱成像技术,其本质是充分利用了物质对不同电磁波谱的吸收或辐射特性,在普通的二维空间成像的基础上,增加了一维的光谱信息。由于地物物质组成的不同,其对应的光谱之间存在差异(即指纹效应),从而可以利用地物目标的光谱进行识别和分类。光谱成像技术可以在电磁波段的紫外、可见光、近红外和中红外区域,获取许多窄并且光谱连续的图像数据,为每个像元提供一条完整并且连续的光谱曲线。 图1 成像光谱技术示意图 图1.1就是成像光谱技术的示意图,成像光谱仪得到一个三维的数据立方体,从每个空间象元都可以提取一条连续的光谱曲线,通过谱线的特征分析,继而用于后续的测探等目的。 2.成像光谱仪的分类 成像光谱仪是成像光谱技术发展的必然产物,是可以同时获取影像信息与像元的光谱信息的光学传感器,是成像光谱技术得以实现的实物载体,根据不同的分类标准可以进行多种分类,主要有以下几种: (1)根据成像光谱仪的光谱分辨率不同,可以分为多光谱成像仪

(Multispectral Imager, MSI),高光谱成像仪(Hyperspectral Imager, HSI),超光谱成像仪(Hyperspectral Imager, USI)。 多光谱成像仪:获得的目标物的波段在3~12之间,光谱分辨率一般在 100nm左右,主要用于地带分类等方面。 高光谱成像仪:获得的目标物的波段在100~200之间,光谱分辨率在10nm 左右,被广泛用于遥感中。 超光谱成像仪:获得的目标物的波段在1000~10000之间,光谱分辨率在 1nm以下,通常用于大气微粒探测等精细探测领域。 (2)按照分光原理的不同可以分为棱镜色散型、光栅衍射型、滤光片型、干涉 型以及计算层析型。 棱镜色散型和光栅衍射型分别是利用棱镜的色散和光栅的衍射来获取目标物的光谱,这两类光谱仪都是直接型光谱仪,即可以直接得到目标物的光谱曲线,具有原理简单和性能稳定等优点。 滤光片型光谱仪是采用相机加滤光片的方案,分光元件为滤光片,有多种形式,有线性滤光片、旋转滤光片等。这种光谱仪也是一种间接成像光谱仪,需要调制才能获得整个数据立方体 干涉型光谱仪是采用干涉仪实现两束相干光的干涉,从而获得目标物的干涉图。该类型的光谱仪其采集到干涉图和最终需要反演得到光谱图之间存在傅里叶变换关系,故其也称傅里叶变换光谱仪。 (3)按照扫描方式不同,成像光谱技术可分为挥扫式(Whiskbroom)、推扫式(Pushbroom)和凝视(Staring)成像光谱仪。 挥扫视:主要利用扫描镜,将空间信息按照一定的顺序输入,再由光谱仪对各点进行光谱分光,这类光谱仪的探测器一般为线阵。 推扫式:采用一个垂直于运动方向的面阵探测器,先将扫描成像于光谱仪的狭缝上,在通过运动获得另一维的光谱数据。 凝视型:无需探测器的运动,在任意时刻即可获取目标的二维空间信息以及一维光谱信息。 此外,还有多种分类方法,比如按照数据称重理论和调制方式以及搭载平台的不同等等。 3.成像光谱技术的应用 成像光谱技术应用方向可以分为两大类:军用和民用。在军用方面,由于成像光谱仪特别是高光谱成像仪具有在光谱上区分地物类型的能力,因此它在地物的精细分类、目标检测和变化检测上体现出较强的优势,成为一种重要的战场侦察手段。早在20世纪末,美国军方就有实验表明高光谱图像可以分辨出

相关文档
最新文档